xref: /openbmc/linux/include/linux/kernfs.h (revision 34bec35c)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * kernfs.h - pseudo filesystem decoupled from vfs locking
4  */
5 
6 #ifndef __LINUX_KERNFS_H
7 #define __LINUX_KERNFS_H
8 
9 #include <linux/err.h>
10 #include <linux/list.h>
11 #include <linux/mutex.h>
12 #include <linux/idr.h>
13 #include <linux/lockdep.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/bug.h>
17 #include <linux/types.h>
18 #include <linux/uidgid.h>
19 #include <linux/wait.h>
20 #include <linux/rwsem.h>
21 #include <linux/cache.h>
22 
23 struct file;
24 struct dentry;
25 struct iattr;
26 struct seq_file;
27 struct vm_area_struct;
28 struct vm_operations_struct;
29 struct super_block;
30 struct file_system_type;
31 struct poll_table_struct;
32 struct fs_context;
33 
34 struct kernfs_fs_context;
35 struct kernfs_open_node;
36 struct kernfs_iattrs;
37 
38 /*
39  * NR_KERNFS_LOCK_BITS determines size (NR_KERNFS_LOCKS) of hash
40  * table of locks.
41  * Having a small hash table would impact scalability, since
42  * more and more kernfs_node objects will end up using same lock
43  * and having a very large hash table would waste memory.
44  *
45  * At the moment size of hash table of locks is being set based on
46  * the number of CPUs as follows:
47  *
48  * NR_CPU      NR_KERNFS_LOCK_BITS      NR_KERNFS_LOCKS
49  *   1                  1                       2
50  *  2-3                 2                       4
51  *  4-7                 4                       16
52  *  8-15                6                       64
53  *  16-31               8                       256
54  *  32 and more         10                      1024
55  *
56  * The above relation between NR_CPU and number of locks is based
57  * on some internal experimentation which involved booting qemu
58  * with different values of smp, performing some sysfs operations
59  * on all CPUs and observing how increase in number of locks impacts
60  * completion time of these sysfs operations on each CPU.
61  */
62 #ifdef CONFIG_SMP
63 #define NR_KERNFS_LOCK_BITS (2 * (ilog2(NR_CPUS < 32 ? NR_CPUS : 32)))
64 #else
65 #define NR_KERNFS_LOCK_BITS     1
66 #endif
67 
68 #define NR_KERNFS_LOCKS     (1 << NR_KERNFS_LOCK_BITS)
69 
70 /*
71  * There's one kernfs_open_file for each open file and one kernfs_open_node
72  * for each kernfs_node with one or more open files.
73  *
74  * filp->private_data points to seq_file whose ->private points to
75  * kernfs_open_file.
76  *
77  * kernfs_open_files are chained at kernfs_open_node->files, which is
78  * protected by kernfs_global_locks.open_file_mutex[i].
79  *
80  * To reduce possible contention in sysfs access, arising due to single
81  * locks, use an array of locks (e.g. open_file_mutex) and use kernfs_node
82  * object address as hash keys to get the index of these locks.
83  *
84  * Hashed mutexes are safe to use here because operations using these don't
85  * rely on global exclusion.
86  *
87  * In future we intend to replace other global locks with hashed ones as well.
88  * kernfs_global_locks acts as a holder for all such hash tables.
89  */
90 struct kernfs_global_locks {
91 	struct mutex open_file_mutex[NR_KERNFS_LOCKS];
92 };
93 
94 enum kernfs_node_type {
95 	KERNFS_DIR		= 0x0001,
96 	KERNFS_FILE		= 0x0002,
97 	KERNFS_LINK		= 0x0004,
98 };
99 
100 #define KERNFS_TYPE_MASK		0x000f
101 #define KERNFS_FLAG_MASK		~KERNFS_TYPE_MASK
102 #define KERNFS_MAX_USER_XATTRS		128
103 #define KERNFS_USER_XATTR_SIZE_LIMIT	(128 << 10)
104 
105 enum kernfs_node_flag {
106 	KERNFS_ACTIVATED	= 0x0010,
107 	KERNFS_NS		= 0x0020,
108 	KERNFS_HAS_SEQ_SHOW	= 0x0040,
109 	KERNFS_HAS_MMAP		= 0x0080,
110 	KERNFS_LOCKDEP		= 0x0100,
111 	KERNFS_SUICIDAL		= 0x0400,
112 	KERNFS_SUICIDED		= 0x0800,
113 	KERNFS_EMPTY_DIR	= 0x1000,
114 	KERNFS_HAS_RELEASE	= 0x2000,
115 };
116 
117 /* @flags for kernfs_create_root() */
118 enum kernfs_root_flag {
119 	/*
120 	 * kernfs_nodes are created in the deactivated state and invisible.
121 	 * They require explicit kernfs_activate() to become visible.  This
122 	 * can be used to make related nodes become visible atomically
123 	 * after all nodes are created successfully.
124 	 */
125 	KERNFS_ROOT_CREATE_DEACTIVATED		= 0x0001,
126 
127 	/*
128 	 * For regular files, if the opener has CAP_DAC_OVERRIDE, open(2)
129 	 * succeeds regardless of the RW permissions.  sysfs had an extra
130 	 * layer of enforcement where open(2) fails with -EACCES regardless
131 	 * of CAP_DAC_OVERRIDE if the permission doesn't have the
132 	 * respective read or write access at all (none of S_IRUGO or
133 	 * S_IWUGO) or the respective operation isn't implemented.  The
134 	 * following flag enables that behavior.
135 	 */
136 	KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK	= 0x0002,
137 
138 	/*
139 	 * The filesystem supports exportfs operation, so userspace can use
140 	 * fhandle to access nodes of the fs.
141 	 */
142 	KERNFS_ROOT_SUPPORT_EXPORTOP		= 0x0004,
143 
144 	/*
145 	 * Support user xattrs to be written to nodes rooted at this root.
146 	 */
147 	KERNFS_ROOT_SUPPORT_USER_XATTR		= 0x0008,
148 };
149 
150 /* type-specific structures for kernfs_node union members */
151 struct kernfs_elem_dir {
152 	unsigned long		subdirs;
153 	/* children rbtree starts here and goes through kn->rb */
154 	struct rb_root		children;
155 
156 	/*
157 	 * The kernfs hierarchy this directory belongs to.  This fits
158 	 * better directly in kernfs_node but is here to save space.
159 	 */
160 	struct kernfs_root	*root;
161 	/*
162 	 * Monotonic revision counter, used to identify if a directory
163 	 * node has changed during negative dentry revalidation.
164 	 */
165 	unsigned long		rev;
166 };
167 
168 struct kernfs_elem_symlink {
169 	struct kernfs_node	*target_kn;
170 };
171 
172 struct kernfs_elem_attr {
173 	const struct kernfs_ops	*ops;
174 	struct kernfs_open_node __rcu	*open;
175 	loff_t			size;
176 	struct kernfs_node	*notify_next;	/* for kernfs_notify() */
177 };
178 
179 /*
180  * kernfs_node - the building block of kernfs hierarchy.  Each and every
181  * kernfs node is represented by single kernfs_node.  Most fields are
182  * private to kernfs and shouldn't be accessed directly by kernfs users.
183  *
184  * As long as count reference is held, the kernfs_node itself is
185  * accessible.  Dereferencing elem or any other outer entity requires
186  * active reference.
187  */
188 struct kernfs_node {
189 	atomic_t		count;
190 	atomic_t		active;
191 #ifdef CONFIG_DEBUG_LOCK_ALLOC
192 	struct lockdep_map	dep_map;
193 #endif
194 	/*
195 	 * Use kernfs_get_parent() and kernfs_name/path() instead of
196 	 * accessing the following two fields directly.  If the node is
197 	 * never moved to a different parent, it is safe to access the
198 	 * parent directly.
199 	 */
200 	struct kernfs_node	*parent;
201 	const char		*name;
202 
203 	struct rb_node		rb;
204 
205 	const void		*ns;	/* namespace tag */
206 	unsigned int		hash;	/* ns + name hash */
207 	union {
208 		struct kernfs_elem_dir		dir;
209 		struct kernfs_elem_symlink	symlink;
210 		struct kernfs_elem_attr		attr;
211 	};
212 
213 	void			*priv;
214 
215 	/*
216 	 * 64bit unique ID.  On 64bit ino setups, id is the ino.  On 32bit,
217 	 * the low 32bits are ino and upper generation.
218 	 */
219 	u64			id;
220 
221 	unsigned short		flags;
222 	umode_t			mode;
223 	struct kernfs_iattrs	*iattr;
224 };
225 
226 /*
227  * kernfs_syscall_ops may be specified on kernfs_create_root() to support
228  * syscalls.  These optional callbacks are invoked on the matching syscalls
229  * and can perform any kernfs operations which don't necessarily have to be
230  * the exact operation requested.  An active reference is held for each
231  * kernfs_node parameter.
232  */
233 struct kernfs_syscall_ops {
234 	int (*show_options)(struct seq_file *sf, struct kernfs_root *root);
235 
236 	int (*mkdir)(struct kernfs_node *parent, const char *name,
237 		     umode_t mode);
238 	int (*rmdir)(struct kernfs_node *kn);
239 	int (*rename)(struct kernfs_node *kn, struct kernfs_node *new_parent,
240 		      const char *new_name);
241 	int (*show_path)(struct seq_file *sf, struct kernfs_node *kn,
242 			 struct kernfs_root *root);
243 };
244 
245 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root);
246 
247 struct kernfs_open_file {
248 	/* published fields */
249 	struct kernfs_node	*kn;
250 	struct file		*file;
251 	struct seq_file		*seq_file;
252 	void			*priv;
253 
254 	/* private fields, do not use outside kernfs proper */
255 	struct mutex		mutex;
256 	struct mutex		prealloc_mutex;
257 	int			event;
258 	struct list_head	list;
259 	char			*prealloc_buf;
260 
261 	size_t			atomic_write_len;
262 	bool			mmapped:1;
263 	bool			released:1;
264 	const struct vm_operations_struct *vm_ops;
265 };
266 
267 struct kernfs_ops {
268 	/*
269 	 * Optional open/release methods.  Both are called with
270 	 * @of->seq_file populated.
271 	 */
272 	int (*open)(struct kernfs_open_file *of);
273 	void (*release)(struct kernfs_open_file *of);
274 
275 	/*
276 	 * Read is handled by either seq_file or raw_read().
277 	 *
278 	 * If seq_show() is present, seq_file path is active.  Other seq
279 	 * operations are optional and if not implemented, the behavior is
280 	 * equivalent to single_open().  @sf->private points to the
281 	 * associated kernfs_open_file.
282 	 *
283 	 * read() is bounced through kernel buffer and a read larger than
284 	 * PAGE_SIZE results in partial operation of PAGE_SIZE.
285 	 */
286 	int (*seq_show)(struct seq_file *sf, void *v);
287 
288 	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
289 	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
290 	void (*seq_stop)(struct seq_file *sf, void *v);
291 
292 	ssize_t (*read)(struct kernfs_open_file *of, char *buf, size_t bytes,
293 			loff_t off);
294 
295 	/*
296 	 * write() is bounced through kernel buffer.  If atomic_write_len
297 	 * is not set, a write larger than PAGE_SIZE results in partial
298 	 * operations of PAGE_SIZE chunks.  If atomic_write_len is set,
299 	 * writes upto the specified size are executed atomically but
300 	 * larger ones are rejected with -E2BIG.
301 	 */
302 	size_t atomic_write_len;
303 	/*
304 	 * "prealloc" causes a buffer to be allocated at open for
305 	 * all read/write requests.  As ->seq_show uses seq_read()
306 	 * which does its own allocation, it is incompatible with
307 	 * ->prealloc.  Provide ->read and ->write with ->prealloc.
308 	 */
309 	bool prealloc;
310 	ssize_t (*write)(struct kernfs_open_file *of, char *buf, size_t bytes,
311 			 loff_t off);
312 
313 	__poll_t (*poll)(struct kernfs_open_file *of,
314 			 struct poll_table_struct *pt);
315 
316 	int (*mmap)(struct kernfs_open_file *of, struct vm_area_struct *vma);
317 };
318 
319 /*
320  * The kernfs superblock creation/mount parameter context.
321  */
322 struct kernfs_fs_context {
323 	struct kernfs_root	*root;		/* Root of the hierarchy being mounted */
324 	void			*ns_tag;	/* Namespace tag of the mount (or NULL) */
325 	unsigned long		magic;		/* File system specific magic number */
326 
327 	/* The following are set/used by kernfs_mount() */
328 	bool			new_sb_created;	/* Set to T if we allocated a new sb */
329 };
330 
331 #ifdef CONFIG_KERNFS
332 
333 static inline enum kernfs_node_type kernfs_type(struct kernfs_node *kn)
334 {
335 	return kn->flags & KERNFS_TYPE_MASK;
336 }
337 
338 static inline ino_t kernfs_id_ino(u64 id)
339 {
340 	/* id is ino if ino_t is 64bit; otherwise, low 32bits */
341 	if (sizeof(ino_t) >= sizeof(u64))
342 		return id;
343 	else
344 		return (u32)id;
345 }
346 
347 static inline u32 kernfs_id_gen(u64 id)
348 {
349 	/* gen is fixed at 1 if ino_t is 64bit; otherwise, high 32bits */
350 	if (sizeof(ino_t) >= sizeof(u64))
351 		return 1;
352 	else
353 		return id >> 32;
354 }
355 
356 static inline ino_t kernfs_ino(struct kernfs_node *kn)
357 {
358 	return kernfs_id_ino(kn->id);
359 }
360 
361 static inline ino_t kernfs_gen(struct kernfs_node *kn)
362 {
363 	return kernfs_id_gen(kn->id);
364 }
365 
366 /**
367  * kernfs_enable_ns - enable namespace under a directory
368  * @kn: directory of interest, should be empty
369  *
370  * This is to be called right after @kn is created to enable namespace
371  * under it.  All children of @kn must have non-NULL namespace tags and
372  * only the ones which match the super_block's tag will be visible.
373  */
374 static inline void kernfs_enable_ns(struct kernfs_node *kn)
375 {
376 	WARN_ON_ONCE(kernfs_type(kn) != KERNFS_DIR);
377 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&kn->dir.children));
378 	kn->flags |= KERNFS_NS;
379 }
380 
381 /**
382  * kernfs_ns_enabled - test whether namespace is enabled
383  * @kn: the node to test
384  *
385  * Test whether namespace filtering is enabled for the children of @ns.
386  */
387 static inline bool kernfs_ns_enabled(struct kernfs_node *kn)
388 {
389 	return kn->flags & KERNFS_NS;
390 }
391 
392 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen);
393 int kernfs_path_from_node(struct kernfs_node *root_kn, struct kernfs_node *kn,
394 			  char *buf, size_t buflen);
395 void pr_cont_kernfs_name(struct kernfs_node *kn);
396 void pr_cont_kernfs_path(struct kernfs_node *kn);
397 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn);
398 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
399 					   const char *name, const void *ns);
400 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
401 					   const char *path, const void *ns);
402 void kernfs_get(struct kernfs_node *kn);
403 void kernfs_put(struct kernfs_node *kn);
404 
405 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry);
406 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb);
407 struct inode *kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn);
408 
409 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
410 				  struct super_block *sb);
411 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
412 				       unsigned int flags, void *priv);
413 void kernfs_destroy_root(struct kernfs_root *root);
414 
415 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
416 					 const char *name, umode_t mode,
417 					 kuid_t uid, kgid_t gid,
418 					 void *priv, const void *ns);
419 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
420 					    const char *name);
421 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
422 					 const char *name, umode_t mode,
423 					 kuid_t uid, kgid_t gid,
424 					 loff_t size,
425 					 const struct kernfs_ops *ops,
426 					 void *priv, const void *ns,
427 					 struct lock_class_key *key);
428 struct kernfs_node *kernfs_create_link(struct kernfs_node *parent,
429 				       const char *name,
430 				       struct kernfs_node *target);
431 void kernfs_activate(struct kernfs_node *kn);
432 void kernfs_remove(struct kernfs_node *kn);
433 void kernfs_break_active_protection(struct kernfs_node *kn);
434 void kernfs_unbreak_active_protection(struct kernfs_node *kn);
435 bool kernfs_remove_self(struct kernfs_node *kn);
436 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
437 			     const void *ns);
438 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
439 		     const char *new_name, const void *new_ns);
440 int kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr);
441 __poll_t kernfs_generic_poll(struct kernfs_open_file *of,
442 			     struct poll_table_struct *pt);
443 void kernfs_notify(struct kernfs_node *kn);
444 
445 int kernfs_xattr_get(struct kernfs_node *kn, const char *name,
446 		     void *value, size_t size);
447 int kernfs_xattr_set(struct kernfs_node *kn, const char *name,
448 		     const void *value, size_t size, int flags);
449 
450 const void *kernfs_super_ns(struct super_block *sb);
451 int kernfs_get_tree(struct fs_context *fc);
452 void kernfs_free_fs_context(struct fs_context *fc);
453 void kernfs_kill_sb(struct super_block *sb);
454 
455 void kernfs_init(void);
456 
457 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
458 						   u64 id);
459 #else	/* CONFIG_KERNFS */
460 
461 static inline enum kernfs_node_type kernfs_type(struct kernfs_node *kn)
462 { return 0; }	/* whatever */
463 
464 static inline void kernfs_enable_ns(struct kernfs_node *kn) { }
465 
466 static inline bool kernfs_ns_enabled(struct kernfs_node *kn)
467 { return false; }
468 
469 static inline int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
470 { return -ENOSYS; }
471 
472 static inline int kernfs_path_from_node(struct kernfs_node *root_kn,
473 					struct kernfs_node *kn,
474 					char *buf, size_t buflen)
475 { return -ENOSYS; }
476 
477 static inline void pr_cont_kernfs_name(struct kernfs_node *kn) { }
478 static inline void pr_cont_kernfs_path(struct kernfs_node *kn) { }
479 
480 static inline struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
481 { return NULL; }
482 
483 static inline struct kernfs_node *
484 kernfs_find_and_get_ns(struct kernfs_node *parent, const char *name,
485 		       const void *ns)
486 { return NULL; }
487 static inline struct kernfs_node *
488 kernfs_walk_and_get_ns(struct kernfs_node *parent, const char *path,
489 		       const void *ns)
490 { return NULL; }
491 
492 static inline void kernfs_get(struct kernfs_node *kn) { }
493 static inline void kernfs_put(struct kernfs_node *kn) { }
494 
495 static inline struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
496 { return NULL; }
497 
498 static inline struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
499 { return NULL; }
500 
501 static inline struct inode *
502 kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn)
503 { return NULL; }
504 
505 static inline struct kernfs_root *
506 kernfs_create_root(struct kernfs_syscall_ops *scops, unsigned int flags,
507 		   void *priv)
508 { return ERR_PTR(-ENOSYS); }
509 
510 static inline void kernfs_destroy_root(struct kernfs_root *root) { }
511 
512 static inline struct kernfs_node *
513 kernfs_create_dir_ns(struct kernfs_node *parent, const char *name,
514 		     umode_t mode, kuid_t uid, kgid_t gid,
515 		     void *priv, const void *ns)
516 { return ERR_PTR(-ENOSYS); }
517 
518 static inline struct kernfs_node *
519 __kernfs_create_file(struct kernfs_node *parent, const char *name,
520 		     umode_t mode, kuid_t uid, kgid_t gid,
521 		     loff_t size, const struct kernfs_ops *ops,
522 		     void *priv, const void *ns, struct lock_class_key *key)
523 { return ERR_PTR(-ENOSYS); }
524 
525 static inline struct kernfs_node *
526 kernfs_create_link(struct kernfs_node *parent, const char *name,
527 		   struct kernfs_node *target)
528 { return ERR_PTR(-ENOSYS); }
529 
530 static inline void kernfs_activate(struct kernfs_node *kn) { }
531 
532 static inline void kernfs_remove(struct kernfs_node *kn) { }
533 
534 static inline bool kernfs_remove_self(struct kernfs_node *kn)
535 { return false; }
536 
537 static inline int kernfs_remove_by_name_ns(struct kernfs_node *kn,
538 					   const char *name, const void *ns)
539 { return -ENOSYS; }
540 
541 static inline int kernfs_rename_ns(struct kernfs_node *kn,
542 				   struct kernfs_node *new_parent,
543 				   const char *new_name, const void *new_ns)
544 { return -ENOSYS; }
545 
546 static inline int kernfs_setattr(struct kernfs_node *kn,
547 				 const struct iattr *iattr)
548 { return -ENOSYS; }
549 
550 static inline void kernfs_notify(struct kernfs_node *kn) { }
551 
552 static inline int kernfs_xattr_get(struct kernfs_node *kn, const char *name,
553 				   void *value, size_t size)
554 { return -ENOSYS; }
555 
556 static inline int kernfs_xattr_set(struct kernfs_node *kn, const char *name,
557 				   const void *value, size_t size, int flags)
558 { return -ENOSYS; }
559 
560 static inline const void *kernfs_super_ns(struct super_block *sb)
561 { return NULL; }
562 
563 static inline int kernfs_get_tree(struct fs_context *fc)
564 { return -ENOSYS; }
565 
566 static inline void kernfs_free_fs_context(struct fs_context *fc) { }
567 
568 static inline void kernfs_kill_sb(struct super_block *sb) { }
569 
570 static inline void kernfs_init(void) { }
571 
572 #endif	/* CONFIG_KERNFS */
573 
574 /**
575  * kernfs_path - build full path of a given node
576  * @kn: kernfs_node of interest
577  * @buf: buffer to copy @kn's name into
578  * @buflen: size of @buf
579  *
580  * If @kn is NULL result will be "(null)".
581  *
582  * Returns the length of the full path.  If the full length is equal to or
583  * greater than @buflen, @buf contains the truncated path with the trailing
584  * '\0'.  On error, -errno is returned.
585  */
586 static inline int kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
587 {
588 	return kernfs_path_from_node(kn, NULL, buf, buflen);
589 }
590 
591 static inline struct kernfs_node *
592 kernfs_find_and_get(struct kernfs_node *kn, const char *name)
593 {
594 	return kernfs_find_and_get_ns(kn, name, NULL);
595 }
596 
597 static inline struct kernfs_node *
598 kernfs_walk_and_get(struct kernfs_node *kn, const char *path)
599 {
600 	return kernfs_walk_and_get_ns(kn, path, NULL);
601 }
602 
603 static inline struct kernfs_node *
604 kernfs_create_dir(struct kernfs_node *parent, const char *name, umode_t mode,
605 		  void *priv)
606 {
607 	return kernfs_create_dir_ns(parent, name, mode,
608 				    GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
609 				    priv, NULL);
610 }
611 
612 static inline int kernfs_remove_by_name(struct kernfs_node *parent,
613 					const char *name)
614 {
615 	return kernfs_remove_by_name_ns(parent, name, NULL);
616 }
617 
618 static inline int kernfs_rename(struct kernfs_node *kn,
619 				struct kernfs_node *new_parent,
620 				const char *new_name)
621 {
622 	return kernfs_rename_ns(kn, new_parent, new_name, NULL);
623 }
624 
625 #endif	/* __LINUX_KERNFS_H */
626