xref: /openbmc/linux/include/linux/kfence.h (revision d28a1de5)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Kernel Electric-Fence (KFENCE). Public interface for allocator and fault
4  * handler integration. For more info see Documentation/dev-tools/kfence.rst.
5  *
6  * Copyright (C) 2020, Google LLC.
7  */
8 
9 #ifndef _LINUX_KFENCE_H
10 #define _LINUX_KFENCE_H
11 
12 #include <linux/mm.h>
13 #include <linux/types.h>
14 
15 #ifdef CONFIG_KFENCE
16 
17 #include <linux/atomic.h>
18 #include <linux/static_key.h>
19 
20 extern unsigned long kfence_sample_interval;
21 
22 /*
23  * We allocate an even number of pages, as it simplifies calculations to map
24  * address to metadata indices; effectively, the very first page serves as an
25  * extended guard page, but otherwise has no special purpose.
26  */
27 #define KFENCE_POOL_SIZE ((CONFIG_KFENCE_NUM_OBJECTS + 1) * 2 * PAGE_SIZE)
28 extern char *__kfence_pool;
29 
30 DECLARE_STATIC_KEY_FALSE(kfence_allocation_key);
31 extern atomic_t kfence_allocation_gate;
32 
33 /**
34  * is_kfence_address() - check if an address belongs to KFENCE pool
35  * @addr: address to check
36  *
37  * Return: true or false depending on whether the address is within the KFENCE
38  * object range.
39  *
40  * KFENCE objects live in a separate page range and are not to be intermixed
41  * with regular heap objects (e.g. KFENCE objects must never be added to the
42  * allocator freelists). Failing to do so may and will result in heap
43  * corruptions, therefore is_kfence_address() must be used to check whether
44  * an object requires specific handling.
45  *
46  * Note: This function may be used in fast-paths, and is performance critical.
47  * Future changes should take this into account; for instance, we want to avoid
48  * introducing another load and therefore need to keep KFENCE_POOL_SIZE a
49  * constant (until immediate patching support is added to the kernel).
50  */
51 static __always_inline bool is_kfence_address(const void *addr)
52 {
53 	/*
54 	 * The __kfence_pool != NULL check is required to deal with the case
55 	 * where __kfence_pool == NULL && addr < KFENCE_POOL_SIZE. Keep it in
56 	 * the slow-path after the range-check!
57 	 */
58 	return unlikely((unsigned long)((char *)addr - __kfence_pool) < KFENCE_POOL_SIZE && __kfence_pool);
59 }
60 
61 /**
62  * kfence_alloc_pool() - allocate the KFENCE pool via memblock
63  */
64 void __init kfence_alloc_pool(void);
65 
66 /**
67  * kfence_init() - perform KFENCE initialization at boot time
68  *
69  * Requires that kfence_alloc_pool() was called before. This sets up the
70  * allocation gate timer, and requires that workqueues are available.
71  */
72 void __init kfence_init(void);
73 
74 /**
75  * kfence_shutdown_cache() - handle shutdown_cache() for KFENCE objects
76  * @s: cache being shut down
77  *
78  * Before shutting down a cache, one must ensure there are no remaining objects
79  * allocated from it. Because KFENCE objects are not referenced from the cache
80  * directly, we need to check them here.
81  *
82  * Note that shutdown_cache() is internal to SL*B, and kmem_cache_destroy() does
83  * not return if allocated objects still exist: it prints an error message and
84  * simply aborts destruction of a cache, leaking memory.
85  *
86  * If the only such objects are KFENCE objects, we will not leak the entire
87  * cache, but instead try to provide more useful debug info by making allocated
88  * objects "zombie allocations". Objects may then still be used or freed (which
89  * is handled gracefully), but usage will result in showing KFENCE error reports
90  * which include stack traces to the user of the object, the original allocation
91  * site, and caller to shutdown_cache().
92  */
93 void kfence_shutdown_cache(struct kmem_cache *s);
94 
95 /*
96  * Allocate a KFENCE object. Allocators must not call this function directly,
97  * use kfence_alloc() instead.
98  */
99 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags);
100 
101 /**
102  * kfence_alloc() - allocate a KFENCE object with a low probability
103  * @s:     struct kmem_cache with object requirements
104  * @size:  exact size of the object to allocate (can be less than @s->size
105  *         e.g. for kmalloc caches)
106  * @flags: GFP flags
107  *
108  * Return:
109  * * NULL     - must proceed with allocating as usual,
110  * * non-NULL - pointer to a KFENCE object.
111  *
112  * kfence_alloc() should be inserted into the heap allocation fast path,
113  * allowing it to transparently return KFENCE-allocated objects with a low
114  * probability using a static branch (the probability is controlled by the
115  * kfence.sample_interval boot parameter).
116  */
117 static __always_inline void *kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
118 {
119 #if defined(CONFIG_KFENCE_STATIC_KEYS) || CONFIG_KFENCE_SAMPLE_INTERVAL == 0
120 	if (!static_branch_unlikely(&kfence_allocation_key))
121 		return NULL;
122 #else
123 	if (!static_branch_likely(&kfence_allocation_key))
124 		return NULL;
125 #endif
126 	if (likely(atomic_read(&kfence_allocation_gate)))
127 		return NULL;
128 	return __kfence_alloc(s, size, flags);
129 }
130 
131 /**
132  * kfence_ksize() - get actual amount of memory allocated for a KFENCE object
133  * @addr: pointer to a heap object
134  *
135  * Return:
136  * * 0     - not a KFENCE object, must call __ksize() instead,
137  * * non-0 - this many bytes can be accessed without causing a memory error.
138  *
139  * kfence_ksize() returns the number of bytes requested for a KFENCE object at
140  * allocation time. This number may be less than the object size of the
141  * corresponding struct kmem_cache.
142  */
143 size_t kfence_ksize(const void *addr);
144 
145 /**
146  * kfence_object_start() - find the beginning of a KFENCE object
147  * @addr: address within a KFENCE-allocated object
148  *
149  * Return: address of the beginning of the object.
150  *
151  * SL[AU]B-allocated objects are laid out within a page one by one, so it is
152  * easy to calculate the beginning of an object given a pointer inside it and
153  * the object size. The same is not true for KFENCE, which places a single
154  * object at either end of the page. This helper function is used to find the
155  * beginning of a KFENCE-allocated object.
156  */
157 void *kfence_object_start(const void *addr);
158 
159 /**
160  * __kfence_free() - release a KFENCE heap object to KFENCE pool
161  * @addr: object to be freed
162  *
163  * Requires: is_kfence_address(addr)
164  *
165  * Release a KFENCE object and mark it as freed.
166  */
167 void __kfence_free(void *addr);
168 
169 /**
170  * kfence_free() - try to release an arbitrary heap object to KFENCE pool
171  * @addr: object to be freed
172  *
173  * Return:
174  * * false - object doesn't belong to KFENCE pool and was ignored,
175  * * true  - object was released to KFENCE pool.
176  *
177  * Release a KFENCE object and mark it as freed. May be called on any object,
178  * even non-KFENCE objects, to simplify integration of the hooks into the
179  * allocator's free codepath. The allocator must check the return value to
180  * determine if it was a KFENCE object or not.
181  */
182 static __always_inline __must_check bool kfence_free(void *addr)
183 {
184 	if (!is_kfence_address(addr))
185 		return false;
186 	__kfence_free(addr);
187 	return true;
188 }
189 
190 /**
191  * kfence_handle_page_fault() - perform page fault handling for KFENCE pages
192  * @addr: faulting address
193  * @is_write: is access a write
194  * @regs: current struct pt_regs (can be NULL, but shows full stack trace)
195  *
196  * Return:
197  * * false - address outside KFENCE pool,
198  * * true  - page fault handled by KFENCE, no additional handling required.
199  *
200  * A page fault inside KFENCE pool indicates a memory error, such as an
201  * out-of-bounds access, a use-after-free or an invalid memory access. In these
202  * cases KFENCE prints an error message and marks the offending page as
203  * present, so that the kernel can proceed.
204  */
205 bool __must_check kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs);
206 
207 #ifdef CONFIG_PRINTK
208 struct kmem_obj_info;
209 /**
210  * __kfence_obj_info() - fill kmem_obj_info struct
211  * @kpp: kmem_obj_info to be filled
212  * @object: the object
213  *
214  * Return:
215  * * false - not a KFENCE object
216  * * true - a KFENCE object, filled @kpp
217  *
218  * Copies information to @kpp for KFENCE objects.
219  */
220 bool __kfence_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
221 #endif
222 
223 #else /* CONFIG_KFENCE */
224 
225 static inline bool is_kfence_address(const void *addr) { return false; }
226 static inline void kfence_alloc_pool(void) { }
227 static inline void kfence_init(void) { }
228 static inline void kfence_shutdown_cache(struct kmem_cache *s) { }
229 static inline void *kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) { return NULL; }
230 static inline size_t kfence_ksize(const void *addr) { return 0; }
231 static inline void *kfence_object_start(const void *addr) { return NULL; }
232 static inline void __kfence_free(void *addr) { }
233 static inline bool __must_check kfence_free(void *addr) { return false; }
234 static inline bool __must_check kfence_handle_page_fault(unsigned long addr, bool is_write,
235 							 struct pt_regs *regs)
236 {
237 	return false;
238 }
239 
240 #ifdef CONFIG_PRINTK
241 struct kmem_obj_info;
242 static inline bool __kfence_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
243 {
244 	return false;
245 }
246 #endif
247 
248 #endif
249 
250 #endif /* _LINUX_KFENCE_H */
251