xref: /openbmc/linux/include/linux/kernel.h (revision 1804569d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_KERNEL_H
3 #define _LINUX_KERNEL_H
4 
5 
6 #include <stdarg.h>
7 #include <linux/limits.h>
8 #include <linux/linkage.h>
9 #include <linux/stddef.h>
10 #include <linux/types.h>
11 #include <linux/compiler.h>
12 #include <linux/bitops.h>
13 #include <linux/log2.h>
14 #include <linux/typecheck.h>
15 #include <linux/printk.h>
16 #include <linux/build_bug.h>
17 #include <asm/byteorder.h>
18 #include <asm/div64.h>
19 #include <uapi/linux/kernel.h>
20 
21 #define STACK_MAGIC	0xdeadbeef
22 
23 /**
24  * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
25  * @x: value to repeat
26  *
27  * NOTE: @x is not checked for > 0xff; larger values produce odd results.
28  */
29 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
30 
31 /* @a is a power of 2 value */
32 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
33 #define ALIGN_DOWN(x, a)	__ALIGN_KERNEL((x) - ((a) - 1), (a))
34 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
35 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
36 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
37 
38 /* generic data direction definitions */
39 #define READ			0
40 #define WRITE			1
41 
42 /**
43  * ARRAY_SIZE - get the number of elements in array @arr
44  * @arr: array to be sized
45  */
46 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
47 
48 #define u64_to_user_ptr(x) (		\
49 {					\
50 	typecheck(u64, (x));		\
51 	(void __user *)(uintptr_t)(x);	\
52 }					\
53 )
54 
55 /*
56  * This looks more complex than it should be. But we need to
57  * get the type for the ~ right in round_down (it needs to be
58  * as wide as the result!), and we want to evaluate the macro
59  * arguments just once each.
60  */
61 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
62 /**
63  * round_up - round up to next specified power of 2
64  * @x: the value to round
65  * @y: multiple to round up to (must be a power of 2)
66  *
67  * Rounds @x up to next multiple of @y (which must be a power of 2).
68  * To perform arbitrary rounding up, use roundup() below.
69  */
70 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
71 /**
72  * round_down - round down to next specified power of 2
73  * @x: the value to round
74  * @y: multiple to round down to (must be a power of 2)
75  *
76  * Rounds @x down to next multiple of @y (which must be a power of 2).
77  * To perform arbitrary rounding down, use rounddown() below.
78  */
79 #define round_down(x, y) ((x) & ~__round_mask(x, y))
80 
81 /**
82  * FIELD_SIZEOF - get the size of a struct's field
83  * @t: the target struct
84  * @f: the target struct's field
85  * Return: the size of @f in the struct definition without having a
86  * declared instance of @t.
87  */
88 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
89 
90 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
91 
92 #define DIV_ROUND_DOWN_ULL(ll, d) \
93 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
94 
95 #define DIV_ROUND_UP_ULL(ll, d)		DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
96 
97 #if BITS_PER_LONG == 32
98 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
99 #else
100 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
101 #endif
102 
103 /**
104  * roundup - round up to the next specified multiple
105  * @x: the value to up
106  * @y: multiple to round up to
107  *
108  * Rounds @x up to next multiple of @y. If @y will always be a power
109  * of 2, consider using the faster round_up().
110  */
111 #define roundup(x, y) (					\
112 {							\
113 	typeof(y) __y = y;				\
114 	(((x) + (__y - 1)) / __y) * __y;		\
115 }							\
116 )
117 /**
118  * rounddown - round down to next specified multiple
119  * @x: the value to round
120  * @y: multiple to round down to
121  *
122  * Rounds @x down to next multiple of @y. If @y will always be a power
123  * of 2, consider using the faster round_down().
124  */
125 #define rounddown(x, y) (				\
126 {							\
127 	typeof(x) __x = (x);				\
128 	__x - (__x % (y));				\
129 }							\
130 )
131 
132 /*
133  * Divide positive or negative dividend by positive or negative divisor
134  * and round to closest integer. Result is undefined for negative
135  * divisors if the dividend variable type is unsigned and for negative
136  * dividends if the divisor variable type is unsigned.
137  */
138 #define DIV_ROUND_CLOSEST(x, divisor)(			\
139 {							\
140 	typeof(x) __x = x;				\
141 	typeof(divisor) __d = divisor;			\
142 	(((typeof(x))-1) > 0 ||				\
143 	 ((typeof(divisor))-1) > 0 ||			\
144 	 (((__x) > 0) == ((__d) > 0))) ?		\
145 		(((__x) + ((__d) / 2)) / (__d)) :	\
146 		(((__x) - ((__d) / 2)) / (__d));	\
147 }							\
148 )
149 /*
150  * Same as above but for u64 dividends. divisor must be a 32-bit
151  * number.
152  */
153 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
154 {							\
155 	typeof(divisor) __d = divisor;			\
156 	unsigned long long _tmp = (x) + (__d) / 2;	\
157 	do_div(_tmp, __d);				\
158 	_tmp;						\
159 }							\
160 )
161 
162 /*
163  * Multiplies an integer by a fraction, while avoiding unnecessary
164  * overflow or loss of precision.
165  */
166 #define mult_frac(x, numer, denom)(			\
167 {							\
168 	typeof(x) quot = (x) / (denom);			\
169 	typeof(x) rem  = (x) % (denom);			\
170 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
171 }							\
172 )
173 
174 
175 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
176 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
177 
178 #ifdef CONFIG_LBDAF
179 # define sector_div(a, b) do_div(a, b)
180 #else
181 # define sector_div(n, b)( \
182 { \
183 	int _res; \
184 	_res = (n) % (b); \
185 	(n) /= (b); \
186 	_res; \
187 } \
188 )
189 #endif
190 
191 /**
192  * upper_32_bits - return bits 32-63 of a number
193  * @n: the number we're accessing
194  *
195  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
196  * the "right shift count >= width of type" warning when that quantity is
197  * 32-bits.
198  */
199 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
200 
201 /**
202  * lower_32_bits - return bits 0-31 of a number
203  * @n: the number we're accessing
204  */
205 #define lower_32_bits(n) ((u32)(n))
206 
207 struct completion;
208 struct pt_regs;
209 struct user;
210 
211 #ifdef CONFIG_PREEMPT_VOLUNTARY
212 extern int _cond_resched(void);
213 # define might_resched() _cond_resched()
214 #else
215 # define might_resched() do { } while (0)
216 #endif
217 
218 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
219 extern void ___might_sleep(const char *file, int line, int preempt_offset);
220 extern void __might_sleep(const char *file, int line, int preempt_offset);
221 extern void __cant_sleep(const char *file, int line, int preempt_offset);
222 
223 /**
224  * might_sleep - annotation for functions that can sleep
225  *
226  * this macro will print a stack trace if it is executed in an atomic
227  * context (spinlock, irq-handler, ...).
228  *
229  * This is a useful debugging help to be able to catch problems early and not
230  * be bitten later when the calling function happens to sleep when it is not
231  * supposed to.
232  */
233 # define might_sleep() \
234 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
235 /**
236  * cant_sleep - annotation for functions that cannot sleep
237  *
238  * this macro will print a stack trace if it is executed with preemption enabled
239  */
240 # define cant_sleep() \
241 	do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
242 # define sched_annotate_sleep()	(current->task_state_change = 0)
243 #else
244   static inline void ___might_sleep(const char *file, int line,
245 				   int preempt_offset) { }
246   static inline void __might_sleep(const char *file, int line,
247 				   int preempt_offset) { }
248 # define might_sleep() do { might_resched(); } while (0)
249 # define cant_sleep() do { } while (0)
250 # define sched_annotate_sleep() do { } while (0)
251 #endif
252 
253 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
254 
255 /**
256  * abs - return absolute value of an argument
257  * @x: the value.  If it is unsigned type, it is converted to signed type first.
258  *     char is treated as if it was signed (regardless of whether it really is)
259  *     but the macro's return type is preserved as char.
260  *
261  * Return: an absolute value of x.
262  */
263 #define abs(x)	__abs_choose_expr(x, long long,				\
264 		__abs_choose_expr(x, long,				\
265 		__abs_choose_expr(x, int,				\
266 		__abs_choose_expr(x, short,				\
267 		__abs_choose_expr(x, char,				\
268 		__builtin_choose_expr(					\
269 			__builtin_types_compatible_p(typeof(x), char),	\
270 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
271 			((void)0)))))))
272 
273 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
274 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
275 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
276 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
277 
278 /**
279  * reciprocal_scale - "scale" a value into range [0, ep_ro)
280  * @val: value
281  * @ep_ro: right open interval endpoint
282  *
283  * Perform a "reciprocal multiplication" in order to "scale" a value into
284  * range [0, @ep_ro), where the upper interval endpoint is right-open.
285  * This is useful, e.g. for accessing a index of an array containing
286  * @ep_ro elements, for example. Think of it as sort of modulus, only that
287  * the result isn't that of modulo. ;) Note that if initial input is a
288  * small value, then result will return 0.
289  *
290  * Return: a result based on @val in interval [0, @ep_ro).
291  */
292 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
293 {
294 	return (u32)(((u64) val * ep_ro) >> 32);
295 }
296 
297 #if defined(CONFIG_MMU) && \
298 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
299 #define might_fault() __might_fault(__FILE__, __LINE__)
300 void __might_fault(const char *file, int line);
301 #else
302 static inline void might_fault(void) { }
303 #endif
304 
305 extern struct atomic_notifier_head panic_notifier_list;
306 extern long (*panic_blink)(int state);
307 __printf(1, 2)
308 void panic(const char *fmt, ...) __noreturn __cold;
309 void nmi_panic(struct pt_regs *regs, const char *msg);
310 extern void oops_enter(void);
311 extern void oops_exit(void);
312 void print_oops_end_marker(void);
313 extern int oops_may_print(void);
314 void do_exit(long error_code) __noreturn;
315 void complete_and_exit(struct completion *, long) __noreturn;
316 
317 #ifdef CONFIG_ARCH_HAS_REFCOUNT
318 void refcount_error_report(struct pt_regs *regs, const char *err);
319 #else
320 static inline void refcount_error_report(struct pt_regs *regs, const char *err)
321 { }
322 #endif
323 
324 /* Internal, do not use. */
325 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
326 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
327 
328 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
329 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
330 
331 /**
332  * kstrtoul - convert a string to an unsigned long
333  * @s: The start of the string. The string must be null-terminated, and may also
334  *  include a single newline before its terminating null. The first character
335  *  may also be a plus sign, but not a minus sign.
336  * @base: The number base to use. The maximum supported base is 16. If base is
337  *  given as 0, then the base of the string is automatically detected with the
338  *  conventional semantics - If it begins with 0x the number will be parsed as a
339  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
340  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
341  * @res: Where to write the result of the conversion on success.
342  *
343  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
344  * Used as a replacement for the obsolete simple_strtoull. Return code must
345  * be checked.
346 */
347 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
348 {
349 	/*
350 	 * We want to shortcut function call, but
351 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
352 	 */
353 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
354 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
355 		return kstrtoull(s, base, (unsigned long long *)res);
356 	else
357 		return _kstrtoul(s, base, res);
358 }
359 
360 /**
361  * kstrtol - convert a string to a long
362  * @s: The start of the string. The string must be null-terminated, and may also
363  *  include a single newline before its terminating null. The first character
364  *  may also be a plus sign or a minus sign.
365  * @base: The number base to use. The maximum supported base is 16. If base is
366  *  given as 0, then the base of the string is automatically detected with the
367  *  conventional semantics - If it begins with 0x the number will be parsed as a
368  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
369  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
370  * @res: Where to write the result of the conversion on success.
371  *
372  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
373  * Used as a replacement for the obsolete simple_strtoull. Return code must
374  * be checked.
375  */
376 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
377 {
378 	/*
379 	 * We want to shortcut function call, but
380 	 * __builtin_types_compatible_p(long, long long) = 0.
381 	 */
382 	if (sizeof(long) == sizeof(long long) &&
383 	    __alignof__(long) == __alignof__(long long))
384 		return kstrtoll(s, base, (long long *)res);
385 	else
386 		return _kstrtol(s, base, res);
387 }
388 
389 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
390 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
391 
392 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
393 {
394 	return kstrtoull(s, base, res);
395 }
396 
397 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
398 {
399 	return kstrtoll(s, base, res);
400 }
401 
402 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
403 {
404 	return kstrtouint(s, base, res);
405 }
406 
407 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
408 {
409 	return kstrtoint(s, base, res);
410 }
411 
412 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
413 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
414 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
415 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
416 int __must_check kstrtobool(const char *s, bool *res);
417 
418 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
419 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
420 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
421 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
422 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
423 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
424 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
425 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
426 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
427 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
428 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
429 
430 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
431 {
432 	return kstrtoull_from_user(s, count, base, res);
433 }
434 
435 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
436 {
437 	return kstrtoll_from_user(s, count, base, res);
438 }
439 
440 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
441 {
442 	return kstrtouint_from_user(s, count, base, res);
443 }
444 
445 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
446 {
447 	return kstrtoint_from_user(s, count, base, res);
448 }
449 
450 /* Obsolete, do not use.  Use kstrto<foo> instead */
451 
452 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
453 extern long simple_strtol(const char *,char **,unsigned int);
454 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
455 extern long long simple_strtoll(const char *,char **,unsigned int);
456 
457 extern int num_to_str(char *buf, int size,
458 		      unsigned long long num, unsigned int width);
459 
460 /* lib/printf utilities */
461 
462 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
463 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
464 extern __printf(3, 4)
465 int snprintf(char *buf, size_t size, const char *fmt, ...);
466 extern __printf(3, 0)
467 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
468 extern __printf(3, 4)
469 int scnprintf(char *buf, size_t size, const char *fmt, ...);
470 extern __printf(3, 0)
471 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
472 extern __printf(2, 3) __malloc
473 char *kasprintf(gfp_t gfp, const char *fmt, ...);
474 extern __printf(2, 0) __malloc
475 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
476 extern __printf(2, 0)
477 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
478 
479 extern __scanf(2, 3)
480 int sscanf(const char *, const char *, ...);
481 extern __scanf(2, 0)
482 int vsscanf(const char *, const char *, va_list);
483 
484 extern int get_option(char **str, int *pint);
485 extern char *get_options(const char *str, int nints, int *ints);
486 extern unsigned long long memparse(const char *ptr, char **retptr);
487 extern bool parse_option_str(const char *str, const char *option);
488 extern char *next_arg(char *args, char **param, char **val);
489 
490 extern int core_kernel_text(unsigned long addr);
491 extern int init_kernel_text(unsigned long addr);
492 extern int core_kernel_data(unsigned long addr);
493 extern int __kernel_text_address(unsigned long addr);
494 extern int kernel_text_address(unsigned long addr);
495 extern int func_ptr_is_kernel_text(void *ptr);
496 
497 unsigned long int_sqrt(unsigned long);
498 
499 #if BITS_PER_LONG < 64
500 u32 int_sqrt64(u64 x);
501 #else
502 static inline u32 int_sqrt64(u64 x)
503 {
504 	return (u32)int_sqrt(x);
505 }
506 #endif
507 
508 extern void bust_spinlocks(int yes);
509 extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
510 extern int panic_timeout;
511 extern unsigned long panic_print;
512 extern int panic_on_oops;
513 extern int panic_on_unrecovered_nmi;
514 extern int panic_on_io_nmi;
515 extern int panic_on_warn;
516 extern int sysctl_panic_on_rcu_stall;
517 extern int sysctl_panic_on_stackoverflow;
518 
519 extern bool crash_kexec_post_notifiers;
520 
521 /*
522  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
523  * holds a CPU number which is executing panic() currently. A value of
524  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
525  */
526 extern atomic_t panic_cpu;
527 #define PANIC_CPU_INVALID	-1
528 
529 /*
530  * Only to be used by arch init code. If the user over-wrote the default
531  * CONFIG_PANIC_TIMEOUT, honor it.
532  */
533 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
534 {
535 	if (panic_timeout == arch_default_timeout)
536 		panic_timeout = timeout;
537 }
538 extern const char *print_tainted(void);
539 enum lockdep_ok {
540 	LOCKDEP_STILL_OK,
541 	LOCKDEP_NOW_UNRELIABLE
542 };
543 extern void add_taint(unsigned flag, enum lockdep_ok);
544 extern int test_taint(unsigned flag);
545 extern unsigned long get_taint(void);
546 extern int root_mountflags;
547 
548 extern bool early_boot_irqs_disabled;
549 
550 /*
551  * Values used for system_state. Ordering of the states must not be changed
552  * as code checks for <, <=, >, >= STATE.
553  */
554 extern enum system_states {
555 	SYSTEM_BOOTING,
556 	SYSTEM_SCHEDULING,
557 	SYSTEM_RUNNING,
558 	SYSTEM_HALT,
559 	SYSTEM_POWER_OFF,
560 	SYSTEM_RESTART,
561 	SYSTEM_SUSPEND,
562 } system_state;
563 
564 /* This cannot be an enum because some may be used in assembly source. */
565 #define TAINT_PROPRIETARY_MODULE	0
566 #define TAINT_FORCED_MODULE		1
567 #define TAINT_CPU_OUT_OF_SPEC		2
568 #define TAINT_FORCED_RMMOD		3
569 #define TAINT_MACHINE_CHECK		4
570 #define TAINT_BAD_PAGE			5
571 #define TAINT_USER			6
572 #define TAINT_DIE			7
573 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
574 #define TAINT_WARN			9
575 #define TAINT_CRAP			10
576 #define TAINT_FIRMWARE_WORKAROUND	11
577 #define TAINT_OOT_MODULE		12
578 #define TAINT_UNSIGNED_MODULE		13
579 #define TAINT_SOFTLOCKUP		14
580 #define TAINT_LIVEPATCH			15
581 #define TAINT_AUX			16
582 #define TAINT_RANDSTRUCT		17
583 #define TAINT_FLAGS_COUNT		18
584 
585 struct taint_flag {
586 	char c_true;	/* character printed when tainted */
587 	char c_false;	/* character printed when not tainted */
588 	bool module;	/* also show as a per-module taint flag */
589 };
590 
591 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
592 
593 extern const char hex_asc[];
594 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
595 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
596 
597 static inline char *hex_byte_pack(char *buf, u8 byte)
598 {
599 	*buf++ = hex_asc_hi(byte);
600 	*buf++ = hex_asc_lo(byte);
601 	return buf;
602 }
603 
604 extern const char hex_asc_upper[];
605 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
606 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
607 
608 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
609 {
610 	*buf++ = hex_asc_upper_hi(byte);
611 	*buf++ = hex_asc_upper_lo(byte);
612 	return buf;
613 }
614 
615 extern int hex_to_bin(char ch);
616 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
617 extern char *bin2hex(char *dst, const void *src, size_t count);
618 
619 bool mac_pton(const char *s, u8 *mac);
620 
621 /*
622  * General tracing related utility functions - trace_printk(),
623  * tracing_on/tracing_off and tracing_start()/tracing_stop
624  *
625  * Use tracing_on/tracing_off when you want to quickly turn on or off
626  * tracing. It simply enables or disables the recording of the trace events.
627  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
628  * file, which gives a means for the kernel and userspace to interact.
629  * Place a tracing_off() in the kernel where you want tracing to end.
630  * From user space, examine the trace, and then echo 1 > tracing_on
631  * to continue tracing.
632  *
633  * tracing_stop/tracing_start has slightly more overhead. It is used
634  * by things like suspend to ram where disabling the recording of the
635  * trace is not enough, but tracing must actually stop because things
636  * like calling smp_processor_id() may crash the system.
637  *
638  * Most likely, you want to use tracing_on/tracing_off.
639  */
640 
641 enum ftrace_dump_mode {
642 	DUMP_NONE,
643 	DUMP_ALL,
644 	DUMP_ORIG,
645 };
646 
647 #ifdef CONFIG_TRACING
648 void tracing_on(void);
649 void tracing_off(void);
650 int tracing_is_on(void);
651 void tracing_snapshot(void);
652 void tracing_snapshot_alloc(void);
653 
654 extern void tracing_start(void);
655 extern void tracing_stop(void);
656 
657 static inline __printf(1, 2)
658 void ____trace_printk_check_format(const char *fmt, ...)
659 {
660 }
661 #define __trace_printk_check_format(fmt, args...)			\
662 do {									\
663 	if (0)								\
664 		____trace_printk_check_format(fmt, ##args);		\
665 } while (0)
666 
667 /**
668  * trace_printk - printf formatting in the ftrace buffer
669  * @fmt: the printf format for printing
670  *
671  * Note: __trace_printk is an internal function for trace_printk() and
672  *       the @ip is passed in via the trace_printk() macro.
673  *
674  * This function allows a kernel developer to debug fast path sections
675  * that printk is not appropriate for. By scattering in various
676  * printk like tracing in the code, a developer can quickly see
677  * where problems are occurring.
678  *
679  * This is intended as a debugging tool for the developer only.
680  * Please refrain from leaving trace_printks scattered around in
681  * your code. (Extra memory is used for special buffers that are
682  * allocated when trace_printk() is used.)
683  *
684  * A little optimization trick is done here. If there's only one
685  * argument, there's no need to scan the string for printf formats.
686  * The trace_puts() will suffice. But how can we take advantage of
687  * using trace_puts() when trace_printk() has only one argument?
688  * By stringifying the args and checking the size we can tell
689  * whether or not there are args. __stringify((__VA_ARGS__)) will
690  * turn into "()\0" with a size of 3 when there are no args, anything
691  * else will be bigger. All we need to do is define a string to this,
692  * and then take its size and compare to 3. If it's bigger, use
693  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
694  * let gcc optimize the rest.
695  */
696 
697 #define trace_printk(fmt, ...)				\
698 do {							\
699 	char _______STR[] = __stringify((__VA_ARGS__));	\
700 	if (sizeof(_______STR) > 3)			\
701 		do_trace_printk(fmt, ##__VA_ARGS__);	\
702 	else						\
703 		trace_puts(fmt);			\
704 } while (0)
705 
706 #define do_trace_printk(fmt, args...)					\
707 do {									\
708 	static const char *trace_printk_fmt __used			\
709 		__attribute__((section("__trace_printk_fmt"))) =	\
710 		__builtin_constant_p(fmt) ? fmt : NULL;			\
711 									\
712 	__trace_printk_check_format(fmt, ##args);			\
713 									\
714 	if (__builtin_constant_p(fmt))					\
715 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
716 	else								\
717 		__trace_printk(_THIS_IP_, fmt, ##args);			\
718 } while (0)
719 
720 extern __printf(2, 3)
721 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
722 
723 extern __printf(2, 3)
724 int __trace_printk(unsigned long ip, const char *fmt, ...);
725 
726 /**
727  * trace_puts - write a string into the ftrace buffer
728  * @str: the string to record
729  *
730  * Note: __trace_bputs is an internal function for trace_puts and
731  *       the @ip is passed in via the trace_puts macro.
732  *
733  * This is similar to trace_printk() but is made for those really fast
734  * paths that a developer wants the least amount of "Heisenbug" effects,
735  * where the processing of the print format is still too much.
736  *
737  * This function allows a kernel developer to debug fast path sections
738  * that printk is not appropriate for. By scattering in various
739  * printk like tracing in the code, a developer can quickly see
740  * where problems are occurring.
741  *
742  * This is intended as a debugging tool for the developer only.
743  * Please refrain from leaving trace_puts scattered around in
744  * your code. (Extra memory is used for special buffers that are
745  * allocated when trace_puts() is used.)
746  *
747  * Returns: 0 if nothing was written, positive # if string was.
748  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
749  */
750 
751 #define trace_puts(str) ({						\
752 	static const char *trace_printk_fmt __used			\
753 		__attribute__((section("__trace_printk_fmt"))) =	\
754 		__builtin_constant_p(str) ? str : NULL;			\
755 									\
756 	if (__builtin_constant_p(str))					\
757 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
758 	else								\
759 		__trace_puts(_THIS_IP_, str, strlen(str));		\
760 })
761 extern int __trace_bputs(unsigned long ip, const char *str);
762 extern int __trace_puts(unsigned long ip, const char *str, int size);
763 
764 extern void trace_dump_stack(int skip);
765 
766 /*
767  * The double __builtin_constant_p is because gcc will give us an error
768  * if we try to allocate the static variable to fmt if it is not a
769  * constant. Even with the outer if statement.
770  */
771 #define ftrace_vprintk(fmt, vargs)					\
772 do {									\
773 	if (__builtin_constant_p(fmt)) {				\
774 		static const char *trace_printk_fmt __used		\
775 		  __attribute__((section("__trace_printk_fmt"))) =	\
776 			__builtin_constant_p(fmt) ? fmt : NULL;		\
777 									\
778 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
779 	} else								\
780 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
781 } while (0)
782 
783 extern __printf(2, 0) int
784 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
785 
786 extern __printf(2, 0) int
787 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
788 
789 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
790 #else
791 static inline void tracing_start(void) { }
792 static inline void tracing_stop(void) { }
793 static inline void trace_dump_stack(int skip) { }
794 
795 static inline void tracing_on(void) { }
796 static inline void tracing_off(void) { }
797 static inline int tracing_is_on(void) { return 0; }
798 static inline void tracing_snapshot(void) { }
799 static inline void tracing_snapshot_alloc(void) { }
800 
801 static inline __printf(1, 2)
802 int trace_printk(const char *fmt, ...)
803 {
804 	return 0;
805 }
806 static __printf(1, 0) inline int
807 ftrace_vprintk(const char *fmt, va_list ap)
808 {
809 	return 0;
810 }
811 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
812 #endif /* CONFIG_TRACING */
813 
814 /*
815  * min()/max()/clamp() macros must accomplish three things:
816  *
817  * - avoid multiple evaluations of the arguments (so side-effects like
818  *   "x++" happen only once) when non-constant.
819  * - perform strict type-checking (to generate warnings instead of
820  *   nasty runtime surprises). See the "unnecessary" pointer comparison
821  *   in __typecheck().
822  * - retain result as a constant expressions when called with only
823  *   constant expressions (to avoid tripping VLA warnings in stack
824  *   allocation usage).
825  */
826 #define __typecheck(x, y) \
827 		(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
828 
829 /*
830  * This returns a constant expression while determining if an argument is
831  * a constant expression, most importantly without evaluating the argument.
832  * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
833  */
834 #define __is_constexpr(x) \
835 	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
836 
837 #define __no_side_effects(x, y) \
838 		(__is_constexpr(x) && __is_constexpr(y))
839 
840 #define __safe_cmp(x, y) \
841 		(__typecheck(x, y) && __no_side_effects(x, y))
842 
843 #define __cmp(x, y, op)	((x) op (y) ? (x) : (y))
844 
845 #define __cmp_once(x, y, unique_x, unique_y, op) ({	\
846 		typeof(x) unique_x = (x);		\
847 		typeof(y) unique_y = (y);		\
848 		__cmp(unique_x, unique_y, op); })
849 
850 #define __careful_cmp(x, y, op) \
851 	__builtin_choose_expr(__safe_cmp(x, y), \
852 		__cmp(x, y, op), \
853 		__cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
854 
855 /**
856  * min - return minimum of two values of the same or compatible types
857  * @x: first value
858  * @y: second value
859  */
860 #define min(x, y)	__careful_cmp(x, y, <)
861 
862 /**
863  * max - return maximum of two values of the same or compatible types
864  * @x: first value
865  * @y: second value
866  */
867 #define max(x, y)	__careful_cmp(x, y, >)
868 
869 /**
870  * min3 - return minimum of three values
871  * @x: first value
872  * @y: second value
873  * @z: third value
874  */
875 #define min3(x, y, z) min((typeof(x))min(x, y), z)
876 
877 /**
878  * max3 - return maximum of three values
879  * @x: first value
880  * @y: second value
881  * @z: third value
882  */
883 #define max3(x, y, z) max((typeof(x))max(x, y), z)
884 
885 /**
886  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
887  * @x: value1
888  * @y: value2
889  */
890 #define min_not_zero(x, y) ({			\
891 	typeof(x) __x = (x);			\
892 	typeof(y) __y = (y);			\
893 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
894 
895 /**
896  * clamp - return a value clamped to a given range with strict typechecking
897  * @val: current value
898  * @lo: lowest allowable value
899  * @hi: highest allowable value
900  *
901  * This macro does strict typechecking of @lo/@hi to make sure they are of the
902  * same type as @val.  See the unnecessary pointer comparisons.
903  */
904 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
905 
906 /*
907  * ..and if you can't take the strict
908  * types, you can specify one yourself.
909  *
910  * Or not use min/max/clamp at all, of course.
911  */
912 
913 /**
914  * min_t - return minimum of two values, using the specified type
915  * @type: data type to use
916  * @x: first value
917  * @y: second value
918  */
919 #define min_t(type, x, y)	__careful_cmp((type)(x), (type)(y), <)
920 
921 /**
922  * max_t - return maximum of two values, using the specified type
923  * @type: data type to use
924  * @x: first value
925  * @y: second value
926  */
927 #define max_t(type, x, y)	__careful_cmp((type)(x), (type)(y), >)
928 
929 /**
930  * clamp_t - return a value clamped to a given range using a given type
931  * @type: the type of variable to use
932  * @val: current value
933  * @lo: minimum allowable value
934  * @hi: maximum allowable value
935  *
936  * This macro does no typechecking and uses temporary variables of type
937  * @type to make all the comparisons.
938  */
939 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
940 
941 /**
942  * clamp_val - return a value clamped to a given range using val's type
943  * @val: current value
944  * @lo: minimum allowable value
945  * @hi: maximum allowable value
946  *
947  * This macro does no typechecking and uses temporary variables of whatever
948  * type the input argument @val is.  This is useful when @val is an unsigned
949  * type and @lo and @hi are literals that will otherwise be assigned a signed
950  * integer type.
951  */
952 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
953 
954 
955 /**
956  * swap - swap values of @a and @b
957  * @a: first value
958  * @b: second value
959  */
960 #define swap(a, b) \
961 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
962 
963 /* This counts to 12. Any more, it will return 13th argument. */
964 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
965 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
966 
967 #define __CONCAT(a, b) a ## b
968 #define CONCATENATE(a, b) __CONCAT(a, b)
969 
970 /**
971  * container_of - cast a member of a structure out to the containing structure
972  * @ptr:	the pointer to the member.
973  * @type:	the type of the container struct this is embedded in.
974  * @member:	the name of the member within the struct.
975  *
976  */
977 #define container_of(ptr, type, member) ({				\
978 	void *__mptr = (void *)(ptr);					\
979 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
980 			 !__same_type(*(ptr), void),			\
981 			 "pointer type mismatch in container_of()");	\
982 	((type *)(__mptr - offsetof(type, member))); })
983 
984 /**
985  * container_of_safe - cast a member of a structure out to the containing structure
986  * @ptr:	the pointer to the member.
987  * @type:	the type of the container struct this is embedded in.
988  * @member:	the name of the member within the struct.
989  *
990  * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
991  */
992 #define container_of_safe(ptr, type, member) ({				\
993 	void *__mptr = (void *)(ptr);					\
994 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
995 			 !__same_type(*(ptr), void),			\
996 			 "pointer type mismatch in container_of()");	\
997 	IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :			\
998 		((type *)(__mptr - offsetof(type, member))); })
999 
1000 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1001 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
1002 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1003 #endif
1004 
1005 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1006 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
1007 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
1008 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
1009 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
1010 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
1011 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
1012 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
1013 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
1014 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
1015 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
1016 	 (perms))
1017 #endif
1018