xref: /openbmc/linux/include/linux/kvm_host.h (revision 54a611b6)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
54  * in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of install_new_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_ADDRESS_SPACE_NUM
84 #define KVM_ADDRESS_SPACE_NUM	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 
100 /*
101  * error pfns indicate that the gfn is in slot but faild to
102  * translate it to pfn on host.
103  */
104 static inline bool is_error_pfn(kvm_pfn_t pfn)
105 {
106 	return !!(pfn & KVM_PFN_ERR_MASK);
107 }
108 
109 /*
110  * error_noslot pfns indicate that the gfn can not be
111  * translated to pfn - it is not in slot or failed to
112  * translate it to pfn.
113  */
114 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
115 {
116 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
117 }
118 
119 /* noslot pfn indicates that the gfn is not in slot. */
120 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
121 {
122 	return pfn == KVM_PFN_NOSLOT;
123 }
124 
125 /*
126  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
127  * provide own defines and kvm_is_error_hva
128  */
129 #ifndef KVM_HVA_ERR_BAD
130 
131 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
132 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
133 
134 static inline bool kvm_is_error_hva(unsigned long addr)
135 {
136 	return addr >= PAGE_OFFSET;
137 }
138 
139 #endif
140 
141 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
142 
143 static inline bool is_error_page(struct page *page)
144 {
145 	return IS_ERR(page);
146 }
147 
148 #define KVM_REQUEST_MASK           GENMASK(7,0)
149 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
150 #define KVM_REQUEST_WAIT           BIT(9)
151 #define KVM_REQUEST_NO_ACTION      BIT(10)
152 /*
153  * Architecture-independent vcpu->requests bit members
154  * Bits 4-7 are reserved for more arch-independent bits.
155  */
156 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
157 #define KVM_REQ_VM_DEAD           (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
158 #define KVM_REQ_UNBLOCK           2
159 #define KVM_REQ_UNHALT            3
160 #define KVM_REQUEST_ARCH_BASE     8
161 
162 /*
163  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
164  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
165  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
166  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
167  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
168  * guarantee the vCPU received an IPI and has actually exited guest mode.
169  */
170 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
171 
172 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
173 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
174 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
175 })
176 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
177 
178 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
179 				 unsigned long *vcpu_bitmap);
180 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
181 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
182 				      struct kvm_vcpu *except);
183 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
184 				unsigned long *vcpu_bitmap);
185 
186 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
187 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
188 
189 extern struct mutex kvm_lock;
190 extern struct list_head vm_list;
191 
192 struct kvm_io_range {
193 	gpa_t addr;
194 	int len;
195 	struct kvm_io_device *dev;
196 };
197 
198 #define NR_IOBUS_DEVS 1000
199 
200 struct kvm_io_bus {
201 	int dev_count;
202 	int ioeventfd_count;
203 	struct kvm_io_range range[];
204 };
205 
206 enum kvm_bus {
207 	KVM_MMIO_BUS,
208 	KVM_PIO_BUS,
209 	KVM_VIRTIO_CCW_NOTIFY_BUS,
210 	KVM_FAST_MMIO_BUS,
211 	KVM_NR_BUSES
212 };
213 
214 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
215 		     int len, const void *val);
216 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
217 			    gpa_t addr, int len, const void *val, long cookie);
218 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
219 		    int len, void *val);
220 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
221 			    int len, struct kvm_io_device *dev);
222 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
223 			      struct kvm_io_device *dev);
224 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
225 					 gpa_t addr);
226 
227 #ifdef CONFIG_KVM_ASYNC_PF
228 struct kvm_async_pf {
229 	struct work_struct work;
230 	struct list_head link;
231 	struct list_head queue;
232 	struct kvm_vcpu *vcpu;
233 	struct mm_struct *mm;
234 	gpa_t cr2_or_gpa;
235 	unsigned long addr;
236 	struct kvm_arch_async_pf arch;
237 	bool   wakeup_all;
238 	bool notpresent_injected;
239 };
240 
241 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
242 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
243 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
244 			unsigned long hva, struct kvm_arch_async_pf *arch);
245 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
246 #endif
247 
248 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
249 struct kvm_gfn_range {
250 	struct kvm_memory_slot *slot;
251 	gfn_t start;
252 	gfn_t end;
253 	pte_t pte;
254 	bool may_block;
255 };
256 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
257 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
258 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
259 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
260 #endif
261 
262 enum {
263 	OUTSIDE_GUEST_MODE,
264 	IN_GUEST_MODE,
265 	EXITING_GUEST_MODE,
266 	READING_SHADOW_PAGE_TABLES,
267 };
268 
269 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
270 
271 struct kvm_host_map {
272 	/*
273 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
274 	 * a 'struct page' for it. When using mem= kernel parameter some memory
275 	 * can be used as guest memory but they are not managed by host
276 	 * kernel).
277 	 * If 'pfn' is not managed by the host kernel, this field is
278 	 * initialized to KVM_UNMAPPED_PAGE.
279 	 */
280 	struct page *page;
281 	void *hva;
282 	kvm_pfn_t pfn;
283 	kvm_pfn_t gfn;
284 };
285 
286 /*
287  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
288  * directly to check for that.
289  */
290 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
291 {
292 	return !!map->hva;
293 }
294 
295 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
296 {
297 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
298 }
299 
300 /*
301  * Sometimes a large or cross-page mmio needs to be broken up into separate
302  * exits for userspace servicing.
303  */
304 struct kvm_mmio_fragment {
305 	gpa_t gpa;
306 	void *data;
307 	unsigned len;
308 };
309 
310 struct kvm_vcpu {
311 	struct kvm *kvm;
312 #ifdef CONFIG_PREEMPT_NOTIFIERS
313 	struct preempt_notifier preempt_notifier;
314 #endif
315 	int cpu;
316 	int vcpu_id; /* id given by userspace at creation */
317 	int vcpu_idx; /* index in kvm->vcpus array */
318 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
319 #ifdef CONFIG_PROVE_RCU
320 	int srcu_depth;
321 #endif
322 	int mode;
323 	u64 requests;
324 	unsigned long guest_debug;
325 
326 	struct mutex mutex;
327 	struct kvm_run *run;
328 
329 #ifndef __KVM_HAVE_ARCH_WQP
330 	struct rcuwait wait;
331 #endif
332 	struct pid __rcu *pid;
333 	int sigset_active;
334 	sigset_t sigset;
335 	unsigned int halt_poll_ns;
336 	bool valid_wakeup;
337 
338 #ifdef CONFIG_HAS_IOMEM
339 	int mmio_needed;
340 	int mmio_read_completed;
341 	int mmio_is_write;
342 	int mmio_cur_fragment;
343 	int mmio_nr_fragments;
344 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
345 #endif
346 
347 #ifdef CONFIG_KVM_ASYNC_PF
348 	struct {
349 		u32 queued;
350 		struct list_head queue;
351 		struct list_head done;
352 		spinlock_t lock;
353 	} async_pf;
354 #endif
355 
356 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
357 	/*
358 	 * Cpu relax intercept or pause loop exit optimization
359 	 * in_spin_loop: set when a vcpu does a pause loop exit
360 	 *  or cpu relax intercepted.
361 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
362 	 */
363 	struct {
364 		bool in_spin_loop;
365 		bool dy_eligible;
366 	} spin_loop;
367 #endif
368 	bool preempted;
369 	bool ready;
370 	struct kvm_vcpu_arch arch;
371 	struct kvm_vcpu_stat stat;
372 	char stats_id[KVM_STATS_NAME_SIZE];
373 	struct kvm_dirty_ring dirty_ring;
374 
375 	/*
376 	 * The most recently used memslot by this vCPU and the slots generation
377 	 * for which it is valid.
378 	 * No wraparound protection is needed since generations won't overflow in
379 	 * thousands of years, even assuming 1M memslot operations per second.
380 	 */
381 	struct kvm_memory_slot *last_used_slot;
382 	u64 last_used_slot_gen;
383 };
384 
385 /*
386  * Start accounting time towards a guest.
387  * Must be called before entering guest context.
388  */
389 static __always_inline void guest_timing_enter_irqoff(void)
390 {
391 	/*
392 	 * This is running in ioctl context so its safe to assume that it's the
393 	 * stime pending cputime to flush.
394 	 */
395 	instrumentation_begin();
396 	vtime_account_guest_enter();
397 	instrumentation_end();
398 }
399 
400 /*
401  * Enter guest context and enter an RCU extended quiescent state.
402  *
403  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
404  * unsafe to use any code which may directly or indirectly use RCU, tracing
405  * (including IRQ flag tracing), or lockdep. All code in this period must be
406  * non-instrumentable.
407  */
408 static __always_inline void guest_context_enter_irqoff(void)
409 {
410 	/*
411 	 * KVM does not hold any references to rcu protected data when it
412 	 * switches CPU into a guest mode. In fact switching to a guest mode
413 	 * is very similar to exiting to userspace from rcu point of view. In
414 	 * addition CPU may stay in a guest mode for quite a long time (up to
415 	 * one time slice). Lets treat guest mode as quiescent state, just like
416 	 * we do with user-mode execution.
417 	 */
418 	if (!context_tracking_guest_enter()) {
419 		instrumentation_begin();
420 		rcu_virt_note_context_switch(smp_processor_id());
421 		instrumentation_end();
422 	}
423 }
424 
425 /*
426  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
427  * guest_state_enter_irqoff().
428  */
429 static __always_inline void guest_enter_irqoff(void)
430 {
431 	guest_timing_enter_irqoff();
432 	guest_context_enter_irqoff();
433 }
434 
435 /**
436  * guest_state_enter_irqoff - Fixup state when entering a guest
437  *
438  * Entry to a guest will enable interrupts, but the kernel state is interrupts
439  * disabled when this is invoked. Also tell RCU about it.
440  *
441  * 1) Trace interrupts on state
442  * 2) Invoke context tracking if enabled to adjust RCU state
443  * 3) Tell lockdep that interrupts are enabled
444  *
445  * Invoked from architecture specific code before entering a guest.
446  * Must be called with interrupts disabled and the caller must be
447  * non-instrumentable.
448  * The caller has to invoke guest_timing_enter_irqoff() before this.
449  *
450  * Note: this is analogous to exit_to_user_mode().
451  */
452 static __always_inline void guest_state_enter_irqoff(void)
453 {
454 	instrumentation_begin();
455 	trace_hardirqs_on_prepare();
456 	lockdep_hardirqs_on_prepare();
457 	instrumentation_end();
458 
459 	guest_context_enter_irqoff();
460 	lockdep_hardirqs_on(CALLER_ADDR0);
461 }
462 
463 /*
464  * Exit guest context and exit an RCU extended quiescent state.
465  *
466  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
467  * unsafe to use any code which may directly or indirectly use RCU, tracing
468  * (including IRQ flag tracing), or lockdep. All code in this period must be
469  * non-instrumentable.
470  */
471 static __always_inline void guest_context_exit_irqoff(void)
472 {
473 	context_tracking_guest_exit();
474 }
475 
476 /*
477  * Stop accounting time towards a guest.
478  * Must be called after exiting guest context.
479  */
480 static __always_inline void guest_timing_exit_irqoff(void)
481 {
482 	instrumentation_begin();
483 	/* Flush the guest cputime we spent on the guest */
484 	vtime_account_guest_exit();
485 	instrumentation_end();
486 }
487 
488 /*
489  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
490  * guest_timing_exit_irqoff().
491  */
492 static __always_inline void guest_exit_irqoff(void)
493 {
494 	guest_context_exit_irqoff();
495 	guest_timing_exit_irqoff();
496 }
497 
498 static inline void guest_exit(void)
499 {
500 	unsigned long flags;
501 
502 	local_irq_save(flags);
503 	guest_exit_irqoff();
504 	local_irq_restore(flags);
505 }
506 
507 /**
508  * guest_state_exit_irqoff - Establish state when returning from guest mode
509  *
510  * Entry from a guest disables interrupts, but guest mode is traced as
511  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
512  *
513  * 1) Tell lockdep that interrupts are disabled
514  * 2) Invoke context tracking if enabled to reactivate RCU
515  * 3) Trace interrupts off state
516  *
517  * Invoked from architecture specific code after exiting a guest.
518  * Must be invoked with interrupts disabled and the caller must be
519  * non-instrumentable.
520  * The caller has to invoke guest_timing_exit_irqoff() after this.
521  *
522  * Note: this is analogous to enter_from_user_mode().
523  */
524 static __always_inline void guest_state_exit_irqoff(void)
525 {
526 	lockdep_hardirqs_off(CALLER_ADDR0);
527 	guest_context_exit_irqoff();
528 
529 	instrumentation_begin();
530 	trace_hardirqs_off_finish();
531 	instrumentation_end();
532 }
533 
534 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
535 {
536 	/*
537 	 * The memory barrier ensures a previous write to vcpu->requests cannot
538 	 * be reordered with the read of vcpu->mode.  It pairs with the general
539 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
540 	 */
541 	smp_mb__before_atomic();
542 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
543 }
544 
545 /*
546  * Some of the bitops functions do not support too long bitmaps.
547  * This number must be determined not to exceed such limits.
548  */
549 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
550 
551 /*
552  * Since at idle each memslot belongs to two memslot sets it has to contain
553  * two embedded nodes for each data structure that it forms a part of.
554  *
555  * Two memslot sets (one active and one inactive) are necessary so the VM
556  * continues to run on one memslot set while the other is being modified.
557  *
558  * These two memslot sets normally point to the same set of memslots.
559  * They can, however, be desynchronized when performing a memslot management
560  * operation by replacing the memslot to be modified by its copy.
561  * After the operation is complete, both memslot sets once again point to
562  * the same, common set of memslot data.
563  *
564  * The memslots themselves are independent of each other so they can be
565  * individually added or deleted.
566  */
567 struct kvm_memory_slot {
568 	struct hlist_node id_node[2];
569 	struct interval_tree_node hva_node[2];
570 	struct rb_node gfn_node[2];
571 	gfn_t base_gfn;
572 	unsigned long npages;
573 	unsigned long *dirty_bitmap;
574 	struct kvm_arch_memory_slot arch;
575 	unsigned long userspace_addr;
576 	u32 flags;
577 	short id;
578 	u16 as_id;
579 };
580 
581 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
582 {
583 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
584 }
585 
586 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
587 {
588 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
589 }
590 
591 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
592 {
593 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
594 
595 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
596 }
597 
598 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
599 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
600 #endif
601 
602 struct kvm_s390_adapter_int {
603 	u64 ind_addr;
604 	u64 summary_addr;
605 	u64 ind_offset;
606 	u32 summary_offset;
607 	u32 adapter_id;
608 };
609 
610 struct kvm_hv_sint {
611 	u32 vcpu;
612 	u32 sint;
613 };
614 
615 struct kvm_xen_evtchn {
616 	u32 port;
617 	u32 vcpu_id;
618 	int vcpu_idx;
619 	u32 priority;
620 };
621 
622 struct kvm_kernel_irq_routing_entry {
623 	u32 gsi;
624 	u32 type;
625 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
626 		   struct kvm *kvm, int irq_source_id, int level,
627 		   bool line_status);
628 	union {
629 		struct {
630 			unsigned irqchip;
631 			unsigned pin;
632 		} irqchip;
633 		struct {
634 			u32 address_lo;
635 			u32 address_hi;
636 			u32 data;
637 			u32 flags;
638 			u32 devid;
639 		} msi;
640 		struct kvm_s390_adapter_int adapter;
641 		struct kvm_hv_sint hv_sint;
642 		struct kvm_xen_evtchn xen_evtchn;
643 	};
644 	struct hlist_node link;
645 };
646 
647 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
648 struct kvm_irq_routing_table {
649 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
650 	u32 nr_rt_entries;
651 	/*
652 	 * Array indexed by gsi. Each entry contains list of irq chips
653 	 * the gsi is connected to.
654 	 */
655 	struct hlist_head map[];
656 };
657 #endif
658 
659 #ifndef KVM_INTERNAL_MEM_SLOTS
660 #define KVM_INTERNAL_MEM_SLOTS 0
661 #endif
662 
663 #define KVM_MEM_SLOTS_NUM SHRT_MAX
664 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
665 
666 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
667 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
668 {
669 	return 0;
670 }
671 #endif
672 
673 struct kvm_memslots {
674 	u64 generation;
675 	atomic_long_t last_used_slot;
676 	struct rb_root_cached hva_tree;
677 	struct rb_root gfn_tree;
678 	/*
679 	 * The mapping table from slot id to memslot.
680 	 *
681 	 * 7-bit bucket count matches the size of the old id to index array for
682 	 * 512 slots, while giving good performance with this slot count.
683 	 * Higher bucket counts bring only small performance improvements but
684 	 * always result in higher memory usage (even for lower memslot counts).
685 	 */
686 	DECLARE_HASHTABLE(id_hash, 7);
687 	int node_idx;
688 };
689 
690 struct kvm {
691 #ifdef KVM_HAVE_MMU_RWLOCK
692 	rwlock_t mmu_lock;
693 #else
694 	spinlock_t mmu_lock;
695 #endif /* KVM_HAVE_MMU_RWLOCK */
696 
697 	struct mutex slots_lock;
698 
699 	/*
700 	 * Protects the arch-specific fields of struct kvm_memory_slots in
701 	 * use by the VM. To be used under the slots_lock (above) or in a
702 	 * kvm->srcu critical section where acquiring the slots_lock would
703 	 * lead to deadlock with the synchronize_srcu in
704 	 * install_new_memslots.
705 	 */
706 	struct mutex slots_arch_lock;
707 	struct mm_struct *mm; /* userspace tied to this vm */
708 	unsigned long nr_memslot_pages;
709 	/* The two memslot sets - active and inactive (per address space) */
710 	struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
711 	/* The current active memslot set for each address space */
712 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
713 	struct xarray vcpu_array;
714 
715 	/* Used to wait for completion of MMU notifiers.  */
716 	spinlock_t mn_invalidate_lock;
717 	unsigned long mn_active_invalidate_count;
718 	struct rcuwait mn_memslots_update_rcuwait;
719 
720 	/* For management / invalidation of gfn_to_pfn_caches */
721 	spinlock_t gpc_lock;
722 	struct list_head gpc_list;
723 
724 	/*
725 	 * created_vcpus is protected by kvm->lock, and is incremented
726 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
727 	 * incremented after storing the kvm_vcpu pointer in vcpus,
728 	 * and is accessed atomically.
729 	 */
730 	atomic_t online_vcpus;
731 	int max_vcpus;
732 	int created_vcpus;
733 	int last_boosted_vcpu;
734 	struct list_head vm_list;
735 	struct mutex lock;
736 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
737 #ifdef CONFIG_HAVE_KVM_EVENTFD
738 	struct {
739 		spinlock_t        lock;
740 		struct list_head  items;
741 		struct list_head  resampler_list;
742 		struct mutex      resampler_lock;
743 	} irqfds;
744 	struct list_head ioeventfds;
745 #endif
746 	struct kvm_vm_stat stat;
747 	struct kvm_arch arch;
748 	refcount_t users_count;
749 #ifdef CONFIG_KVM_MMIO
750 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
751 	spinlock_t ring_lock;
752 	struct list_head coalesced_zones;
753 #endif
754 
755 	struct mutex irq_lock;
756 #ifdef CONFIG_HAVE_KVM_IRQCHIP
757 	/*
758 	 * Update side is protected by irq_lock.
759 	 */
760 	struct kvm_irq_routing_table __rcu *irq_routing;
761 #endif
762 #ifdef CONFIG_HAVE_KVM_IRQFD
763 	struct hlist_head irq_ack_notifier_list;
764 #endif
765 
766 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
767 	struct mmu_notifier mmu_notifier;
768 	unsigned long mmu_invalidate_seq;
769 	long mmu_invalidate_in_progress;
770 	unsigned long mmu_invalidate_range_start;
771 	unsigned long mmu_invalidate_range_end;
772 #endif
773 	struct list_head devices;
774 	u64 manual_dirty_log_protect;
775 	struct dentry *debugfs_dentry;
776 	struct kvm_stat_data **debugfs_stat_data;
777 	struct srcu_struct srcu;
778 	struct srcu_struct irq_srcu;
779 	pid_t userspace_pid;
780 	unsigned int max_halt_poll_ns;
781 	u32 dirty_ring_size;
782 	bool vm_bugged;
783 	bool vm_dead;
784 
785 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
786 	struct notifier_block pm_notifier;
787 #endif
788 	char stats_id[KVM_STATS_NAME_SIZE];
789 };
790 
791 #define kvm_err(fmt, ...) \
792 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
793 #define kvm_info(fmt, ...) \
794 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
795 #define kvm_debug(fmt, ...) \
796 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
797 #define kvm_debug_ratelimited(fmt, ...) \
798 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
799 			     ## __VA_ARGS__)
800 #define kvm_pr_unimpl(fmt, ...) \
801 	pr_err_ratelimited("kvm [%i]: " fmt, \
802 			   task_tgid_nr(current), ## __VA_ARGS__)
803 
804 /* The guest did something we don't support. */
805 #define vcpu_unimpl(vcpu, fmt, ...)					\
806 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
807 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
808 
809 #define vcpu_debug(vcpu, fmt, ...)					\
810 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
811 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
812 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
813 			      ## __VA_ARGS__)
814 #define vcpu_err(vcpu, fmt, ...)					\
815 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
816 
817 static inline void kvm_vm_dead(struct kvm *kvm)
818 {
819 	kvm->vm_dead = true;
820 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
821 }
822 
823 static inline void kvm_vm_bugged(struct kvm *kvm)
824 {
825 	kvm->vm_bugged = true;
826 	kvm_vm_dead(kvm);
827 }
828 
829 
830 #define KVM_BUG(cond, kvm, fmt...)				\
831 ({								\
832 	int __ret = (cond);					\
833 								\
834 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
835 		kvm_vm_bugged(kvm);				\
836 	unlikely(__ret);					\
837 })
838 
839 #define KVM_BUG_ON(cond, kvm)					\
840 ({								\
841 	int __ret = (cond);					\
842 								\
843 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
844 		kvm_vm_bugged(kvm);				\
845 	unlikely(__ret);					\
846 })
847 
848 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
849 {
850 #ifdef CONFIG_PROVE_RCU
851 	WARN_ONCE(vcpu->srcu_depth++,
852 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
853 #endif
854 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
855 }
856 
857 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
858 {
859 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
860 
861 #ifdef CONFIG_PROVE_RCU
862 	WARN_ONCE(--vcpu->srcu_depth,
863 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
864 #endif
865 }
866 
867 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
868 {
869 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
870 }
871 
872 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
873 {
874 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
875 				      lockdep_is_held(&kvm->slots_lock) ||
876 				      !refcount_read(&kvm->users_count));
877 }
878 
879 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
880 {
881 	int num_vcpus = atomic_read(&kvm->online_vcpus);
882 	i = array_index_nospec(i, num_vcpus);
883 
884 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
885 	smp_rmb();
886 	return xa_load(&kvm->vcpu_array, i);
887 }
888 
889 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
890 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
891 			  (atomic_read(&kvm->online_vcpus) - 1))
892 
893 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
894 {
895 	struct kvm_vcpu *vcpu = NULL;
896 	unsigned long i;
897 
898 	if (id < 0)
899 		return NULL;
900 	if (id < KVM_MAX_VCPUS)
901 		vcpu = kvm_get_vcpu(kvm, id);
902 	if (vcpu && vcpu->vcpu_id == id)
903 		return vcpu;
904 	kvm_for_each_vcpu(i, vcpu, kvm)
905 		if (vcpu->vcpu_id == id)
906 			return vcpu;
907 	return NULL;
908 }
909 
910 void kvm_destroy_vcpus(struct kvm *kvm);
911 
912 void vcpu_load(struct kvm_vcpu *vcpu);
913 void vcpu_put(struct kvm_vcpu *vcpu);
914 
915 #ifdef __KVM_HAVE_IOAPIC
916 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
917 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
918 #else
919 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
920 {
921 }
922 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
923 {
924 }
925 #endif
926 
927 #ifdef CONFIG_HAVE_KVM_IRQFD
928 int kvm_irqfd_init(void);
929 void kvm_irqfd_exit(void);
930 #else
931 static inline int kvm_irqfd_init(void)
932 {
933 	return 0;
934 }
935 
936 static inline void kvm_irqfd_exit(void)
937 {
938 }
939 #endif
940 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
941 		  struct module *module);
942 void kvm_exit(void);
943 
944 void kvm_get_kvm(struct kvm *kvm);
945 bool kvm_get_kvm_safe(struct kvm *kvm);
946 void kvm_put_kvm(struct kvm *kvm);
947 bool file_is_kvm(struct file *file);
948 void kvm_put_kvm_no_destroy(struct kvm *kvm);
949 
950 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
951 {
952 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
953 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
954 			lockdep_is_held(&kvm->slots_lock) ||
955 			!refcount_read(&kvm->users_count));
956 }
957 
958 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
959 {
960 	return __kvm_memslots(kvm, 0);
961 }
962 
963 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
964 {
965 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
966 
967 	return __kvm_memslots(vcpu->kvm, as_id);
968 }
969 
970 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
971 {
972 	return RB_EMPTY_ROOT(&slots->gfn_tree);
973 }
974 
975 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
976 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
977 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
978 		} else
979 
980 static inline
981 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
982 {
983 	struct kvm_memory_slot *slot;
984 	int idx = slots->node_idx;
985 
986 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
987 		if (slot->id == id)
988 			return slot;
989 	}
990 
991 	return NULL;
992 }
993 
994 /* Iterator used for walking memslots that overlap a gfn range. */
995 struct kvm_memslot_iter {
996 	struct kvm_memslots *slots;
997 	struct rb_node *node;
998 	struct kvm_memory_slot *slot;
999 };
1000 
1001 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1002 {
1003 	iter->node = rb_next(iter->node);
1004 	if (!iter->node)
1005 		return;
1006 
1007 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1008 }
1009 
1010 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1011 					  struct kvm_memslots *slots,
1012 					  gfn_t start)
1013 {
1014 	int idx = slots->node_idx;
1015 	struct rb_node *tmp;
1016 	struct kvm_memory_slot *slot;
1017 
1018 	iter->slots = slots;
1019 
1020 	/*
1021 	 * Find the so called "upper bound" of a key - the first node that has
1022 	 * its key strictly greater than the searched one (the start gfn in our case).
1023 	 */
1024 	iter->node = NULL;
1025 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1026 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1027 		if (start < slot->base_gfn) {
1028 			iter->node = tmp;
1029 			tmp = tmp->rb_left;
1030 		} else {
1031 			tmp = tmp->rb_right;
1032 		}
1033 	}
1034 
1035 	/*
1036 	 * Find the slot with the lowest gfn that can possibly intersect with
1037 	 * the range, so we'll ideally have slot start <= range start
1038 	 */
1039 	if (iter->node) {
1040 		/*
1041 		 * A NULL previous node means that the very first slot
1042 		 * already has a higher start gfn.
1043 		 * In this case slot start > range start.
1044 		 */
1045 		tmp = rb_prev(iter->node);
1046 		if (tmp)
1047 			iter->node = tmp;
1048 	} else {
1049 		/* a NULL node below means no slots */
1050 		iter->node = rb_last(&slots->gfn_tree);
1051 	}
1052 
1053 	if (iter->node) {
1054 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1055 
1056 		/*
1057 		 * It is possible in the slot start < range start case that the
1058 		 * found slot ends before or at range start (slot end <= range start)
1059 		 * and so it does not overlap the requested range.
1060 		 *
1061 		 * In such non-overlapping case the next slot (if it exists) will
1062 		 * already have slot start > range start, otherwise the logic above
1063 		 * would have found it instead of the current slot.
1064 		 */
1065 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1066 			kvm_memslot_iter_next(iter);
1067 	}
1068 }
1069 
1070 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1071 {
1072 	if (!iter->node)
1073 		return false;
1074 
1075 	/*
1076 	 * If this slot starts beyond or at the end of the range so does
1077 	 * every next one
1078 	 */
1079 	return iter->slot->base_gfn < end;
1080 }
1081 
1082 /* Iterate over each memslot at least partially intersecting [start, end) range */
1083 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1084 	for (kvm_memslot_iter_start(iter, slots, start);		\
1085 	     kvm_memslot_iter_is_valid(iter, end);			\
1086 	     kvm_memslot_iter_next(iter))
1087 
1088 /*
1089  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1090  * - create a new memory slot
1091  * - delete an existing memory slot
1092  * - modify an existing memory slot
1093  *   -- move it in the guest physical memory space
1094  *   -- just change its flags
1095  *
1096  * Since flags can be changed by some of these operations, the following
1097  * differentiation is the best we can do for __kvm_set_memory_region():
1098  */
1099 enum kvm_mr_change {
1100 	KVM_MR_CREATE,
1101 	KVM_MR_DELETE,
1102 	KVM_MR_MOVE,
1103 	KVM_MR_FLAGS_ONLY,
1104 };
1105 
1106 int kvm_set_memory_region(struct kvm *kvm,
1107 			  const struct kvm_userspace_memory_region *mem);
1108 int __kvm_set_memory_region(struct kvm *kvm,
1109 			    const struct kvm_userspace_memory_region *mem);
1110 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1111 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1112 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1113 				const struct kvm_memory_slot *old,
1114 				struct kvm_memory_slot *new,
1115 				enum kvm_mr_change change);
1116 void kvm_arch_commit_memory_region(struct kvm *kvm,
1117 				struct kvm_memory_slot *old,
1118 				const struct kvm_memory_slot *new,
1119 				enum kvm_mr_change change);
1120 /* flush all memory translations */
1121 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1122 /* flush memory translations pointing to 'slot' */
1123 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1124 				   struct kvm_memory_slot *slot);
1125 
1126 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1127 			    struct page **pages, int nr_pages);
1128 
1129 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1130 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1131 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1132 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1133 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1134 				      bool *writable);
1135 void kvm_release_page_clean(struct page *page);
1136 void kvm_release_page_dirty(struct page *page);
1137 
1138 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1139 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1140 		      bool *writable);
1141 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1142 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1143 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1144 			       bool atomic, bool *async, bool write_fault,
1145 			       bool *writable, hva_t *hva);
1146 
1147 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1148 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1149 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1150 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1151 
1152 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1153 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1154 			int len);
1155 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1156 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1157 			   void *data, unsigned long len);
1158 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1159 				 void *data, unsigned int offset,
1160 				 unsigned long len);
1161 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1162 			 int offset, int len);
1163 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1164 		    unsigned long len);
1165 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1166 			   void *data, unsigned long len);
1167 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1168 				  void *data, unsigned int offset,
1169 				  unsigned long len);
1170 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1171 			      gpa_t gpa, unsigned long len);
1172 
1173 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1174 ({									\
1175 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1176 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1177 	int __ret = -EFAULT;						\
1178 									\
1179 	if (!kvm_is_error_hva(__addr))					\
1180 		__ret = get_user(v, __uaddr);				\
1181 	__ret;								\
1182 })
1183 
1184 #define kvm_get_guest(kvm, gpa, v)					\
1185 ({									\
1186 	gpa_t __gpa = gpa;						\
1187 	struct kvm *__kvm = kvm;					\
1188 									\
1189 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1190 			offset_in_page(__gpa), v);			\
1191 })
1192 
1193 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1194 ({									\
1195 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1196 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1197 	int __ret = -EFAULT;						\
1198 									\
1199 	if (!kvm_is_error_hva(__addr))					\
1200 		__ret = put_user(v, __uaddr);				\
1201 	if (!__ret)							\
1202 		mark_page_dirty(kvm, gfn);				\
1203 	__ret;								\
1204 })
1205 
1206 #define kvm_put_guest(kvm, gpa, v)					\
1207 ({									\
1208 	gpa_t __gpa = gpa;						\
1209 	struct kvm *__kvm = kvm;					\
1210 									\
1211 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1212 			offset_in_page(__gpa), v);			\
1213 })
1214 
1215 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1216 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1217 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1218 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1219 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1220 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1221 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1222 
1223 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1225 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1226 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1227 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1228 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1229 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1230 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1231 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1232 			     int len);
1233 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1234 			       unsigned long len);
1235 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1236 			unsigned long len);
1237 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1238 			      int offset, int len);
1239 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1240 			 unsigned long len);
1241 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1242 
1243 /**
1244  * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
1245  *                             given guest physical address.
1246  *
1247  * @kvm:	   pointer to kvm instance.
1248  * @gpc:	   struct gfn_to_pfn_cache object.
1249  * @vcpu:	   vCPU to be used for marking pages dirty and to be woken on
1250  *		   invalidation.
1251  * @usage:	   indicates if the resulting host physical PFN is used while
1252  *		   the @vcpu is IN_GUEST_MODE (in which case invalidation of
1253  *		   the cache from MMU notifiers---but not for KVM memslot
1254  *		   changes!---will also force @vcpu to exit the guest and
1255  *		   refresh the cache); and/or if the PFN used directly
1256  *		   by KVM (and thus needs a kernel virtual mapping).
1257  * @gpa:	   guest physical address to map.
1258  * @len:	   sanity check; the range being access must fit a single page.
1259  *
1260  * @return:	   0 for success.
1261  *		   -EINVAL for a mapping which would cross a page boundary.
1262  *                 -EFAULT for an untranslatable guest physical address.
1263  *
1264  * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
1265  * invalidations to be processed.  Callers are required to use
1266  * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before
1267  * accessing the target page.
1268  */
1269 int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1270 			      struct kvm_vcpu *vcpu, enum pfn_cache_usage usage,
1271 			      gpa_t gpa, unsigned long len);
1272 
1273 /**
1274  * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
1275  *
1276  * @kvm:	   pointer to kvm instance.
1277  * @gpc:	   struct gfn_to_pfn_cache object.
1278  * @gpa:	   current guest physical address to map.
1279  * @len:	   sanity check; the range being access must fit a single page.
1280  *
1281  * @return:	   %true if the cache is still valid and the address matches.
1282  *		   %false if the cache is not valid.
1283  *
1284  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1285  * while calling this function, and then continue to hold the lock until the
1286  * access is complete.
1287  *
1288  * Callers in IN_GUEST_MODE may do so without locking, although they should
1289  * still hold a read lock on kvm->scru for the memslot checks.
1290  */
1291 bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1292 				gpa_t gpa, unsigned long len);
1293 
1294 /**
1295  * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
1296  *
1297  * @kvm:	   pointer to kvm instance.
1298  * @gpc:	   struct gfn_to_pfn_cache object.
1299  * @gpa:	   updated guest physical address to map.
1300  * @len:	   sanity check; the range being access must fit a single page.
1301  *
1302  * @return:	   0 for success.
1303  *		   -EINVAL for a mapping which would cross a page boundary.
1304  *                 -EFAULT for an untranslatable guest physical address.
1305  *
1306  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1307  * returm from this function does not mean the page can be immediately
1308  * accessed because it may have raced with an invalidation. Callers must
1309  * still lock and check the cache status, as this function does not return
1310  * with the lock still held to permit access.
1311  */
1312 int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1313 				 gpa_t gpa, unsigned long len);
1314 
1315 /**
1316  * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
1317  *
1318  * @kvm:	   pointer to kvm instance.
1319  * @gpc:	   struct gfn_to_pfn_cache object.
1320  *
1321  * This unmaps the referenced page. The cache is left in the invalid state
1322  * but at least the mapping from GPA to userspace HVA will remain cached
1323  * and can be reused on a subsequent refresh.
1324  */
1325 void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1326 
1327 /**
1328  * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
1329  *
1330  * @kvm:	   pointer to kvm instance.
1331  * @gpc:	   struct gfn_to_pfn_cache object.
1332  *
1333  * This removes a cache from the @kvm's list to be processed on MMU notifier
1334  * invocation.
1335  */
1336 void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1337 
1338 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1339 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1340 
1341 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1342 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1343 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1344 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1345 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1346 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1347 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1348 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1349 
1350 void kvm_flush_remote_tlbs(struct kvm *kvm);
1351 
1352 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1353 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1354 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1355 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1356 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1357 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1358 #endif
1359 
1360 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
1361 			      unsigned long end);
1362 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
1363 			    unsigned long end);
1364 
1365 long kvm_arch_dev_ioctl(struct file *filp,
1366 			unsigned int ioctl, unsigned long arg);
1367 long kvm_arch_vcpu_ioctl(struct file *filp,
1368 			 unsigned int ioctl, unsigned long arg);
1369 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1370 
1371 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1372 
1373 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1374 					struct kvm_memory_slot *slot,
1375 					gfn_t gfn_offset,
1376 					unsigned long mask);
1377 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1378 
1379 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1380 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1381 					const struct kvm_memory_slot *memslot);
1382 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1383 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1384 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1385 		      int *is_dirty, struct kvm_memory_slot **memslot);
1386 #endif
1387 
1388 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1389 			bool line_status);
1390 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1391 			    struct kvm_enable_cap *cap);
1392 long kvm_arch_vm_ioctl(struct file *filp,
1393 		       unsigned int ioctl, unsigned long arg);
1394 
1395 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1396 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1397 
1398 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1399 				    struct kvm_translation *tr);
1400 
1401 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1402 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1403 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1404 				  struct kvm_sregs *sregs);
1405 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1406 				  struct kvm_sregs *sregs);
1407 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1408 				    struct kvm_mp_state *mp_state);
1409 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1410 				    struct kvm_mp_state *mp_state);
1411 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1412 					struct kvm_guest_debug *dbg);
1413 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1414 
1415 int kvm_arch_init(void *opaque);
1416 void kvm_arch_exit(void);
1417 
1418 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1419 
1420 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1421 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1422 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1423 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1424 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1425 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1426 
1427 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1428 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1429 #endif
1430 
1431 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1432 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1433 #else
1434 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1435 #endif
1436 
1437 int kvm_arch_hardware_enable(void);
1438 void kvm_arch_hardware_disable(void);
1439 int kvm_arch_hardware_setup(void *opaque);
1440 void kvm_arch_hardware_unsetup(void);
1441 int kvm_arch_check_processor_compat(void *opaque);
1442 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1443 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1444 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1445 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1446 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1447 int kvm_arch_post_init_vm(struct kvm *kvm);
1448 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1449 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1450 
1451 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1452 /*
1453  * All architectures that want to use vzalloc currently also
1454  * need their own kvm_arch_alloc_vm implementation.
1455  */
1456 static inline struct kvm *kvm_arch_alloc_vm(void)
1457 {
1458 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1459 }
1460 #endif
1461 
1462 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1463 {
1464 	kvfree(kvm);
1465 }
1466 
1467 #ifndef __KVM_HAVE_ARCH_VM_FREE
1468 static inline void kvm_arch_free_vm(struct kvm *kvm)
1469 {
1470 	__kvm_arch_free_vm(kvm);
1471 }
1472 #endif
1473 
1474 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1475 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1476 {
1477 	return -ENOTSUPP;
1478 }
1479 #endif
1480 
1481 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1482 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1483 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1484 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1485 #else
1486 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1487 {
1488 }
1489 
1490 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1491 {
1492 }
1493 
1494 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1495 {
1496 	return false;
1497 }
1498 #endif
1499 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1500 void kvm_arch_start_assignment(struct kvm *kvm);
1501 void kvm_arch_end_assignment(struct kvm *kvm);
1502 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1503 #else
1504 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1505 {
1506 }
1507 
1508 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1509 {
1510 }
1511 
1512 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1513 {
1514 	return false;
1515 }
1516 #endif
1517 
1518 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1519 {
1520 #ifdef __KVM_HAVE_ARCH_WQP
1521 	return vcpu->arch.waitp;
1522 #else
1523 	return &vcpu->wait;
1524 #endif
1525 }
1526 
1527 /*
1528  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1529  * true if the vCPU was blocking and was awakened, false otherwise.
1530  */
1531 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1532 {
1533 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1534 }
1535 
1536 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1537 {
1538 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1539 }
1540 
1541 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1542 /*
1543  * returns true if the virtual interrupt controller is initialized and
1544  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1545  * controller is dynamically instantiated and this is not always true.
1546  */
1547 bool kvm_arch_intc_initialized(struct kvm *kvm);
1548 #else
1549 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1550 {
1551 	return true;
1552 }
1553 #endif
1554 
1555 #ifdef CONFIG_GUEST_PERF_EVENTS
1556 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1557 
1558 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1559 void kvm_unregister_perf_callbacks(void);
1560 #else
1561 static inline void kvm_register_perf_callbacks(void *ign) {}
1562 static inline void kvm_unregister_perf_callbacks(void) {}
1563 #endif /* CONFIG_GUEST_PERF_EVENTS */
1564 
1565 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1566 void kvm_arch_destroy_vm(struct kvm *kvm);
1567 void kvm_arch_sync_events(struct kvm *kvm);
1568 
1569 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1570 
1571 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1572 bool kvm_is_zone_device_page(struct page *page);
1573 
1574 struct kvm_irq_ack_notifier {
1575 	struct hlist_node link;
1576 	unsigned gsi;
1577 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1578 };
1579 
1580 int kvm_irq_map_gsi(struct kvm *kvm,
1581 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1582 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1583 
1584 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1585 		bool line_status);
1586 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1587 		int irq_source_id, int level, bool line_status);
1588 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1589 			       struct kvm *kvm, int irq_source_id,
1590 			       int level, bool line_status);
1591 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1592 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1593 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1594 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1595 				   struct kvm_irq_ack_notifier *kian);
1596 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1597 				   struct kvm_irq_ack_notifier *kian);
1598 int kvm_request_irq_source_id(struct kvm *kvm);
1599 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1600 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1601 
1602 /*
1603  * Returns a pointer to the memslot if it contains gfn.
1604  * Otherwise returns NULL.
1605  */
1606 static inline struct kvm_memory_slot *
1607 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1608 {
1609 	if (!slot)
1610 		return NULL;
1611 
1612 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1613 		return slot;
1614 	else
1615 		return NULL;
1616 }
1617 
1618 /*
1619  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1620  *
1621  * With "approx" set returns the memslot also when the address falls
1622  * in a hole. In that case one of the memslots bordering the hole is
1623  * returned.
1624  */
1625 static inline struct kvm_memory_slot *
1626 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1627 {
1628 	struct kvm_memory_slot *slot;
1629 	struct rb_node *node;
1630 	int idx = slots->node_idx;
1631 
1632 	slot = NULL;
1633 	for (node = slots->gfn_tree.rb_node; node; ) {
1634 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1635 		if (gfn >= slot->base_gfn) {
1636 			if (gfn < slot->base_gfn + slot->npages)
1637 				return slot;
1638 			node = node->rb_right;
1639 		} else
1640 			node = node->rb_left;
1641 	}
1642 
1643 	return approx ? slot : NULL;
1644 }
1645 
1646 static inline struct kvm_memory_slot *
1647 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1648 {
1649 	struct kvm_memory_slot *slot;
1650 
1651 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1652 	slot = try_get_memslot(slot, gfn);
1653 	if (slot)
1654 		return slot;
1655 
1656 	slot = search_memslots(slots, gfn, approx);
1657 	if (slot) {
1658 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1659 		return slot;
1660 	}
1661 
1662 	return NULL;
1663 }
1664 
1665 /*
1666  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1667  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1668  * because that would bloat other code too much.
1669  */
1670 static inline struct kvm_memory_slot *
1671 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1672 {
1673 	return ____gfn_to_memslot(slots, gfn, false);
1674 }
1675 
1676 static inline unsigned long
1677 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1678 {
1679 	/*
1680 	 * The index was checked originally in search_memslots.  To avoid
1681 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1682 	 * table walks, do not let the processor speculate loads outside
1683 	 * the guest's registered memslots.
1684 	 */
1685 	unsigned long offset = gfn - slot->base_gfn;
1686 	offset = array_index_nospec(offset, slot->npages);
1687 	return slot->userspace_addr + offset * PAGE_SIZE;
1688 }
1689 
1690 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1691 {
1692 	return gfn_to_memslot(kvm, gfn)->id;
1693 }
1694 
1695 static inline gfn_t
1696 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1697 {
1698 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1699 
1700 	return slot->base_gfn + gfn_offset;
1701 }
1702 
1703 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1704 {
1705 	return (gpa_t)gfn << PAGE_SHIFT;
1706 }
1707 
1708 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1709 {
1710 	return (gfn_t)(gpa >> PAGE_SHIFT);
1711 }
1712 
1713 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1714 {
1715 	return (hpa_t)pfn << PAGE_SHIFT;
1716 }
1717 
1718 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1719 {
1720 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1721 
1722 	return kvm_is_error_hva(hva);
1723 }
1724 
1725 enum kvm_stat_kind {
1726 	KVM_STAT_VM,
1727 	KVM_STAT_VCPU,
1728 };
1729 
1730 struct kvm_stat_data {
1731 	struct kvm *kvm;
1732 	const struct _kvm_stats_desc *desc;
1733 	enum kvm_stat_kind kind;
1734 };
1735 
1736 struct _kvm_stats_desc {
1737 	struct kvm_stats_desc desc;
1738 	char name[KVM_STATS_NAME_SIZE];
1739 };
1740 
1741 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1742 	.flags = type | unit | base |					       \
1743 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1744 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1745 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1746 	.exponent = exp,						       \
1747 	.size = sz,							       \
1748 	.bucket_size = bsz
1749 
1750 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1751 	{								       \
1752 		{							       \
1753 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1754 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1755 		},							       \
1756 		.name = #stat,						       \
1757 	}
1758 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1759 	{								       \
1760 		{							       \
1761 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1762 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1763 		},							       \
1764 		.name = #stat,						       \
1765 	}
1766 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1767 	{								       \
1768 		{							       \
1769 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1770 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1771 		},							       \
1772 		.name = #stat,						       \
1773 	}
1774 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1775 	{								       \
1776 		{							       \
1777 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1778 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1779 		},							       \
1780 		.name = #stat,						       \
1781 	}
1782 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1783 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1784 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1785 
1786 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1787 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1788 		unit, base, exponent, 1, 0)
1789 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1790 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1791 		unit, base, exponent, 1, 0)
1792 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1793 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1794 		unit, base, exponent, 1, 0)
1795 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1796 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1797 		unit, base, exponent, sz, bsz)
1798 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1799 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1800 		unit, base, exponent, sz, 0)
1801 
1802 /* Cumulative counter, read/write */
1803 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1804 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1805 		KVM_STATS_BASE_POW10, 0)
1806 /* Instantaneous counter, read only */
1807 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1808 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1809 		KVM_STATS_BASE_POW10, 0)
1810 /* Peak counter, read/write */
1811 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1812 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1813 		KVM_STATS_BASE_POW10, 0)
1814 
1815 /* Instantaneous boolean value, read only */
1816 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1817 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1818 		KVM_STATS_BASE_POW10, 0)
1819 /* Peak (sticky) boolean value, read/write */
1820 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1821 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1822 		KVM_STATS_BASE_POW10, 0)
1823 
1824 /* Cumulative time in nanosecond */
1825 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1826 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1827 		KVM_STATS_BASE_POW10, -9)
1828 /* Linear histogram for time in nanosecond */
1829 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1830 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1831 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1832 /* Logarithmic histogram for time in nanosecond */
1833 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1834 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1835 		KVM_STATS_BASE_POW10, -9, sz)
1836 
1837 #define KVM_GENERIC_VM_STATS()						       \
1838 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1839 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1840 
1841 #define KVM_GENERIC_VCPU_STATS()					       \
1842 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1843 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1844 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1845 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1846 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1847 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1848 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1849 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1850 			HALT_POLL_HIST_COUNT),				       \
1851 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1852 			HALT_POLL_HIST_COUNT),				       \
1853 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1854 			HALT_POLL_HIST_COUNT),				       \
1855 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1856 
1857 extern struct dentry *kvm_debugfs_dir;
1858 
1859 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1860 		       const struct _kvm_stats_desc *desc,
1861 		       void *stats, size_t size_stats,
1862 		       char __user *user_buffer, size_t size, loff_t *offset);
1863 
1864 /**
1865  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1866  * statistics data.
1867  *
1868  * @data: start address of the stats data
1869  * @size: the number of bucket of the stats data
1870  * @value: the new value used to update the linear histogram's bucket
1871  * @bucket_size: the size (width) of a bucket
1872  */
1873 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1874 						u64 value, size_t bucket_size)
1875 {
1876 	size_t index = div64_u64(value, bucket_size);
1877 
1878 	index = min(index, size - 1);
1879 	++data[index];
1880 }
1881 
1882 /**
1883  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1884  * statistics data.
1885  *
1886  * @data: start address of the stats data
1887  * @size: the number of bucket of the stats data
1888  * @value: the new value used to update the logarithmic histogram's bucket
1889  */
1890 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1891 {
1892 	size_t index = fls64(value);
1893 
1894 	index = min(index, size - 1);
1895 	++data[index];
1896 }
1897 
1898 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
1899 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1900 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
1901 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1902 
1903 
1904 extern const struct kvm_stats_header kvm_vm_stats_header;
1905 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1906 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1907 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1908 
1909 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1910 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1911 {
1912 	if (unlikely(kvm->mmu_invalidate_in_progress))
1913 		return 1;
1914 	/*
1915 	 * Ensure the read of mmu_invalidate_in_progress happens before
1916 	 * the read of mmu_invalidate_seq.  This interacts with the
1917 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1918 	 * that the caller either sees the old (non-zero) value of
1919 	 * mmu_invalidate_in_progress or the new (incremented) value of
1920 	 * mmu_invalidate_seq.
1921 	 *
1922 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1923 	 * than under kvm->mmu_lock, for scalability, so can't rely on
1924 	 * kvm->mmu_lock to keep things ordered.
1925 	 */
1926 	smp_rmb();
1927 	if (kvm->mmu_invalidate_seq != mmu_seq)
1928 		return 1;
1929 	return 0;
1930 }
1931 
1932 static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
1933 					   unsigned long mmu_seq,
1934 					   unsigned long hva)
1935 {
1936 	lockdep_assert_held(&kvm->mmu_lock);
1937 	/*
1938 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
1939 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
1940 	 * that might be being invalidated. Note that it may include some false
1941 	 * positives, due to shortcuts when handing concurrent invalidations.
1942 	 */
1943 	if (unlikely(kvm->mmu_invalidate_in_progress) &&
1944 	    hva >= kvm->mmu_invalidate_range_start &&
1945 	    hva < kvm->mmu_invalidate_range_end)
1946 		return 1;
1947 	if (kvm->mmu_invalidate_seq != mmu_seq)
1948 		return 1;
1949 	return 0;
1950 }
1951 #endif
1952 
1953 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1954 
1955 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1956 
1957 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1958 int kvm_set_irq_routing(struct kvm *kvm,
1959 			const struct kvm_irq_routing_entry *entries,
1960 			unsigned nr,
1961 			unsigned flags);
1962 int kvm_set_routing_entry(struct kvm *kvm,
1963 			  struct kvm_kernel_irq_routing_entry *e,
1964 			  const struct kvm_irq_routing_entry *ue);
1965 void kvm_free_irq_routing(struct kvm *kvm);
1966 
1967 #else
1968 
1969 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1970 
1971 #endif
1972 
1973 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1974 
1975 #ifdef CONFIG_HAVE_KVM_EVENTFD
1976 
1977 void kvm_eventfd_init(struct kvm *kvm);
1978 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1979 
1980 #ifdef CONFIG_HAVE_KVM_IRQFD
1981 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1982 void kvm_irqfd_release(struct kvm *kvm);
1983 void kvm_irq_routing_update(struct kvm *);
1984 #else
1985 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1986 {
1987 	return -EINVAL;
1988 }
1989 
1990 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1991 #endif
1992 
1993 #else
1994 
1995 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1996 
1997 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1998 {
1999 	return -EINVAL;
2000 }
2001 
2002 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2003 
2004 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2005 static inline void kvm_irq_routing_update(struct kvm *kvm)
2006 {
2007 }
2008 #endif
2009 
2010 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2011 {
2012 	return -ENOSYS;
2013 }
2014 
2015 #endif /* CONFIG_HAVE_KVM_EVENTFD */
2016 
2017 void kvm_arch_irq_routing_update(struct kvm *kvm);
2018 
2019 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2020 {
2021 	/*
2022 	 * Ensure the rest of the request is published to kvm_check_request's
2023 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2024 	 */
2025 	smp_wmb();
2026 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2027 }
2028 
2029 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2030 {
2031 	/*
2032 	 * Request that don't require vCPU action should never be logged in
2033 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2034 	 * logged indefinitely and prevent the vCPU from entering the guest.
2035 	 */
2036 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2037 		     (req & KVM_REQUEST_NO_ACTION));
2038 
2039 	__kvm_make_request(req, vcpu);
2040 }
2041 
2042 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2043 {
2044 	return READ_ONCE(vcpu->requests);
2045 }
2046 
2047 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2048 {
2049 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2050 }
2051 
2052 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2053 {
2054 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2055 }
2056 
2057 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2058 {
2059 	if (kvm_test_request(req, vcpu)) {
2060 		kvm_clear_request(req, vcpu);
2061 
2062 		/*
2063 		 * Ensure the rest of the request is visible to kvm_check_request's
2064 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2065 		 */
2066 		smp_mb__after_atomic();
2067 		return true;
2068 	} else {
2069 		return false;
2070 	}
2071 }
2072 
2073 extern bool kvm_rebooting;
2074 
2075 extern unsigned int halt_poll_ns;
2076 extern unsigned int halt_poll_ns_grow;
2077 extern unsigned int halt_poll_ns_grow_start;
2078 extern unsigned int halt_poll_ns_shrink;
2079 
2080 struct kvm_device {
2081 	const struct kvm_device_ops *ops;
2082 	struct kvm *kvm;
2083 	void *private;
2084 	struct list_head vm_node;
2085 };
2086 
2087 /* create, destroy, and name are mandatory */
2088 struct kvm_device_ops {
2089 	const char *name;
2090 
2091 	/*
2092 	 * create is called holding kvm->lock and any operations not suitable
2093 	 * to do while holding the lock should be deferred to init (see
2094 	 * below).
2095 	 */
2096 	int (*create)(struct kvm_device *dev, u32 type);
2097 
2098 	/*
2099 	 * init is called after create if create is successful and is called
2100 	 * outside of holding kvm->lock.
2101 	 */
2102 	void (*init)(struct kvm_device *dev);
2103 
2104 	/*
2105 	 * Destroy is responsible for freeing dev.
2106 	 *
2107 	 * Destroy may be called before or after destructors are called
2108 	 * on emulated I/O regions, depending on whether a reference is
2109 	 * held by a vcpu or other kvm component that gets destroyed
2110 	 * after the emulated I/O.
2111 	 */
2112 	void (*destroy)(struct kvm_device *dev);
2113 
2114 	/*
2115 	 * Release is an alternative method to free the device. It is
2116 	 * called when the device file descriptor is closed. Once
2117 	 * release is called, the destroy method will not be called
2118 	 * anymore as the device is removed from the device list of
2119 	 * the VM. kvm->lock is held.
2120 	 */
2121 	void (*release)(struct kvm_device *dev);
2122 
2123 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2124 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2125 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2126 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2127 		      unsigned long arg);
2128 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2129 };
2130 
2131 void kvm_device_get(struct kvm_device *dev);
2132 void kvm_device_put(struct kvm_device *dev);
2133 struct kvm_device *kvm_device_from_filp(struct file *filp);
2134 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2135 void kvm_unregister_device_ops(u32 type);
2136 
2137 extern struct kvm_device_ops kvm_mpic_ops;
2138 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2139 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2140 
2141 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2142 
2143 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2144 {
2145 	vcpu->spin_loop.in_spin_loop = val;
2146 }
2147 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2148 {
2149 	vcpu->spin_loop.dy_eligible = val;
2150 }
2151 
2152 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2153 
2154 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2155 {
2156 }
2157 
2158 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2159 {
2160 }
2161 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2162 
2163 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2164 {
2165 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2166 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2167 }
2168 
2169 struct kvm_vcpu *kvm_get_running_vcpu(void);
2170 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2171 
2172 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2173 bool kvm_arch_has_irq_bypass(void);
2174 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2175 			   struct irq_bypass_producer *);
2176 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2177 			   struct irq_bypass_producer *);
2178 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2179 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2180 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2181 				  uint32_t guest_irq, bool set);
2182 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2183 				  struct kvm_kernel_irq_routing_entry *);
2184 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2185 
2186 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2187 /* If we wakeup during the poll time, was it a sucessful poll? */
2188 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2189 {
2190 	return vcpu->valid_wakeup;
2191 }
2192 
2193 #else
2194 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2195 {
2196 	return true;
2197 }
2198 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2199 
2200 #ifdef CONFIG_HAVE_KVM_NO_POLL
2201 /* Callback that tells if we must not poll */
2202 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2203 #else
2204 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2205 {
2206 	return false;
2207 }
2208 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2209 
2210 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2211 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2212 			       unsigned int ioctl, unsigned long arg);
2213 #else
2214 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2215 					     unsigned int ioctl,
2216 					     unsigned long arg)
2217 {
2218 	return -ENOIOCTLCMD;
2219 }
2220 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2221 
2222 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2223 					    unsigned long start, unsigned long end);
2224 
2225 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2226 
2227 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2228 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2229 #else
2230 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2231 {
2232 	return 0;
2233 }
2234 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2235 
2236 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2237 
2238 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2239 				uintptr_t data, const char *name,
2240 				struct task_struct **thread_ptr);
2241 
2242 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2243 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2244 {
2245 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2246 	vcpu->stat.signal_exits++;
2247 }
2248 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2249 
2250 /*
2251  * This defines how many reserved entries we want to keep before we
2252  * kick the vcpu to the userspace to avoid dirty ring full.  This
2253  * value can be tuned to higher if e.g. PML is enabled on the host.
2254  */
2255 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2256 
2257 /* Max number of entries allowed for each kvm dirty ring */
2258 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2259 
2260 #endif
2261