xref: /openbmc/linux/include/linux/kernel.h (revision a8fe58ce)
1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
3 
4 
5 #include <stdarg.h>
6 #include <linux/linkage.h>
7 #include <linux/stddef.h>
8 #include <linux/types.h>
9 #include <linux/compiler.h>
10 #include <linux/bitops.h>
11 #include <linux/log2.h>
12 #include <linux/typecheck.h>
13 #include <linux/printk.h>
14 #include <linux/dynamic_debug.h>
15 #include <asm/byteorder.h>
16 #include <uapi/linux/kernel.h>
17 
18 #define USHRT_MAX	((u16)(~0U))
19 #define SHRT_MAX	((s16)(USHRT_MAX>>1))
20 #define SHRT_MIN	((s16)(-SHRT_MAX - 1))
21 #define INT_MAX		((int)(~0U>>1))
22 #define INT_MIN		(-INT_MAX - 1)
23 #define UINT_MAX	(~0U)
24 #define LONG_MAX	((long)(~0UL>>1))
25 #define LONG_MIN	(-LONG_MAX - 1)
26 #define ULONG_MAX	(~0UL)
27 #define LLONG_MAX	((long long)(~0ULL>>1))
28 #define LLONG_MIN	(-LLONG_MAX - 1)
29 #define ULLONG_MAX	(~0ULL)
30 #define SIZE_MAX	(~(size_t)0)
31 
32 #define U8_MAX		((u8)~0U)
33 #define S8_MAX		((s8)(U8_MAX>>1))
34 #define S8_MIN		((s8)(-S8_MAX - 1))
35 #define U16_MAX		((u16)~0U)
36 #define S16_MAX		((s16)(U16_MAX>>1))
37 #define S16_MIN		((s16)(-S16_MAX - 1))
38 #define U32_MAX		((u32)~0U)
39 #define S32_MAX		((s32)(U32_MAX>>1))
40 #define S32_MIN		((s32)(-S32_MAX - 1))
41 #define U64_MAX		((u64)~0ULL)
42 #define S64_MAX		((s64)(U64_MAX>>1))
43 #define S64_MIN		((s64)(-S64_MAX - 1))
44 
45 #define STACK_MAGIC	0xdeadbeef
46 
47 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
48 
49 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
50 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
51 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
52 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
53 
54 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
55 
56 /*
57  * This looks more complex than it should be. But we need to
58  * get the type for the ~ right in round_down (it needs to be
59  * as wide as the result!), and we want to evaluate the macro
60  * arguments just once each.
61  */
62 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
63 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
64 #define round_down(x, y) ((x) & ~__round_mask(x, y))
65 
66 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
67 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
68 #define DIV_ROUND_UP_ULL(ll,d) \
69 	({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; })
70 
71 #if BITS_PER_LONG == 32
72 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
73 #else
74 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
75 #endif
76 
77 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
78 #define roundup(x, y) (					\
79 {							\
80 	const typeof(y) __y = y;			\
81 	(((x) + (__y - 1)) / __y) * __y;		\
82 }							\
83 )
84 #define rounddown(x, y) (				\
85 {							\
86 	typeof(x) __x = (x);				\
87 	__x - (__x % (y));				\
88 }							\
89 )
90 
91 /*
92  * Divide positive or negative dividend by positive divisor and round
93  * to closest integer. Result is undefined for negative divisors and
94  * for negative dividends if the divisor variable type is unsigned.
95  */
96 #define DIV_ROUND_CLOSEST(x, divisor)(			\
97 {							\
98 	typeof(x) __x = x;				\
99 	typeof(divisor) __d = divisor;			\
100 	(((typeof(x))-1) > 0 ||				\
101 	 ((typeof(divisor))-1) > 0 || (__x) > 0) ?	\
102 		(((__x) + ((__d) / 2)) / (__d)) :	\
103 		(((__x) - ((__d) / 2)) / (__d));	\
104 }							\
105 )
106 /*
107  * Same as above but for u64 dividends. divisor must be a 32-bit
108  * number.
109  */
110 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
111 {							\
112 	typeof(divisor) __d = divisor;			\
113 	unsigned long long _tmp = (x) + (__d) / 2;	\
114 	do_div(_tmp, __d);				\
115 	_tmp;						\
116 }							\
117 )
118 
119 /*
120  * Multiplies an integer by a fraction, while avoiding unnecessary
121  * overflow or loss of precision.
122  */
123 #define mult_frac(x, numer, denom)(			\
124 {							\
125 	typeof(x) quot = (x) / (denom);			\
126 	typeof(x) rem  = (x) % (denom);			\
127 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
128 }							\
129 )
130 
131 
132 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
133 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
134 
135 #ifdef CONFIG_LBDAF
136 # include <asm/div64.h>
137 # define sector_div(a, b) do_div(a, b)
138 #else
139 # define sector_div(n, b)( \
140 { \
141 	int _res; \
142 	_res = (n) % (b); \
143 	(n) /= (b); \
144 	_res; \
145 } \
146 )
147 #endif
148 
149 /**
150  * upper_32_bits - return bits 32-63 of a number
151  * @n: the number we're accessing
152  *
153  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
154  * the "right shift count >= width of type" warning when that quantity is
155  * 32-bits.
156  */
157 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
158 
159 /**
160  * lower_32_bits - return bits 0-31 of a number
161  * @n: the number we're accessing
162  */
163 #define lower_32_bits(n) ((u32)(n))
164 
165 struct completion;
166 struct pt_regs;
167 struct user;
168 
169 #ifdef CONFIG_PREEMPT_VOLUNTARY
170 extern int _cond_resched(void);
171 # define might_resched() _cond_resched()
172 #else
173 # define might_resched() do { } while (0)
174 #endif
175 
176 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
177   void ___might_sleep(const char *file, int line, int preempt_offset);
178   void __might_sleep(const char *file, int line, int preempt_offset);
179 /**
180  * might_sleep - annotation for functions that can sleep
181  *
182  * this macro will print a stack trace if it is executed in an atomic
183  * context (spinlock, irq-handler, ...).
184  *
185  * This is a useful debugging help to be able to catch problems early and not
186  * be bitten later when the calling function happens to sleep when it is not
187  * supposed to.
188  */
189 # define might_sleep() \
190 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
191 # define sched_annotate_sleep()	(current->task_state_change = 0)
192 #else
193   static inline void ___might_sleep(const char *file, int line,
194 				   int preempt_offset) { }
195   static inline void __might_sleep(const char *file, int line,
196 				   int preempt_offset) { }
197 # define might_sleep() do { might_resched(); } while (0)
198 # define sched_annotate_sleep() do { } while (0)
199 #endif
200 
201 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
202 
203 /**
204  * abs - return absolute value of an argument
205  * @x: the value.  If it is unsigned type, it is converted to signed type first.
206  *     char is treated as if it was signed (regardless of whether it really is)
207  *     but the macro's return type is preserved as char.
208  *
209  * Return: an absolute value of x.
210  */
211 #define abs(x)	__abs_choose_expr(x, long long,				\
212 		__abs_choose_expr(x, long,				\
213 		__abs_choose_expr(x, int,				\
214 		__abs_choose_expr(x, short,				\
215 		__abs_choose_expr(x, char,				\
216 		__builtin_choose_expr(					\
217 			__builtin_types_compatible_p(typeof(x), char),	\
218 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
219 			((void)0)))))))
220 
221 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
222 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
223 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
224 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
225 
226 /**
227  * reciprocal_scale - "scale" a value into range [0, ep_ro)
228  * @val: value
229  * @ep_ro: right open interval endpoint
230  *
231  * Perform a "reciprocal multiplication" in order to "scale" a value into
232  * range [0, ep_ro), where the upper interval endpoint is right-open.
233  * This is useful, e.g. for accessing a index of an array containing
234  * ep_ro elements, for example. Think of it as sort of modulus, only that
235  * the result isn't that of modulo. ;) Note that if initial input is a
236  * small value, then result will return 0.
237  *
238  * Return: a result based on val in interval [0, ep_ro).
239  */
240 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
241 {
242 	return (u32)(((u64) val * ep_ro) >> 32);
243 }
244 
245 #if defined(CONFIG_MMU) && \
246 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
247 #define might_fault() __might_fault(__FILE__, __LINE__)
248 void __might_fault(const char *file, int line);
249 #else
250 static inline void might_fault(void) { }
251 #endif
252 
253 extern struct atomic_notifier_head panic_notifier_list;
254 extern long (*panic_blink)(int state);
255 __printf(1, 2)
256 void panic(const char *fmt, ...)
257 	__noreturn __cold;
258 void nmi_panic_self_stop(struct pt_regs *);
259 extern void oops_enter(void);
260 extern void oops_exit(void);
261 void print_oops_end_marker(void);
262 extern int oops_may_print(void);
263 void do_exit(long error_code)
264 	__noreturn;
265 void complete_and_exit(struct completion *, long)
266 	__noreturn;
267 
268 /* Internal, do not use. */
269 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
270 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
271 
272 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
273 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
274 
275 /**
276  * kstrtoul - convert a string to an unsigned long
277  * @s: The start of the string. The string must be null-terminated, and may also
278  *  include a single newline before its terminating null. The first character
279  *  may also be a plus sign, but not a minus sign.
280  * @base: The number base to use. The maximum supported base is 16. If base is
281  *  given as 0, then the base of the string is automatically detected with the
282  *  conventional semantics - If it begins with 0x the number will be parsed as a
283  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
284  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
285  * @res: Where to write the result of the conversion on success.
286  *
287  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
288  * Used as a replacement for the obsolete simple_strtoull. Return code must
289  * be checked.
290 */
291 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
292 {
293 	/*
294 	 * We want to shortcut function call, but
295 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
296 	 */
297 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
298 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
299 		return kstrtoull(s, base, (unsigned long long *)res);
300 	else
301 		return _kstrtoul(s, base, res);
302 }
303 
304 /**
305  * kstrtol - convert a string to a long
306  * @s: The start of the string. The string must be null-terminated, and may also
307  *  include a single newline before its terminating null. The first character
308  *  may also be a plus sign or a minus sign.
309  * @base: The number base to use. The maximum supported base is 16. If base is
310  *  given as 0, then the base of the string is automatically detected with the
311  *  conventional semantics - If it begins with 0x the number will be parsed as a
312  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
313  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
314  * @res: Where to write the result of the conversion on success.
315  *
316  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
317  * Used as a replacement for the obsolete simple_strtoull. Return code must
318  * be checked.
319  */
320 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
321 {
322 	/*
323 	 * We want to shortcut function call, but
324 	 * __builtin_types_compatible_p(long, long long) = 0.
325 	 */
326 	if (sizeof(long) == sizeof(long long) &&
327 	    __alignof__(long) == __alignof__(long long))
328 		return kstrtoll(s, base, (long long *)res);
329 	else
330 		return _kstrtol(s, base, res);
331 }
332 
333 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
334 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
335 
336 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
337 {
338 	return kstrtoull(s, base, res);
339 }
340 
341 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
342 {
343 	return kstrtoll(s, base, res);
344 }
345 
346 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
347 {
348 	return kstrtouint(s, base, res);
349 }
350 
351 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
352 {
353 	return kstrtoint(s, base, res);
354 }
355 
356 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
357 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
358 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
359 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
360 
361 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
362 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
363 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
364 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
365 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
366 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
367 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
368 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
369 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
370 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
371 
372 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
373 {
374 	return kstrtoull_from_user(s, count, base, res);
375 }
376 
377 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
378 {
379 	return kstrtoll_from_user(s, count, base, res);
380 }
381 
382 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
383 {
384 	return kstrtouint_from_user(s, count, base, res);
385 }
386 
387 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
388 {
389 	return kstrtoint_from_user(s, count, base, res);
390 }
391 
392 /* Obsolete, do not use.  Use kstrto<foo> instead */
393 
394 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
395 extern long simple_strtol(const char *,char **,unsigned int);
396 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
397 extern long long simple_strtoll(const char *,char **,unsigned int);
398 
399 extern int num_to_str(char *buf, int size, unsigned long long num);
400 
401 /* lib/printf utilities */
402 
403 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
404 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
405 extern __printf(3, 4)
406 int snprintf(char *buf, size_t size, const char *fmt, ...);
407 extern __printf(3, 0)
408 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
409 extern __printf(3, 4)
410 int scnprintf(char *buf, size_t size, const char *fmt, ...);
411 extern __printf(3, 0)
412 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
413 extern __printf(2, 3)
414 char *kasprintf(gfp_t gfp, const char *fmt, ...);
415 extern __printf(2, 0)
416 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
417 extern __printf(2, 0)
418 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
419 
420 extern __scanf(2, 3)
421 int sscanf(const char *, const char *, ...);
422 extern __scanf(2, 0)
423 int vsscanf(const char *, const char *, va_list);
424 
425 extern int get_option(char **str, int *pint);
426 extern char *get_options(const char *str, int nints, int *ints);
427 extern unsigned long long memparse(const char *ptr, char **retptr);
428 extern bool parse_option_str(const char *str, const char *option);
429 
430 extern int core_kernel_text(unsigned long addr);
431 extern int core_kernel_data(unsigned long addr);
432 extern int __kernel_text_address(unsigned long addr);
433 extern int kernel_text_address(unsigned long addr);
434 extern int func_ptr_is_kernel_text(void *ptr);
435 
436 unsigned long int_sqrt(unsigned long);
437 
438 extern void bust_spinlocks(int yes);
439 extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
440 extern int panic_timeout;
441 extern int panic_on_oops;
442 extern int panic_on_unrecovered_nmi;
443 extern int panic_on_io_nmi;
444 extern int panic_on_warn;
445 extern int sysctl_panic_on_stackoverflow;
446 
447 extern bool crash_kexec_post_notifiers;
448 
449 /*
450  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
451  * holds a CPU number which is executing panic() currently. A value of
452  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
453  */
454 extern atomic_t panic_cpu;
455 #define PANIC_CPU_INVALID	-1
456 
457 /*
458  * A variant of panic() called from NMI context. We return if we've already
459  * panicked on this CPU. If another CPU already panicked, loop in
460  * nmi_panic_self_stop() which can provide architecture dependent code such
461  * as saving register state for crash dump.
462  */
463 #define nmi_panic(regs, fmt, ...)					\
464 do {									\
465 	int old_cpu, cpu;						\
466 									\
467 	cpu = raw_smp_processor_id();					\
468 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);	\
469 									\
470 	if (old_cpu == PANIC_CPU_INVALID)				\
471 		panic(fmt, ##__VA_ARGS__);				\
472 	else if (old_cpu != cpu)					\
473 		nmi_panic_self_stop(regs);				\
474 } while (0)
475 
476 /*
477  * Only to be used by arch init code. If the user over-wrote the default
478  * CONFIG_PANIC_TIMEOUT, honor it.
479  */
480 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
481 {
482 	if (panic_timeout == arch_default_timeout)
483 		panic_timeout = timeout;
484 }
485 extern const char *print_tainted(void);
486 enum lockdep_ok {
487 	LOCKDEP_STILL_OK,
488 	LOCKDEP_NOW_UNRELIABLE
489 };
490 extern void add_taint(unsigned flag, enum lockdep_ok);
491 extern int test_taint(unsigned flag);
492 extern unsigned long get_taint(void);
493 extern int root_mountflags;
494 
495 extern bool early_boot_irqs_disabled;
496 
497 /* Values used for system_state */
498 extern enum system_states {
499 	SYSTEM_BOOTING,
500 	SYSTEM_RUNNING,
501 	SYSTEM_HALT,
502 	SYSTEM_POWER_OFF,
503 	SYSTEM_RESTART,
504 } system_state;
505 
506 #define TAINT_PROPRIETARY_MODULE	0
507 #define TAINT_FORCED_MODULE		1
508 #define TAINT_CPU_OUT_OF_SPEC		2
509 #define TAINT_FORCED_RMMOD		3
510 #define TAINT_MACHINE_CHECK		4
511 #define TAINT_BAD_PAGE			5
512 #define TAINT_USER			6
513 #define TAINT_DIE			7
514 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
515 #define TAINT_WARN			9
516 #define TAINT_CRAP			10
517 #define TAINT_FIRMWARE_WORKAROUND	11
518 #define TAINT_OOT_MODULE		12
519 #define TAINT_UNSIGNED_MODULE		13
520 #define TAINT_SOFTLOCKUP		14
521 #define TAINT_LIVEPATCH			15
522 
523 extern const char hex_asc[];
524 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
525 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
526 
527 static inline char *hex_byte_pack(char *buf, u8 byte)
528 {
529 	*buf++ = hex_asc_hi(byte);
530 	*buf++ = hex_asc_lo(byte);
531 	return buf;
532 }
533 
534 extern const char hex_asc_upper[];
535 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
536 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
537 
538 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
539 {
540 	*buf++ = hex_asc_upper_hi(byte);
541 	*buf++ = hex_asc_upper_lo(byte);
542 	return buf;
543 }
544 
545 extern int hex_to_bin(char ch);
546 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
547 extern char *bin2hex(char *dst, const void *src, size_t count);
548 
549 bool mac_pton(const char *s, u8 *mac);
550 
551 /*
552  * General tracing related utility functions - trace_printk(),
553  * tracing_on/tracing_off and tracing_start()/tracing_stop
554  *
555  * Use tracing_on/tracing_off when you want to quickly turn on or off
556  * tracing. It simply enables or disables the recording of the trace events.
557  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
558  * file, which gives a means for the kernel and userspace to interact.
559  * Place a tracing_off() in the kernel where you want tracing to end.
560  * From user space, examine the trace, and then echo 1 > tracing_on
561  * to continue tracing.
562  *
563  * tracing_stop/tracing_start has slightly more overhead. It is used
564  * by things like suspend to ram where disabling the recording of the
565  * trace is not enough, but tracing must actually stop because things
566  * like calling smp_processor_id() may crash the system.
567  *
568  * Most likely, you want to use tracing_on/tracing_off.
569  */
570 
571 enum ftrace_dump_mode {
572 	DUMP_NONE,
573 	DUMP_ALL,
574 	DUMP_ORIG,
575 };
576 
577 #ifdef CONFIG_TRACING
578 void tracing_on(void);
579 void tracing_off(void);
580 int tracing_is_on(void);
581 void tracing_snapshot(void);
582 void tracing_snapshot_alloc(void);
583 
584 extern void tracing_start(void);
585 extern void tracing_stop(void);
586 
587 static inline __printf(1, 2)
588 void ____trace_printk_check_format(const char *fmt, ...)
589 {
590 }
591 #define __trace_printk_check_format(fmt, args...)			\
592 do {									\
593 	if (0)								\
594 		____trace_printk_check_format(fmt, ##args);		\
595 } while (0)
596 
597 /**
598  * trace_printk - printf formatting in the ftrace buffer
599  * @fmt: the printf format for printing
600  *
601  * Note: __trace_printk is an internal function for trace_printk and
602  *       the @ip is passed in via the trace_printk macro.
603  *
604  * This function allows a kernel developer to debug fast path sections
605  * that printk is not appropriate for. By scattering in various
606  * printk like tracing in the code, a developer can quickly see
607  * where problems are occurring.
608  *
609  * This is intended as a debugging tool for the developer only.
610  * Please refrain from leaving trace_printks scattered around in
611  * your code. (Extra memory is used for special buffers that are
612  * allocated when trace_printk() is used)
613  *
614  * A little optization trick is done here. If there's only one
615  * argument, there's no need to scan the string for printf formats.
616  * The trace_puts() will suffice. But how can we take advantage of
617  * using trace_puts() when trace_printk() has only one argument?
618  * By stringifying the args and checking the size we can tell
619  * whether or not there are args. __stringify((__VA_ARGS__)) will
620  * turn into "()\0" with a size of 3 when there are no args, anything
621  * else will be bigger. All we need to do is define a string to this,
622  * and then take its size and compare to 3. If it's bigger, use
623  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
624  * let gcc optimize the rest.
625  */
626 
627 #define trace_printk(fmt, ...)				\
628 do {							\
629 	char _______STR[] = __stringify((__VA_ARGS__));	\
630 	if (sizeof(_______STR) > 3)			\
631 		do_trace_printk(fmt, ##__VA_ARGS__);	\
632 	else						\
633 		trace_puts(fmt);			\
634 } while (0)
635 
636 #define do_trace_printk(fmt, args...)					\
637 do {									\
638 	static const char *trace_printk_fmt				\
639 		__attribute__((section("__trace_printk_fmt"))) =	\
640 		__builtin_constant_p(fmt) ? fmt : NULL;			\
641 									\
642 	__trace_printk_check_format(fmt, ##args);			\
643 									\
644 	if (__builtin_constant_p(fmt))					\
645 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
646 	else								\
647 		__trace_printk(_THIS_IP_, fmt, ##args);			\
648 } while (0)
649 
650 extern __printf(2, 3)
651 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
652 
653 extern __printf(2, 3)
654 int __trace_printk(unsigned long ip, const char *fmt, ...);
655 
656 /**
657  * trace_puts - write a string into the ftrace buffer
658  * @str: the string to record
659  *
660  * Note: __trace_bputs is an internal function for trace_puts and
661  *       the @ip is passed in via the trace_puts macro.
662  *
663  * This is similar to trace_printk() but is made for those really fast
664  * paths that a developer wants the least amount of "Heisenbug" affects,
665  * where the processing of the print format is still too much.
666  *
667  * This function allows a kernel developer to debug fast path sections
668  * that printk is not appropriate for. By scattering in various
669  * printk like tracing in the code, a developer can quickly see
670  * where problems are occurring.
671  *
672  * This is intended as a debugging tool for the developer only.
673  * Please refrain from leaving trace_puts scattered around in
674  * your code. (Extra memory is used for special buffers that are
675  * allocated when trace_puts() is used)
676  *
677  * Returns: 0 if nothing was written, positive # if string was.
678  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
679  */
680 
681 #define trace_puts(str) ({						\
682 	static const char *trace_printk_fmt				\
683 		__attribute__((section("__trace_printk_fmt"))) =	\
684 		__builtin_constant_p(str) ? str : NULL;			\
685 									\
686 	if (__builtin_constant_p(str))					\
687 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
688 	else								\
689 		__trace_puts(_THIS_IP_, str, strlen(str));		\
690 })
691 extern int __trace_bputs(unsigned long ip, const char *str);
692 extern int __trace_puts(unsigned long ip, const char *str, int size);
693 
694 extern void trace_dump_stack(int skip);
695 
696 /*
697  * The double __builtin_constant_p is because gcc will give us an error
698  * if we try to allocate the static variable to fmt if it is not a
699  * constant. Even with the outer if statement.
700  */
701 #define ftrace_vprintk(fmt, vargs)					\
702 do {									\
703 	if (__builtin_constant_p(fmt)) {				\
704 		static const char *trace_printk_fmt			\
705 		  __attribute__((section("__trace_printk_fmt"))) =	\
706 			__builtin_constant_p(fmt) ? fmt : NULL;		\
707 									\
708 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
709 	} else								\
710 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
711 } while (0)
712 
713 extern __printf(2, 0) int
714 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
715 
716 extern __printf(2, 0) int
717 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
718 
719 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
720 #else
721 static inline void tracing_start(void) { }
722 static inline void tracing_stop(void) { }
723 static inline void trace_dump_stack(int skip) { }
724 
725 static inline void tracing_on(void) { }
726 static inline void tracing_off(void) { }
727 static inline int tracing_is_on(void) { return 0; }
728 static inline void tracing_snapshot(void) { }
729 static inline void tracing_snapshot_alloc(void) { }
730 
731 static inline __printf(1, 2)
732 int trace_printk(const char *fmt, ...)
733 {
734 	return 0;
735 }
736 static __printf(1, 0) inline int
737 ftrace_vprintk(const char *fmt, va_list ap)
738 {
739 	return 0;
740 }
741 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
742 #endif /* CONFIG_TRACING */
743 
744 /*
745  * min()/max()/clamp() macros that also do
746  * strict type-checking.. See the
747  * "unnecessary" pointer comparison.
748  */
749 #define min(x, y) ({				\
750 	typeof(x) _min1 = (x);			\
751 	typeof(y) _min2 = (y);			\
752 	(void) (&_min1 == &_min2);		\
753 	_min1 < _min2 ? _min1 : _min2; })
754 
755 #define max(x, y) ({				\
756 	typeof(x) _max1 = (x);			\
757 	typeof(y) _max2 = (y);			\
758 	(void) (&_max1 == &_max2);		\
759 	_max1 > _max2 ? _max1 : _max2; })
760 
761 #define min3(x, y, z) min((typeof(x))min(x, y), z)
762 #define max3(x, y, z) max((typeof(x))max(x, y), z)
763 
764 /**
765  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
766  * @x: value1
767  * @y: value2
768  */
769 #define min_not_zero(x, y) ({			\
770 	typeof(x) __x = (x);			\
771 	typeof(y) __y = (y);			\
772 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
773 
774 /**
775  * clamp - return a value clamped to a given range with strict typechecking
776  * @val: current value
777  * @lo: lowest allowable value
778  * @hi: highest allowable value
779  *
780  * This macro does strict typechecking of lo/hi to make sure they are of the
781  * same type as val.  See the unnecessary pointer comparisons.
782  */
783 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
784 
785 /*
786  * ..and if you can't take the strict
787  * types, you can specify one yourself.
788  *
789  * Or not use min/max/clamp at all, of course.
790  */
791 #define min_t(type, x, y) ({			\
792 	type __min1 = (x);			\
793 	type __min2 = (y);			\
794 	__min1 < __min2 ? __min1: __min2; })
795 
796 #define max_t(type, x, y) ({			\
797 	type __max1 = (x);			\
798 	type __max2 = (y);			\
799 	__max1 > __max2 ? __max1: __max2; })
800 
801 /**
802  * clamp_t - return a value clamped to a given range using a given type
803  * @type: the type of variable to use
804  * @val: current value
805  * @lo: minimum allowable value
806  * @hi: maximum allowable value
807  *
808  * This macro does no typechecking and uses temporary variables of type
809  * 'type' to make all the comparisons.
810  */
811 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
812 
813 /**
814  * clamp_val - return a value clamped to a given range using val's type
815  * @val: current value
816  * @lo: minimum allowable value
817  * @hi: maximum allowable value
818  *
819  * This macro does no typechecking and uses temporary variables of whatever
820  * type the input argument 'val' is.  This is useful when val is an unsigned
821  * type and min and max are literals that will otherwise be assigned a signed
822  * integer type.
823  */
824 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
825 
826 
827 /*
828  * swap - swap value of @a and @b
829  */
830 #define swap(a, b) \
831 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
832 
833 /**
834  * container_of - cast a member of a structure out to the containing structure
835  * @ptr:	the pointer to the member.
836  * @type:	the type of the container struct this is embedded in.
837  * @member:	the name of the member within the struct.
838  *
839  */
840 #define container_of(ptr, type, member) ({			\
841 	const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
842 	(type *)( (char *)__mptr - offsetof(type,member) );})
843 
844 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
845 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
846 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
847 #endif
848 
849 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
850 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
851 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
852 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
853 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
854 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
855 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
856 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
857 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
858 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
859 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
860 	 (perms))
861 #endif
862