xref: /openbmc/linux/include/linux/kvm_host.h (revision 5e2421ce)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/hashtable.h>
33 #include <linux/interval_tree.h>
34 #include <linux/rbtree.h>
35 #include <linux/xarray.h>
36 #include <asm/signal.h>
37 
38 #include <linux/kvm.h>
39 #include <linux/kvm_para.h>
40 
41 #include <linux/kvm_types.h>
42 
43 #include <asm/kvm_host.h>
44 #include <linux/kvm_dirty_ring.h>
45 
46 #ifndef KVM_MAX_VCPU_IDS
47 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
48 #endif
49 
50 /*
51  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
52  * in kvm, other bits are visible for userspace which are defined in
53  * include/linux/kvm_h.
54  */
55 #define KVM_MEMSLOT_INVALID	(1UL << 16)
56 
57 /*
58  * Bit 63 of the memslot generation number is an "update in-progress flag",
59  * e.g. is temporarily set for the duration of install_new_memslots().
60  * This flag effectively creates a unique generation number that is used to
61  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
62  * i.e. may (or may not) have come from the previous memslots generation.
63  *
64  * This is necessary because the actual memslots update is not atomic with
65  * respect to the generation number update.  Updating the generation number
66  * first would allow a vCPU to cache a spte from the old memslots using the
67  * new generation number, and updating the generation number after switching
68  * to the new memslots would allow cache hits using the old generation number
69  * to reference the defunct memslots.
70  *
71  * This mechanism is used to prevent getting hits in KVM's caches while a
72  * memslot update is in-progress, and to prevent cache hits *after* updating
73  * the actual generation number against accesses that were inserted into the
74  * cache *before* the memslots were updated.
75  */
76 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
77 
78 /* Two fragments for cross MMIO pages. */
79 #define KVM_MAX_MMIO_FRAGMENTS	2
80 
81 #ifndef KVM_ADDRESS_SPACE_NUM
82 #define KVM_ADDRESS_SPACE_NUM	1
83 #endif
84 
85 /*
86  * For the normal pfn, the highest 12 bits should be zero,
87  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
88  * mask bit 63 to indicate the noslot pfn.
89  */
90 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
91 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
92 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
93 
94 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
95 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
96 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
97 
98 /*
99  * error pfns indicate that the gfn is in slot but faild to
100  * translate it to pfn on host.
101  */
102 static inline bool is_error_pfn(kvm_pfn_t pfn)
103 {
104 	return !!(pfn & KVM_PFN_ERR_MASK);
105 }
106 
107 /*
108  * error_noslot pfns indicate that the gfn can not be
109  * translated to pfn - it is not in slot or failed to
110  * translate it to pfn.
111  */
112 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
113 {
114 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
115 }
116 
117 /* noslot pfn indicates that the gfn is not in slot. */
118 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
119 {
120 	return pfn == KVM_PFN_NOSLOT;
121 }
122 
123 /*
124  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
125  * provide own defines and kvm_is_error_hva
126  */
127 #ifndef KVM_HVA_ERR_BAD
128 
129 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
130 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
131 
132 static inline bool kvm_is_error_hva(unsigned long addr)
133 {
134 	return addr >= PAGE_OFFSET;
135 }
136 
137 #endif
138 
139 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
140 
141 static inline bool is_error_page(struct page *page)
142 {
143 	return IS_ERR(page);
144 }
145 
146 #define KVM_REQUEST_MASK           GENMASK(7,0)
147 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
148 #define KVM_REQUEST_WAIT           BIT(9)
149 /*
150  * Architecture-independent vcpu->requests bit members
151  * Bits 4-7 are reserved for more arch-independent bits.
152  */
153 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
154 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
155 #define KVM_REQ_UNBLOCK           2
156 #define KVM_REQ_UNHALT            3
157 #define KVM_REQ_VM_DEAD           (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
158 #define KVM_REQ_GPC_INVALIDATE    (5 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
159 #define KVM_REQUEST_ARCH_BASE     8
160 
161 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
162 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
163 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
164 })
165 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
166 
167 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
168 				 unsigned long *vcpu_bitmap);
169 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
170 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
171 				      struct kvm_vcpu *except);
172 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
173 				unsigned long *vcpu_bitmap);
174 
175 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
176 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
177 
178 extern struct mutex kvm_lock;
179 extern struct list_head vm_list;
180 
181 struct kvm_io_range {
182 	gpa_t addr;
183 	int len;
184 	struct kvm_io_device *dev;
185 };
186 
187 #define NR_IOBUS_DEVS 1000
188 
189 struct kvm_io_bus {
190 	int dev_count;
191 	int ioeventfd_count;
192 	struct kvm_io_range range[];
193 };
194 
195 enum kvm_bus {
196 	KVM_MMIO_BUS,
197 	KVM_PIO_BUS,
198 	KVM_VIRTIO_CCW_NOTIFY_BUS,
199 	KVM_FAST_MMIO_BUS,
200 	KVM_NR_BUSES
201 };
202 
203 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
204 		     int len, const void *val);
205 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
206 			    gpa_t addr, int len, const void *val, long cookie);
207 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
208 		    int len, void *val);
209 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
210 			    int len, struct kvm_io_device *dev);
211 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
212 			      struct kvm_io_device *dev);
213 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
214 					 gpa_t addr);
215 
216 #ifdef CONFIG_KVM_ASYNC_PF
217 struct kvm_async_pf {
218 	struct work_struct work;
219 	struct list_head link;
220 	struct list_head queue;
221 	struct kvm_vcpu *vcpu;
222 	struct mm_struct *mm;
223 	gpa_t cr2_or_gpa;
224 	unsigned long addr;
225 	struct kvm_arch_async_pf arch;
226 	bool   wakeup_all;
227 	bool notpresent_injected;
228 };
229 
230 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
231 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
232 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
233 			unsigned long hva, struct kvm_arch_async_pf *arch);
234 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
235 #endif
236 
237 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
238 struct kvm_gfn_range {
239 	struct kvm_memory_slot *slot;
240 	gfn_t start;
241 	gfn_t end;
242 	pte_t pte;
243 	bool may_block;
244 };
245 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
246 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
247 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
248 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
249 #endif
250 
251 enum {
252 	OUTSIDE_GUEST_MODE,
253 	IN_GUEST_MODE,
254 	EXITING_GUEST_MODE,
255 	READING_SHADOW_PAGE_TABLES,
256 };
257 
258 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
259 
260 struct kvm_host_map {
261 	/*
262 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
263 	 * a 'struct page' for it. When using mem= kernel parameter some memory
264 	 * can be used as guest memory but they are not managed by host
265 	 * kernel).
266 	 * If 'pfn' is not managed by the host kernel, this field is
267 	 * initialized to KVM_UNMAPPED_PAGE.
268 	 */
269 	struct page *page;
270 	void *hva;
271 	kvm_pfn_t pfn;
272 	kvm_pfn_t gfn;
273 };
274 
275 /*
276  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
277  * directly to check for that.
278  */
279 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
280 {
281 	return !!map->hva;
282 }
283 
284 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
285 {
286 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
287 }
288 
289 /*
290  * Sometimes a large or cross-page mmio needs to be broken up into separate
291  * exits for userspace servicing.
292  */
293 struct kvm_mmio_fragment {
294 	gpa_t gpa;
295 	void *data;
296 	unsigned len;
297 };
298 
299 struct kvm_vcpu {
300 	struct kvm *kvm;
301 #ifdef CONFIG_PREEMPT_NOTIFIERS
302 	struct preempt_notifier preempt_notifier;
303 #endif
304 	int cpu;
305 	int vcpu_id; /* id given by userspace at creation */
306 	int vcpu_idx; /* index in kvm->vcpus array */
307 	int srcu_idx;
308 	int mode;
309 	u64 requests;
310 	unsigned long guest_debug;
311 
312 	struct mutex mutex;
313 	struct kvm_run *run;
314 
315 #ifndef __KVM_HAVE_ARCH_WQP
316 	struct rcuwait wait;
317 #endif
318 	struct pid __rcu *pid;
319 	int sigset_active;
320 	sigset_t sigset;
321 	unsigned int halt_poll_ns;
322 	bool valid_wakeup;
323 
324 #ifdef CONFIG_HAS_IOMEM
325 	int mmio_needed;
326 	int mmio_read_completed;
327 	int mmio_is_write;
328 	int mmio_cur_fragment;
329 	int mmio_nr_fragments;
330 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
331 #endif
332 
333 #ifdef CONFIG_KVM_ASYNC_PF
334 	struct {
335 		u32 queued;
336 		struct list_head queue;
337 		struct list_head done;
338 		spinlock_t lock;
339 	} async_pf;
340 #endif
341 
342 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
343 	/*
344 	 * Cpu relax intercept or pause loop exit optimization
345 	 * in_spin_loop: set when a vcpu does a pause loop exit
346 	 *  or cpu relax intercepted.
347 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
348 	 */
349 	struct {
350 		bool in_spin_loop;
351 		bool dy_eligible;
352 	} spin_loop;
353 #endif
354 	bool preempted;
355 	bool ready;
356 	struct kvm_vcpu_arch arch;
357 	struct kvm_vcpu_stat stat;
358 	char stats_id[KVM_STATS_NAME_SIZE];
359 	struct kvm_dirty_ring dirty_ring;
360 
361 	/*
362 	 * The most recently used memslot by this vCPU and the slots generation
363 	 * for which it is valid.
364 	 * No wraparound protection is needed since generations won't overflow in
365 	 * thousands of years, even assuming 1M memslot operations per second.
366 	 */
367 	struct kvm_memory_slot *last_used_slot;
368 	u64 last_used_slot_gen;
369 };
370 
371 /* must be called with irqs disabled */
372 static __always_inline void guest_enter_irqoff(void)
373 {
374 	/*
375 	 * This is running in ioctl context so its safe to assume that it's the
376 	 * stime pending cputime to flush.
377 	 */
378 	instrumentation_begin();
379 	vtime_account_guest_enter();
380 	instrumentation_end();
381 
382 	/*
383 	 * KVM does not hold any references to rcu protected data when it
384 	 * switches CPU into a guest mode. In fact switching to a guest mode
385 	 * is very similar to exiting to userspace from rcu point of view. In
386 	 * addition CPU may stay in a guest mode for quite a long time (up to
387 	 * one time slice). Lets treat guest mode as quiescent state, just like
388 	 * we do with user-mode execution.
389 	 */
390 	if (!context_tracking_guest_enter()) {
391 		instrumentation_begin();
392 		rcu_virt_note_context_switch(smp_processor_id());
393 		instrumentation_end();
394 	}
395 }
396 
397 static __always_inline void guest_exit_irqoff(void)
398 {
399 	context_tracking_guest_exit();
400 
401 	instrumentation_begin();
402 	/* Flush the guest cputime we spent on the guest */
403 	vtime_account_guest_exit();
404 	instrumentation_end();
405 }
406 
407 static inline void guest_exit(void)
408 {
409 	unsigned long flags;
410 
411 	local_irq_save(flags);
412 	guest_exit_irqoff();
413 	local_irq_restore(flags);
414 }
415 
416 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
417 {
418 	/*
419 	 * The memory barrier ensures a previous write to vcpu->requests cannot
420 	 * be reordered with the read of vcpu->mode.  It pairs with the general
421 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
422 	 */
423 	smp_mb__before_atomic();
424 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
425 }
426 
427 /*
428  * Some of the bitops functions do not support too long bitmaps.
429  * This number must be determined not to exceed such limits.
430  */
431 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
432 
433 /*
434  * Since at idle each memslot belongs to two memslot sets it has to contain
435  * two embedded nodes for each data structure that it forms a part of.
436  *
437  * Two memslot sets (one active and one inactive) are necessary so the VM
438  * continues to run on one memslot set while the other is being modified.
439  *
440  * These two memslot sets normally point to the same set of memslots.
441  * They can, however, be desynchronized when performing a memslot management
442  * operation by replacing the memslot to be modified by its copy.
443  * After the operation is complete, both memslot sets once again point to
444  * the same, common set of memslot data.
445  *
446  * The memslots themselves are independent of each other so they can be
447  * individually added or deleted.
448  */
449 struct kvm_memory_slot {
450 	struct hlist_node id_node[2];
451 	struct interval_tree_node hva_node[2];
452 	struct rb_node gfn_node[2];
453 	gfn_t base_gfn;
454 	unsigned long npages;
455 	unsigned long *dirty_bitmap;
456 	struct kvm_arch_memory_slot arch;
457 	unsigned long userspace_addr;
458 	u32 flags;
459 	short id;
460 	u16 as_id;
461 };
462 
463 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
464 {
465 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
466 }
467 
468 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
469 {
470 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
471 }
472 
473 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
474 {
475 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
476 
477 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
478 }
479 
480 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
481 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
482 #endif
483 
484 struct kvm_s390_adapter_int {
485 	u64 ind_addr;
486 	u64 summary_addr;
487 	u64 ind_offset;
488 	u32 summary_offset;
489 	u32 adapter_id;
490 };
491 
492 struct kvm_hv_sint {
493 	u32 vcpu;
494 	u32 sint;
495 };
496 
497 struct kvm_xen_evtchn {
498 	u32 port;
499 	u32 vcpu;
500 	u32 priority;
501 };
502 
503 struct kvm_kernel_irq_routing_entry {
504 	u32 gsi;
505 	u32 type;
506 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
507 		   struct kvm *kvm, int irq_source_id, int level,
508 		   bool line_status);
509 	union {
510 		struct {
511 			unsigned irqchip;
512 			unsigned pin;
513 		} irqchip;
514 		struct {
515 			u32 address_lo;
516 			u32 address_hi;
517 			u32 data;
518 			u32 flags;
519 			u32 devid;
520 		} msi;
521 		struct kvm_s390_adapter_int adapter;
522 		struct kvm_hv_sint hv_sint;
523 		struct kvm_xen_evtchn xen_evtchn;
524 	};
525 	struct hlist_node link;
526 };
527 
528 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
529 struct kvm_irq_routing_table {
530 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
531 	u32 nr_rt_entries;
532 	/*
533 	 * Array indexed by gsi. Each entry contains list of irq chips
534 	 * the gsi is connected to.
535 	 */
536 	struct hlist_head map[];
537 };
538 #endif
539 
540 #ifndef KVM_PRIVATE_MEM_SLOTS
541 #define KVM_PRIVATE_MEM_SLOTS 0
542 #endif
543 
544 #define KVM_MEM_SLOTS_NUM SHRT_MAX
545 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
546 
547 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
548 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
549 {
550 	return 0;
551 }
552 #endif
553 
554 struct kvm_memslots {
555 	u64 generation;
556 	atomic_long_t last_used_slot;
557 	struct rb_root_cached hva_tree;
558 	struct rb_root gfn_tree;
559 	/*
560 	 * The mapping table from slot id to memslot.
561 	 *
562 	 * 7-bit bucket count matches the size of the old id to index array for
563 	 * 512 slots, while giving good performance with this slot count.
564 	 * Higher bucket counts bring only small performance improvements but
565 	 * always result in higher memory usage (even for lower memslot counts).
566 	 */
567 	DECLARE_HASHTABLE(id_hash, 7);
568 	int node_idx;
569 };
570 
571 struct kvm {
572 #ifdef KVM_HAVE_MMU_RWLOCK
573 	rwlock_t mmu_lock;
574 #else
575 	spinlock_t mmu_lock;
576 #endif /* KVM_HAVE_MMU_RWLOCK */
577 
578 	struct mutex slots_lock;
579 
580 	/*
581 	 * Protects the arch-specific fields of struct kvm_memory_slots in
582 	 * use by the VM. To be used under the slots_lock (above) or in a
583 	 * kvm->srcu critical section where acquiring the slots_lock would
584 	 * lead to deadlock with the synchronize_srcu in
585 	 * install_new_memslots.
586 	 */
587 	struct mutex slots_arch_lock;
588 	struct mm_struct *mm; /* userspace tied to this vm */
589 	unsigned long nr_memslot_pages;
590 	/* The two memslot sets - active and inactive (per address space) */
591 	struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
592 	/* The current active memslot set for each address space */
593 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
594 	struct xarray vcpu_array;
595 
596 	/* Used to wait for completion of MMU notifiers.  */
597 	spinlock_t mn_invalidate_lock;
598 	unsigned long mn_active_invalidate_count;
599 	struct rcuwait mn_memslots_update_rcuwait;
600 
601 	/* For management / invalidation of gfn_to_pfn_caches */
602 	spinlock_t gpc_lock;
603 	struct list_head gpc_list;
604 
605 	/*
606 	 * created_vcpus is protected by kvm->lock, and is incremented
607 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
608 	 * incremented after storing the kvm_vcpu pointer in vcpus,
609 	 * and is accessed atomically.
610 	 */
611 	atomic_t online_vcpus;
612 	int created_vcpus;
613 	int last_boosted_vcpu;
614 	struct list_head vm_list;
615 	struct mutex lock;
616 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
617 #ifdef CONFIG_HAVE_KVM_EVENTFD
618 	struct {
619 		spinlock_t        lock;
620 		struct list_head  items;
621 		struct list_head  resampler_list;
622 		struct mutex      resampler_lock;
623 	} irqfds;
624 	struct list_head ioeventfds;
625 #endif
626 	struct kvm_vm_stat stat;
627 	struct kvm_arch arch;
628 	refcount_t users_count;
629 #ifdef CONFIG_KVM_MMIO
630 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
631 	spinlock_t ring_lock;
632 	struct list_head coalesced_zones;
633 #endif
634 
635 	struct mutex irq_lock;
636 #ifdef CONFIG_HAVE_KVM_IRQCHIP
637 	/*
638 	 * Update side is protected by irq_lock.
639 	 */
640 	struct kvm_irq_routing_table __rcu *irq_routing;
641 #endif
642 #ifdef CONFIG_HAVE_KVM_IRQFD
643 	struct hlist_head irq_ack_notifier_list;
644 #endif
645 
646 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
647 	struct mmu_notifier mmu_notifier;
648 	unsigned long mmu_notifier_seq;
649 	long mmu_notifier_count;
650 	unsigned long mmu_notifier_range_start;
651 	unsigned long mmu_notifier_range_end;
652 #endif
653 	struct list_head devices;
654 	u64 manual_dirty_log_protect;
655 	struct dentry *debugfs_dentry;
656 	struct kvm_stat_data **debugfs_stat_data;
657 	struct srcu_struct srcu;
658 	struct srcu_struct irq_srcu;
659 	pid_t userspace_pid;
660 	unsigned int max_halt_poll_ns;
661 	u32 dirty_ring_size;
662 	bool vm_bugged;
663 	bool vm_dead;
664 
665 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
666 	struct notifier_block pm_notifier;
667 #endif
668 	char stats_id[KVM_STATS_NAME_SIZE];
669 };
670 
671 #define kvm_err(fmt, ...) \
672 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
673 #define kvm_info(fmt, ...) \
674 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
675 #define kvm_debug(fmt, ...) \
676 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
677 #define kvm_debug_ratelimited(fmt, ...) \
678 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
679 			     ## __VA_ARGS__)
680 #define kvm_pr_unimpl(fmt, ...) \
681 	pr_err_ratelimited("kvm [%i]: " fmt, \
682 			   task_tgid_nr(current), ## __VA_ARGS__)
683 
684 /* The guest did something we don't support. */
685 #define vcpu_unimpl(vcpu, fmt, ...)					\
686 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
687 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
688 
689 #define vcpu_debug(vcpu, fmt, ...)					\
690 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
691 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
692 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
693 			      ## __VA_ARGS__)
694 #define vcpu_err(vcpu, fmt, ...)					\
695 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
696 
697 static inline void kvm_vm_dead(struct kvm *kvm)
698 {
699 	kvm->vm_dead = true;
700 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
701 }
702 
703 static inline void kvm_vm_bugged(struct kvm *kvm)
704 {
705 	kvm->vm_bugged = true;
706 	kvm_vm_dead(kvm);
707 }
708 
709 
710 #define KVM_BUG(cond, kvm, fmt...)				\
711 ({								\
712 	int __ret = (cond);					\
713 								\
714 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
715 		kvm_vm_bugged(kvm);				\
716 	unlikely(__ret);					\
717 })
718 
719 #define KVM_BUG_ON(cond, kvm)					\
720 ({								\
721 	int __ret = (cond);					\
722 								\
723 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
724 		kvm_vm_bugged(kvm);				\
725 	unlikely(__ret);					\
726 })
727 
728 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
729 {
730 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
731 }
732 
733 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
734 {
735 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
736 				      lockdep_is_held(&kvm->slots_lock) ||
737 				      !refcount_read(&kvm->users_count));
738 }
739 
740 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
741 {
742 	int num_vcpus = atomic_read(&kvm->online_vcpus);
743 	i = array_index_nospec(i, num_vcpus);
744 
745 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
746 	smp_rmb();
747 	return xa_load(&kvm->vcpu_array, i);
748 }
749 
750 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
751 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
752 			  (atomic_read(&kvm->online_vcpus) - 1))
753 
754 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
755 {
756 	struct kvm_vcpu *vcpu = NULL;
757 	unsigned long i;
758 
759 	if (id < 0)
760 		return NULL;
761 	if (id < KVM_MAX_VCPUS)
762 		vcpu = kvm_get_vcpu(kvm, id);
763 	if (vcpu && vcpu->vcpu_id == id)
764 		return vcpu;
765 	kvm_for_each_vcpu(i, vcpu, kvm)
766 		if (vcpu->vcpu_id == id)
767 			return vcpu;
768 	return NULL;
769 }
770 
771 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
772 {
773 	return vcpu->vcpu_idx;
774 }
775 
776 void kvm_destroy_vcpus(struct kvm *kvm);
777 
778 void vcpu_load(struct kvm_vcpu *vcpu);
779 void vcpu_put(struct kvm_vcpu *vcpu);
780 
781 #ifdef __KVM_HAVE_IOAPIC
782 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
783 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
784 #else
785 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
786 {
787 }
788 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
789 {
790 }
791 #endif
792 
793 #ifdef CONFIG_HAVE_KVM_IRQFD
794 int kvm_irqfd_init(void);
795 void kvm_irqfd_exit(void);
796 #else
797 static inline int kvm_irqfd_init(void)
798 {
799 	return 0;
800 }
801 
802 static inline void kvm_irqfd_exit(void)
803 {
804 }
805 #endif
806 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
807 		  struct module *module);
808 void kvm_exit(void);
809 
810 void kvm_get_kvm(struct kvm *kvm);
811 bool kvm_get_kvm_safe(struct kvm *kvm);
812 void kvm_put_kvm(struct kvm *kvm);
813 bool file_is_kvm(struct file *file);
814 void kvm_put_kvm_no_destroy(struct kvm *kvm);
815 
816 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
817 {
818 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
819 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
820 			lockdep_is_held(&kvm->slots_lock) ||
821 			!refcount_read(&kvm->users_count));
822 }
823 
824 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
825 {
826 	return __kvm_memslots(kvm, 0);
827 }
828 
829 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
830 {
831 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
832 
833 	return __kvm_memslots(vcpu->kvm, as_id);
834 }
835 
836 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
837 {
838 	return RB_EMPTY_ROOT(&slots->gfn_tree);
839 }
840 
841 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
842 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
843 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
844 		} else
845 
846 static inline
847 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
848 {
849 	struct kvm_memory_slot *slot;
850 	int idx = slots->node_idx;
851 
852 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
853 		if (slot->id == id)
854 			return slot;
855 	}
856 
857 	return NULL;
858 }
859 
860 /* Iterator used for walking memslots that overlap a gfn range. */
861 struct kvm_memslot_iter {
862 	struct kvm_memslots *slots;
863 	struct rb_node *node;
864 	struct kvm_memory_slot *slot;
865 };
866 
867 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
868 {
869 	iter->node = rb_next(iter->node);
870 	if (!iter->node)
871 		return;
872 
873 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
874 }
875 
876 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
877 					  struct kvm_memslots *slots,
878 					  gfn_t start)
879 {
880 	int idx = slots->node_idx;
881 	struct rb_node *tmp;
882 	struct kvm_memory_slot *slot;
883 
884 	iter->slots = slots;
885 
886 	/*
887 	 * Find the so called "upper bound" of a key - the first node that has
888 	 * its key strictly greater than the searched one (the start gfn in our case).
889 	 */
890 	iter->node = NULL;
891 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
892 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
893 		if (start < slot->base_gfn) {
894 			iter->node = tmp;
895 			tmp = tmp->rb_left;
896 		} else {
897 			tmp = tmp->rb_right;
898 		}
899 	}
900 
901 	/*
902 	 * Find the slot with the lowest gfn that can possibly intersect with
903 	 * the range, so we'll ideally have slot start <= range start
904 	 */
905 	if (iter->node) {
906 		/*
907 		 * A NULL previous node means that the very first slot
908 		 * already has a higher start gfn.
909 		 * In this case slot start > range start.
910 		 */
911 		tmp = rb_prev(iter->node);
912 		if (tmp)
913 			iter->node = tmp;
914 	} else {
915 		/* a NULL node below means no slots */
916 		iter->node = rb_last(&slots->gfn_tree);
917 	}
918 
919 	if (iter->node) {
920 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
921 
922 		/*
923 		 * It is possible in the slot start < range start case that the
924 		 * found slot ends before or at range start (slot end <= range start)
925 		 * and so it does not overlap the requested range.
926 		 *
927 		 * In such non-overlapping case the next slot (if it exists) will
928 		 * already have slot start > range start, otherwise the logic above
929 		 * would have found it instead of the current slot.
930 		 */
931 		if (iter->slot->base_gfn + iter->slot->npages <= start)
932 			kvm_memslot_iter_next(iter);
933 	}
934 }
935 
936 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
937 {
938 	if (!iter->node)
939 		return false;
940 
941 	/*
942 	 * If this slot starts beyond or at the end of the range so does
943 	 * every next one
944 	 */
945 	return iter->slot->base_gfn < end;
946 }
947 
948 /* Iterate over each memslot at least partially intersecting [start, end) range */
949 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
950 	for (kvm_memslot_iter_start(iter, slots, start);		\
951 	     kvm_memslot_iter_is_valid(iter, end);			\
952 	     kvm_memslot_iter_next(iter))
953 
954 /*
955  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
956  * - create a new memory slot
957  * - delete an existing memory slot
958  * - modify an existing memory slot
959  *   -- move it in the guest physical memory space
960  *   -- just change its flags
961  *
962  * Since flags can be changed by some of these operations, the following
963  * differentiation is the best we can do for __kvm_set_memory_region():
964  */
965 enum kvm_mr_change {
966 	KVM_MR_CREATE,
967 	KVM_MR_DELETE,
968 	KVM_MR_MOVE,
969 	KVM_MR_FLAGS_ONLY,
970 };
971 
972 int kvm_set_memory_region(struct kvm *kvm,
973 			  const struct kvm_userspace_memory_region *mem);
974 int __kvm_set_memory_region(struct kvm *kvm,
975 			    const struct kvm_userspace_memory_region *mem);
976 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
977 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
978 int kvm_arch_prepare_memory_region(struct kvm *kvm,
979 				const struct kvm_memory_slot *old,
980 				struct kvm_memory_slot *new,
981 				enum kvm_mr_change change);
982 void kvm_arch_commit_memory_region(struct kvm *kvm,
983 				struct kvm_memory_slot *old,
984 				const struct kvm_memory_slot *new,
985 				enum kvm_mr_change change);
986 /* flush all memory translations */
987 void kvm_arch_flush_shadow_all(struct kvm *kvm);
988 /* flush memory translations pointing to 'slot' */
989 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
990 				   struct kvm_memory_slot *slot);
991 
992 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
993 			    struct page **pages, int nr_pages);
994 
995 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
996 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
997 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
998 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
999 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1000 				      bool *writable);
1001 void kvm_release_page_clean(struct page *page);
1002 void kvm_release_page_dirty(struct page *page);
1003 void kvm_set_page_accessed(struct page *page);
1004 
1005 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1006 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1007 		      bool *writable);
1008 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1009 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1010 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1011 			       bool atomic, bool *async, bool write_fault,
1012 			       bool *writable, hva_t *hva);
1013 
1014 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1015 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1016 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1017 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1018 
1019 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1020 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1021 			int len);
1022 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1023 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1024 			   void *data, unsigned long len);
1025 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1026 				 void *data, unsigned int offset,
1027 				 unsigned long len);
1028 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1029 			 int offset, int len);
1030 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1031 		    unsigned long len);
1032 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1033 			   void *data, unsigned long len);
1034 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1035 				  void *data, unsigned int offset,
1036 				  unsigned long len);
1037 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1038 			      gpa_t gpa, unsigned long len);
1039 
1040 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1041 ({									\
1042 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1043 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1044 	int __ret = -EFAULT;						\
1045 									\
1046 	if (!kvm_is_error_hva(__addr))					\
1047 		__ret = get_user(v, __uaddr);				\
1048 	__ret;								\
1049 })
1050 
1051 #define kvm_get_guest(kvm, gpa, v)					\
1052 ({									\
1053 	gpa_t __gpa = gpa;						\
1054 	struct kvm *__kvm = kvm;					\
1055 									\
1056 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1057 			offset_in_page(__gpa), v);			\
1058 })
1059 
1060 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1061 ({									\
1062 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1063 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1064 	int __ret = -EFAULT;						\
1065 									\
1066 	if (!kvm_is_error_hva(__addr))					\
1067 		__ret = put_user(v, __uaddr);				\
1068 	if (!__ret)							\
1069 		mark_page_dirty(kvm, gfn);				\
1070 	__ret;								\
1071 })
1072 
1073 #define kvm_put_guest(kvm, gpa, v)					\
1074 ({									\
1075 	gpa_t __gpa = gpa;						\
1076 	struct kvm *__kvm = kvm;					\
1077 									\
1078 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1079 			offset_in_page(__gpa), v);			\
1080 })
1081 
1082 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1083 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1084 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1085 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1086 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1087 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1088 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1089 
1090 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1091 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1092 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1093 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1094 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1095 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
1096 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1097 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1098 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1099 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1100 			     int len);
1101 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1102 			       unsigned long len);
1103 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1104 			unsigned long len);
1105 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1106 			      int offset, int len);
1107 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1108 			 unsigned long len);
1109 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1110 
1111 /**
1112  * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
1113  *                             given guest physical address.
1114  *
1115  * @kvm:	   pointer to kvm instance.
1116  * @gpc:	   struct gfn_to_pfn_cache object.
1117  * @vcpu:	   vCPU to be used for marking pages dirty and to be woken on
1118  *		   invalidation.
1119  * @guest_uses_pa: indicates that the resulting host physical PFN is used while
1120  *		   @vcpu is IN_GUEST_MODE so invalidations should wake it.
1121  * @kernel_map:    requests a kernel virtual mapping (kmap / memremap).
1122  * @gpa:	   guest physical address to map.
1123  * @len:	   sanity check; the range being access must fit a single page.
1124  * @dirty:         mark the cache dirty immediately.
1125  *
1126  * @return:	   0 for success.
1127  *		   -EINVAL for a mapping which would cross a page boundary.
1128  *                 -EFAULT for an untranslatable guest physical address.
1129  *
1130  * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
1131  * invalidations to be processed. Invalidation callbacks to @vcpu using
1132  * %KVM_REQ_GPC_INVALIDATE will occur only for MMU notifiers, not for KVM
1133  * memslot changes. Callers are required to use kvm_gfn_to_pfn_cache_check()
1134  * to ensure that the cache is valid before accessing the target page.
1135  */
1136 int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1137 			      struct kvm_vcpu *vcpu, bool guest_uses_pa,
1138 			      bool kernel_map, gpa_t gpa, unsigned long len,
1139 			      bool dirty);
1140 
1141 /**
1142  * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
1143  *
1144  * @kvm:	   pointer to kvm instance.
1145  * @gpc:	   struct gfn_to_pfn_cache object.
1146  * @gpa:	   current guest physical address to map.
1147  * @len:	   sanity check; the range being access must fit a single page.
1148  * @dirty:         mark the cache dirty immediately.
1149  *
1150  * @return:	   %true if the cache is still valid and the address matches.
1151  *		   %false if the cache is not valid.
1152  *
1153  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1154  * while calling this function, and then continue to hold the lock until the
1155  * access is complete.
1156  *
1157  * Callers in IN_GUEST_MODE may do so without locking, although they should
1158  * still hold a read lock on kvm->scru for the memslot checks.
1159  */
1160 bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1161 				gpa_t gpa, unsigned long len);
1162 
1163 /**
1164  * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
1165  *
1166  * @kvm:	   pointer to kvm instance.
1167  * @gpc:	   struct gfn_to_pfn_cache object.
1168  * @gpa:	   updated guest physical address to map.
1169  * @len:	   sanity check; the range being access must fit a single page.
1170  * @dirty:         mark the cache dirty immediately.
1171  *
1172  * @return:	   0 for success.
1173  *		   -EINVAL for a mapping which would cross a page boundary.
1174  *                 -EFAULT for an untranslatable guest physical address.
1175  *
1176  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1177  * returm from this function does not mean the page can be immediately
1178  * accessed because it may have raced with an invalidation. Callers must
1179  * still lock and check the cache status, as this function does not return
1180  * with the lock still held to permit access.
1181  */
1182 int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1183 				 gpa_t gpa, unsigned long len, bool dirty);
1184 
1185 /**
1186  * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
1187  *
1188  * @kvm:	   pointer to kvm instance.
1189  * @gpc:	   struct gfn_to_pfn_cache object.
1190  *
1191  * This unmaps the referenced page and marks it dirty, if appropriate. The
1192  * cache is left in the invalid state but at least the mapping from GPA to
1193  * userspace HVA will remain cached and can be reused on a subsequent
1194  * refresh.
1195  */
1196 void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1197 
1198 /**
1199  * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
1200  *
1201  * @kvm:	   pointer to kvm instance.
1202  * @gpc:	   struct gfn_to_pfn_cache object.
1203  *
1204  * This removes a cache from the @kvm's list to be processed on MMU notifier
1205  * invocation.
1206  */
1207 void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1208 
1209 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1210 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1211 
1212 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1213 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1214 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1215 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1216 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1217 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1218 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1219 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1220 
1221 void kvm_flush_remote_tlbs(struct kvm *kvm);
1222 void kvm_reload_remote_mmus(struct kvm *kvm);
1223 
1224 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1225 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1226 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1227 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1228 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1229 #endif
1230 
1231 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
1232 				   unsigned long end);
1233 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
1234 				   unsigned long end);
1235 
1236 long kvm_arch_dev_ioctl(struct file *filp,
1237 			unsigned int ioctl, unsigned long arg);
1238 long kvm_arch_vcpu_ioctl(struct file *filp,
1239 			 unsigned int ioctl, unsigned long arg);
1240 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1241 
1242 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1243 
1244 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1245 					struct kvm_memory_slot *slot,
1246 					gfn_t gfn_offset,
1247 					unsigned long mask);
1248 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1249 
1250 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1251 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1252 					const struct kvm_memory_slot *memslot);
1253 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1254 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1255 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1256 		      int *is_dirty, struct kvm_memory_slot **memslot);
1257 #endif
1258 
1259 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1260 			bool line_status);
1261 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1262 			    struct kvm_enable_cap *cap);
1263 long kvm_arch_vm_ioctl(struct file *filp,
1264 		       unsigned int ioctl, unsigned long arg);
1265 
1266 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1267 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1268 
1269 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1270 				    struct kvm_translation *tr);
1271 
1272 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1273 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1274 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1275 				  struct kvm_sregs *sregs);
1276 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1277 				  struct kvm_sregs *sregs);
1278 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1279 				    struct kvm_mp_state *mp_state);
1280 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1281 				    struct kvm_mp_state *mp_state);
1282 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1283 					struct kvm_guest_debug *dbg);
1284 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1285 
1286 int kvm_arch_init(void *opaque);
1287 void kvm_arch_exit(void);
1288 
1289 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1290 
1291 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1292 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1293 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1294 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1295 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1296 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1297 
1298 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1299 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1300 #endif
1301 
1302 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1303 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1304 #endif
1305 
1306 int kvm_arch_hardware_enable(void);
1307 void kvm_arch_hardware_disable(void);
1308 int kvm_arch_hardware_setup(void *opaque);
1309 void kvm_arch_hardware_unsetup(void);
1310 int kvm_arch_check_processor_compat(void *opaque);
1311 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1312 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1313 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1314 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1315 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1316 int kvm_arch_post_init_vm(struct kvm *kvm);
1317 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1318 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1319 
1320 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1321 /*
1322  * All architectures that want to use vzalloc currently also
1323  * need their own kvm_arch_alloc_vm implementation.
1324  */
1325 static inline struct kvm *kvm_arch_alloc_vm(void)
1326 {
1327 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1328 }
1329 #endif
1330 
1331 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1332 {
1333 	kvfree(kvm);
1334 }
1335 
1336 #ifndef __KVM_HAVE_ARCH_VM_FREE
1337 static inline void kvm_arch_free_vm(struct kvm *kvm)
1338 {
1339 	__kvm_arch_free_vm(kvm);
1340 }
1341 #endif
1342 
1343 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1344 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1345 {
1346 	return -ENOTSUPP;
1347 }
1348 #endif
1349 
1350 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1351 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1352 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1353 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1354 #else
1355 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1356 {
1357 }
1358 
1359 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1360 {
1361 }
1362 
1363 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1364 {
1365 	return false;
1366 }
1367 #endif
1368 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1369 void kvm_arch_start_assignment(struct kvm *kvm);
1370 void kvm_arch_end_assignment(struct kvm *kvm);
1371 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1372 #else
1373 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1374 {
1375 }
1376 
1377 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1378 {
1379 }
1380 
1381 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1382 {
1383 	return false;
1384 }
1385 #endif
1386 
1387 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1388 {
1389 #ifdef __KVM_HAVE_ARCH_WQP
1390 	return vcpu->arch.waitp;
1391 #else
1392 	return &vcpu->wait;
1393 #endif
1394 }
1395 
1396 /*
1397  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1398  * true if the vCPU was blocking and was awakened, false otherwise.
1399  */
1400 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1401 {
1402 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1403 }
1404 
1405 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1406 {
1407 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1408 }
1409 
1410 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1411 /*
1412  * returns true if the virtual interrupt controller is initialized and
1413  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1414  * controller is dynamically instantiated and this is not always true.
1415  */
1416 bool kvm_arch_intc_initialized(struct kvm *kvm);
1417 #else
1418 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1419 {
1420 	return true;
1421 }
1422 #endif
1423 
1424 #ifdef CONFIG_GUEST_PERF_EVENTS
1425 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1426 
1427 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1428 void kvm_unregister_perf_callbacks(void);
1429 #else
1430 static inline void kvm_register_perf_callbacks(void *ign) {}
1431 static inline void kvm_unregister_perf_callbacks(void) {}
1432 #endif /* CONFIG_GUEST_PERF_EVENTS */
1433 
1434 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1435 void kvm_arch_destroy_vm(struct kvm *kvm);
1436 void kvm_arch_sync_events(struct kvm *kvm);
1437 
1438 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1439 
1440 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1441 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1442 
1443 struct kvm_irq_ack_notifier {
1444 	struct hlist_node link;
1445 	unsigned gsi;
1446 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1447 };
1448 
1449 int kvm_irq_map_gsi(struct kvm *kvm,
1450 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1451 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1452 
1453 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1454 		bool line_status);
1455 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1456 		int irq_source_id, int level, bool line_status);
1457 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1458 			       struct kvm *kvm, int irq_source_id,
1459 			       int level, bool line_status);
1460 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1461 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1462 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1463 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1464 				   struct kvm_irq_ack_notifier *kian);
1465 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1466 				   struct kvm_irq_ack_notifier *kian);
1467 int kvm_request_irq_source_id(struct kvm *kvm);
1468 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1469 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1470 
1471 /*
1472  * Returns a pointer to the memslot if it contains gfn.
1473  * Otherwise returns NULL.
1474  */
1475 static inline struct kvm_memory_slot *
1476 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1477 {
1478 	if (!slot)
1479 		return NULL;
1480 
1481 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1482 		return slot;
1483 	else
1484 		return NULL;
1485 }
1486 
1487 /*
1488  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1489  *
1490  * With "approx" set returns the memslot also when the address falls
1491  * in a hole. In that case one of the memslots bordering the hole is
1492  * returned.
1493  */
1494 static inline struct kvm_memory_slot *
1495 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1496 {
1497 	struct kvm_memory_slot *slot;
1498 	struct rb_node *node;
1499 	int idx = slots->node_idx;
1500 
1501 	slot = NULL;
1502 	for (node = slots->gfn_tree.rb_node; node; ) {
1503 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1504 		if (gfn >= slot->base_gfn) {
1505 			if (gfn < slot->base_gfn + slot->npages)
1506 				return slot;
1507 			node = node->rb_right;
1508 		} else
1509 			node = node->rb_left;
1510 	}
1511 
1512 	return approx ? slot : NULL;
1513 }
1514 
1515 static inline struct kvm_memory_slot *
1516 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1517 {
1518 	struct kvm_memory_slot *slot;
1519 
1520 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1521 	slot = try_get_memslot(slot, gfn);
1522 	if (slot)
1523 		return slot;
1524 
1525 	slot = search_memslots(slots, gfn, approx);
1526 	if (slot) {
1527 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1528 		return slot;
1529 	}
1530 
1531 	return NULL;
1532 }
1533 
1534 /*
1535  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1536  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1537  * because that would bloat other code too much.
1538  */
1539 static inline struct kvm_memory_slot *
1540 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1541 {
1542 	return ____gfn_to_memslot(slots, gfn, false);
1543 }
1544 
1545 static inline unsigned long
1546 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1547 {
1548 	/*
1549 	 * The index was checked originally in search_memslots.  To avoid
1550 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1551 	 * table walks, do not let the processor speculate loads outside
1552 	 * the guest's registered memslots.
1553 	 */
1554 	unsigned long offset = gfn - slot->base_gfn;
1555 	offset = array_index_nospec(offset, slot->npages);
1556 	return slot->userspace_addr + offset * PAGE_SIZE;
1557 }
1558 
1559 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1560 {
1561 	return gfn_to_memslot(kvm, gfn)->id;
1562 }
1563 
1564 static inline gfn_t
1565 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1566 {
1567 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1568 
1569 	return slot->base_gfn + gfn_offset;
1570 }
1571 
1572 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1573 {
1574 	return (gpa_t)gfn << PAGE_SHIFT;
1575 }
1576 
1577 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1578 {
1579 	return (gfn_t)(gpa >> PAGE_SHIFT);
1580 }
1581 
1582 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1583 {
1584 	return (hpa_t)pfn << PAGE_SHIFT;
1585 }
1586 
1587 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1588 						gpa_t gpa)
1589 {
1590 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1591 }
1592 
1593 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1594 {
1595 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1596 
1597 	return kvm_is_error_hva(hva);
1598 }
1599 
1600 enum kvm_stat_kind {
1601 	KVM_STAT_VM,
1602 	KVM_STAT_VCPU,
1603 };
1604 
1605 struct kvm_stat_data {
1606 	struct kvm *kvm;
1607 	const struct _kvm_stats_desc *desc;
1608 	enum kvm_stat_kind kind;
1609 };
1610 
1611 struct _kvm_stats_desc {
1612 	struct kvm_stats_desc desc;
1613 	char name[KVM_STATS_NAME_SIZE];
1614 };
1615 
1616 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1617 	.flags = type | unit | base |					       \
1618 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1619 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1620 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1621 	.exponent = exp,						       \
1622 	.size = sz,							       \
1623 	.bucket_size = bsz
1624 
1625 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1626 	{								       \
1627 		{							       \
1628 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1629 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1630 		},							       \
1631 		.name = #stat,						       \
1632 	}
1633 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1634 	{								       \
1635 		{							       \
1636 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1637 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1638 		},							       \
1639 		.name = #stat,						       \
1640 	}
1641 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1642 	{								       \
1643 		{							       \
1644 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1645 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1646 		},							       \
1647 		.name = #stat,						       \
1648 	}
1649 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1650 	{								       \
1651 		{							       \
1652 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1653 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1654 		},							       \
1655 		.name = #stat,						       \
1656 	}
1657 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1658 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1659 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1660 
1661 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1662 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1663 		unit, base, exponent, 1, 0)
1664 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1665 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1666 		unit, base, exponent, 1, 0)
1667 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1668 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1669 		unit, base, exponent, 1, 0)
1670 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1671 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1672 		unit, base, exponent, sz, bsz)
1673 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1674 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1675 		unit, base, exponent, sz, 0)
1676 
1677 /* Cumulative counter, read/write */
1678 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1679 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1680 		KVM_STATS_BASE_POW10, 0)
1681 /* Instantaneous counter, read only */
1682 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1683 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1684 		KVM_STATS_BASE_POW10, 0)
1685 /* Peak counter, read/write */
1686 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1687 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1688 		KVM_STATS_BASE_POW10, 0)
1689 
1690 /* Cumulative time in nanosecond */
1691 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1692 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1693 		KVM_STATS_BASE_POW10, -9)
1694 /* Linear histogram for time in nanosecond */
1695 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1696 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1697 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1698 /* Logarithmic histogram for time in nanosecond */
1699 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1700 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1701 		KVM_STATS_BASE_POW10, -9, sz)
1702 
1703 #define KVM_GENERIC_VM_STATS()						       \
1704 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1705 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1706 
1707 #define KVM_GENERIC_VCPU_STATS()					       \
1708 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1709 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1710 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1711 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1712 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1713 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1714 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1715 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1716 			HALT_POLL_HIST_COUNT),				       \
1717 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1718 			HALT_POLL_HIST_COUNT),				       \
1719 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1720 			HALT_POLL_HIST_COUNT),				       \
1721 	STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking)
1722 
1723 extern struct dentry *kvm_debugfs_dir;
1724 
1725 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1726 		       const struct _kvm_stats_desc *desc,
1727 		       void *stats, size_t size_stats,
1728 		       char __user *user_buffer, size_t size, loff_t *offset);
1729 
1730 /**
1731  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1732  * statistics data.
1733  *
1734  * @data: start address of the stats data
1735  * @size: the number of bucket of the stats data
1736  * @value: the new value used to update the linear histogram's bucket
1737  * @bucket_size: the size (width) of a bucket
1738  */
1739 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1740 						u64 value, size_t bucket_size)
1741 {
1742 	size_t index = div64_u64(value, bucket_size);
1743 
1744 	index = min(index, size - 1);
1745 	++data[index];
1746 }
1747 
1748 /**
1749  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1750  * statistics data.
1751  *
1752  * @data: start address of the stats data
1753  * @size: the number of bucket of the stats data
1754  * @value: the new value used to update the logarithmic histogram's bucket
1755  */
1756 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1757 {
1758 	size_t index = fls64(value);
1759 
1760 	index = min(index, size - 1);
1761 	++data[index];
1762 }
1763 
1764 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
1765 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1766 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
1767 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1768 
1769 
1770 extern const struct kvm_stats_header kvm_vm_stats_header;
1771 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1772 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1773 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1774 
1775 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1776 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1777 {
1778 	if (unlikely(kvm->mmu_notifier_count))
1779 		return 1;
1780 	/*
1781 	 * Ensure the read of mmu_notifier_count happens before the read
1782 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1783 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1784 	 * either sees the old (non-zero) value of mmu_notifier_count or
1785 	 * the new (incremented) value of mmu_notifier_seq.
1786 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1787 	 * rather than under kvm->mmu_lock, for scalability, so
1788 	 * can't rely on kvm->mmu_lock to keep things ordered.
1789 	 */
1790 	smp_rmb();
1791 	if (kvm->mmu_notifier_seq != mmu_seq)
1792 		return 1;
1793 	return 0;
1794 }
1795 
1796 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1797 					 unsigned long mmu_seq,
1798 					 unsigned long hva)
1799 {
1800 	lockdep_assert_held(&kvm->mmu_lock);
1801 	/*
1802 	 * If mmu_notifier_count is non-zero, then the range maintained by
1803 	 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1804 	 * might be being invalidated. Note that it may include some false
1805 	 * positives, due to shortcuts when handing concurrent invalidations.
1806 	 */
1807 	if (unlikely(kvm->mmu_notifier_count) &&
1808 	    hva >= kvm->mmu_notifier_range_start &&
1809 	    hva < kvm->mmu_notifier_range_end)
1810 		return 1;
1811 	if (kvm->mmu_notifier_seq != mmu_seq)
1812 		return 1;
1813 	return 0;
1814 }
1815 #endif
1816 
1817 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1818 
1819 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1820 
1821 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1822 int kvm_set_irq_routing(struct kvm *kvm,
1823 			const struct kvm_irq_routing_entry *entries,
1824 			unsigned nr,
1825 			unsigned flags);
1826 int kvm_set_routing_entry(struct kvm *kvm,
1827 			  struct kvm_kernel_irq_routing_entry *e,
1828 			  const struct kvm_irq_routing_entry *ue);
1829 void kvm_free_irq_routing(struct kvm *kvm);
1830 
1831 #else
1832 
1833 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1834 
1835 #endif
1836 
1837 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1838 
1839 #ifdef CONFIG_HAVE_KVM_EVENTFD
1840 
1841 void kvm_eventfd_init(struct kvm *kvm);
1842 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1843 
1844 #ifdef CONFIG_HAVE_KVM_IRQFD
1845 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1846 void kvm_irqfd_release(struct kvm *kvm);
1847 void kvm_irq_routing_update(struct kvm *);
1848 #else
1849 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1850 {
1851 	return -EINVAL;
1852 }
1853 
1854 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1855 #endif
1856 
1857 #else
1858 
1859 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1860 
1861 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1862 {
1863 	return -EINVAL;
1864 }
1865 
1866 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1867 
1868 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1869 static inline void kvm_irq_routing_update(struct kvm *kvm)
1870 {
1871 }
1872 #endif
1873 
1874 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1875 {
1876 	return -ENOSYS;
1877 }
1878 
1879 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1880 
1881 void kvm_arch_irq_routing_update(struct kvm *kvm);
1882 
1883 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1884 {
1885 	/*
1886 	 * Ensure the rest of the request is published to kvm_check_request's
1887 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1888 	 */
1889 	smp_wmb();
1890 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1891 }
1892 
1893 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1894 {
1895 	return READ_ONCE(vcpu->requests);
1896 }
1897 
1898 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1899 {
1900 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1901 }
1902 
1903 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1904 {
1905 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1906 }
1907 
1908 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1909 {
1910 	if (kvm_test_request(req, vcpu)) {
1911 		kvm_clear_request(req, vcpu);
1912 
1913 		/*
1914 		 * Ensure the rest of the request is visible to kvm_check_request's
1915 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1916 		 */
1917 		smp_mb__after_atomic();
1918 		return true;
1919 	} else {
1920 		return false;
1921 	}
1922 }
1923 
1924 extern bool kvm_rebooting;
1925 
1926 extern unsigned int halt_poll_ns;
1927 extern unsigned int halt_poll_ns_grow;
1928 extern unsigned int halt_poll_ns_grow_start;
1929 extern unsigned int halt_poll_ns_shrink;
1930 
1931 struct kvm_device {
1932 	const struct kvm_device_ops *ops;
1933 	struct kvm *kvm;
1934 	void *private;
1935 	struct list_head vm_node;
1936 };
1937 
1938 /* create, destroy, and name are mandatory */
1939 struct kvm_device_ops {
1940 	const char *name;
1941 
1942 	/*
1943 	 * create is called holding kvm->lock and any operations not suitable
1944 	 * to do while holding the lock should be deferred to init (see
1945 	 * below).
1946 	 */
1947 	int (*create)(struct kvm_device *dev, u32 type);
1948 
1949 	/*
1950 	 * init is called after create if create is successful and is called
1951 	 * outside of holding kvm->lock.
1952 	 */
1953 	void (*init)(struct kvm_device *dev);
1954 
1955 	/*
1956 	 * Destroy is responsible for freeing dev.
1957 	 *
1958 	 * Destroy may be called before or after destructors are called
1959 	 * on emulated I/O regions, depending on whether a reference is
1960 	 * held by a vcpu or other kvm component that gets destroyed
1961 	 * after the emulated I/O.
1962 	 */
1963 	void (*destroy)(struct kvm_device *dev);
1964 
1965 	/*
1966 	 * Release is an alternative method to free the device. It is
1967 	 * called when the device file descriptor is closed. Once
1968 	 * release is called, the destroy method will not be called
1969 	 * anymore as the device is removed from the device list of
1970 	 * the VM. kvm->lock is held.
1971 	 */
1972 	void (*release)(struct kvm_device *dev);
1973 
1974 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1975 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1976 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1977 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1978 		      unsigned long arg);
1979 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1980 };
1981 
1982 void kvm_device_get(struct kvm_device *dev);
1983 void kvm_device_put(struct kvm_device *dev);
1984 struct kvm_device *kvm_device_from_filp(struct file *filp);
1985 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1986 void kvm_unregister_device_ops(u32 type);
1987 
1988 extern struct kvm_device_ops kvm_mpic_ops;
1989 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1990 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1991 
1992 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1993 
1994 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1995 {
1996 	vcpu->spin_loop.in_spin_loop = val;
1997 }
1998 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1999 {
2000 	vcpu->spin_loop.dy_eligible = val;
2001 }
2002 
2003 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2004 
2005 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2006 {
2007 }
2008 
2009 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2010 {
2011 }
2012 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2013 
2014 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2015 {
2016 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2017 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2018 }
2019 
2020 struct kvm_vcpu *kvm_get_running_vcpu(void);
2021 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2022 
2023 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2024 bool kvm_arch_has_irq_bypass(void);
2025 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2026 			   struct irq_bypass_producer *);
2027 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2028 			   struct irq_bypass_producer *);
2029 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2030 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2031 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2032 				  uint32_t guest_irq, bool set);
2033 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2034 				  struct kvm_kernel_irq_routing_entry *);
2035 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2036 
2037 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2038 /* If we wakeup during the poll time, was it a sucessful poll? */
2039 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2040 {
2041 	return vcpu->valid_wakeup;
2042 }
2043 
2044 #else
2045 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2046 {
2047 	return true;
2048 }
2049 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2050 
2051 #ifdef CONFIG_HAVE_KVM_NO_POLL
2052 /* Callback that tells if we must not poll */
2053 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2054 #else
2055 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2056 {
2057 	return false;
2058 }
2059 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2060 
2061 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2062 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2063 			       unsigned int ioctl, unsigned long arg);
2064 #else
2065 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2066 					     unsigned int ioctl,
2067 					     unsigned long arg)
2068 {
2069 	return -ENOIOCTLCMD;
2070 }
2071 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2072 
2073 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2074 					    unsigned long start, unsigned long end);
2075 
2076 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2077 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2078 #else
2079 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2080 {
2081 	return 0;
2082 }
2083 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2084 
2085 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2086 
2087 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2088 				uintptr_t data, const char *name,
2089 				struct task_struct **thread_ptr);
2090 
2091 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2092 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2093 {
2094 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2095 	vcpu->stat.signal_exits++;
2096 }
2097 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2098 
2099 /*
2100  * This defines how many reserved entries we want to keep before we
2101  * kick the vcpu to the userspace to avoid dirty ring full.  This
2102  * value can be tuned to higher if e.g. PML is enabled on the host.
2103  */
2104 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2105 
2106 /* Max number of entries allowed for each kvm dirty ring */
2107 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2108 
2109 #endif
2110