xref: /openbmc/linux/include/linux/kcsan-checks.h (revision 09717af7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * KCSAN access checks and modifiers. These can be used to explicitly check
4  * uninstrumented accesses, or change KCSAN checking behaviour of accesses.
5  *
6  * Copyright (C) 2019, Google LLC.
7  */
8 
9 #ifndef _LINUX_KCSAN_CHECKS_H
10 #define _LINUX_KCSAN_CHECKS_H
11 
12 /* Note: Only include what is already included by compiler.h. */
13 #include <linux/compiler_attributes.h>
14 #include <linux/types.h>
15 
16 /* Access types -- if KCSAN_ACCESS_WRITE is not set, the access is a read. */
17 #define KCSAN_ACCESS_WRITE	(1 << 0) /* Access is a write. */
18 #define KCSAN_ACCESS_COMPOUND	(1 << 1) /* Compounded read-write instrumentation. */
19 #define KCSAN_ACCESS_ATOMIC	(1 << 2) /* Access is atomic. */
20 /* The following are special, and never due to compiler instrumentation. */
21 #define KCSAN_ACCESS_ASSERT	(1 << 3) /* Access is an assertion. */
22 #define KCSAN_ACCESS_SCOPED	(1 << 4) /* Access is a scoped access. */
23 
24 /*
25  * __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used
26  * even in compilation units that selectively disable KCSAN, but must use KCSAN
27  * to validate access to an address. Never use these in header files!
28  */
29 #ifdef CONFIG_KCSAN
30 /**
31  * __kcsan_check_access - check generic access for races
32  *
33  * @ptr: address of access
34  * @size: size of access
35  * @type: access type modifier
36  */
37 void __kcsan_check_access(const volatile void *ptr, size_t size, int type);
38 
39 /**
40  * kcsan_disable_current - disable KCSAN for the current context
41  *
42  * Supports nesting.
43  */
44 void kcsan_disable_current(void);
45 
46 /**
47  * kcsan_enable_current - re-enable KCSAN for the current context
48  *
49  * Supports nesting.
50  */
51 void kcsan_enable_current(void);
52 void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */
53 
54 /**
55  * kcsan_nestable_atomic_begin - begin nestable atomic region
56  *
57  * Accesses within the atomic region may appear to race with other accesses but
58  * should be considered atomic.
59  */
60 void kcsan_nestable_atomic_begin(void);
61 
62 /**
63  * kcsan_nestable_atomic_end - end nestable atomic region
64  */
65 void kcsan_nestable_atomic_end(void);
66 
67 /**
68  * kcsan_flat_atomic_begin - begin flat atomic region
69  *
70  * Accesses within the atomic region may appear to race with other accesses but
71  * should be considered atomic.
72  */
73 void kcsan_flat_atomic_begin(void);
74 
75 /**
76  * kcsan_flat_atomic_end - end flat atomic region
77  */
78 void kcsan_flat_atomic_end(void);
79 
80 /**
81  * kcsan_atomic_next - consider following accesses as atomic
82  *
83  * Force treating the next n memory accesses for the current context as atomic
84  * operations.
85  *
86  * @n: number of following memory accesses to treat as atomic.
87  */
88 void kcsan_atomic_next(int n);
89 
90 /**
91  * kcsan_set_access_mask - set access mask
92  *
93  * Set the access mask for all accesses for the current context if non-zero.
94  * Only value changes to bits set in the mask will be reported.
95  *
96  * @mask: bitmask
97  */
98 void kcsan_set_access_mask(unsigned long mask);
99 
100 /* Scoped access information. */
101 struct kcsan_scoped_access {
102 	struct list_head list;
103 	/* Access information. */
104 	const volatile void *ptr;
105 	size_t size;
106 	int type;
107 	/* Location where scoped access was set up. */
108 	unsigned long ip;
109 };
110 /*
111  * Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes
112  * out of scope; relies on attribute "cleanup", which is supported by all
113  * compilers that support KCSAN.
114  */
115 #define __kcsan_cleanup_scoped                                                 \
116 	__maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access)))
117 
118 /**
119  * kcsan_begin_scoped_access - begin scoped access
120  *
121  * Begin scoped access and initialize @sa, which will cause KCSAN to
122  * continuously check the memory range in the current thread until
123  * kcsan_end_scoped_access() is called for @sa.
124  *
125  * Scoped accesses are implemented by appending @sa to an internal list for the
126  * current execution context, and then checked on every call into the KCSAN
127  * runtime.
128  *
129  * @ptr: address of access
130  * @size: size of access
131  * @type: access type modifier
132  * @sa: struct kcsan_scoped_access to use for the scope of the access
133  */
134 struct kcsan_scoped_access *
135 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
136 			  struct kcsan_scoped_access *sa);
137 
138 /**
139  * kcsan_end_scoped_access - end scoped access
140  *
141  * End a scoped access, which will stop KCSAN checking the memory range.
142  * Requires that kcsan_begin_scoped_access() was previously called once for @sa.
143  *
144  * @sa: a previously initialized struct kcsan_scoped_access
145  */
146 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa);
147 
148 
149 #else /* CONFIG_KCSAN */
150 
151 static inline void __kcsan_check_access(const volatile void *ptr, size_t size,
152 					int type) { }
153 
154 static inline void kcsan_disable_current(void)		{ }
155 static inline void kcsan_enable_current(void)		{ }
156 static inline void kcsan_enable_current_nowarn(void)	{ }
157 static inline void kcsan_nestable_atomic_begin(void)	{ }
158 static inline void kcsan_nestable_atomic_end(void)	{ }
159 static inline void kcsan_flat_atomic_begin(void)	{ }
160 static inline void kcsan_flat_atomic_end(void)		{ }
161 static inline void kcsan_atomic_next(int n)		{ }
162 static inline void kcsan_set_access_mask(unsigned long mask) { }
163 
164 struct kcsan_scoped_access { };
165 #define __kcsan_cleanup_scoped __maybe_unused
166 static inline struct kcsan_scoped_access *
167 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
168 			  struct kcsan_scoped_access *sa) { return sa; }
169 static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { }
170 
171 #endif /* CONFIG_KCSAN */
172 
173 #ifdef __SANITIZE_THREAD__
174 /*
175  * Only calls into the runtime when the particular compilation unit has KCSAN
176  * instrumentation enabled. May be used in header files.
177  */
178 #define kcsan_check_access __kcsan_check_access
179 
180 /*
181  * Only use these to disable KCSAN for accesses in the current compilation unit;
182  * calls into libraries may still perform KCSAN checks.
183  */
184 #define __kcsan_disable_current kcsan_disable_current
185 #define __kcsan_enable_current kcsan_enable_current_nowarn
186 #else
187 static inline void kcsan_check_access(const volatile void *ptr, size_t size,
188 				      int type) { }
189 static inline void __kcsan_enable_current(void)  { }
190 static inline void __kcsan_disable_current(void) { }
191 #endif
192 
193 /**
194  * __kcsan_check_read - check regular read access for races
195  *
196  * @ptr: address of access
197  * @size: size of access
198  */
199 #define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0)
200 
201 /**
202  * __kcsan_check_write - check regular write access for races
203  *
204  * @ptr: address of access
205  * @size: size of access
206  */
207 #define __kcsan_check_write(ptr, size)                                         \
208 	__kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
209 
210 /**
211  * __kcsan_check_read_write - check regular read-write access for races
212  *
213  * @ptr: address of access
214  * @size: size of access
215  */
216 #define __kcsan_check_read_write(ptr, size)                                    \
217 	__kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
218 
219 /**
220  * kcsan_check_read - check regular read access for races
221  *
222  * @ptr: address of access
223  * @size: size of access
224  */
225 #define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0)
226 
227 /**
228  * kcsan_check_write - check regular write access for races
229  *
230  * @ptr: address of access
231  * @size: size of access
232  */
233 #define kcsan_check_write(ptr, size)                                           \
234 	kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
235 
236 /**
237  * kcsan_check_read_write - check regular read-write access for races
238  *
239  * @ptr: address of access
240  * @size: size of access
241  */
242 #define kcsan_check_read_write(ptr, size)                                      \
243 	kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
244 
245 /*
246  * Check for atomic accesses: if atomic accesses are not ignored, this simply
247  * aliases to kcsan_check_access(), otherwise becomes a no-op.
248  */
249 #ifdef CONFIG_KCSAN_IGNORE_ATOMICS
250 #define kcsan_check_atomic_read(...)		do { } while (0)
251 #define kcsan_check_atomic_write(...)		do { } while (0)
252 #define kcsan_check_atomic_read_write(...)	do { } while (0)
253 #else
254 #define kcsan_check_atomic_read(ptr, size)                                     \
255 	kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC)
256 #define kcsan_check_atomic_write(ptr, size)                                    \
257 	kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE)
258 #define kcsan_check_atomic_read_write(ptr, size)                               \
259 	kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND)
260 #endif
261 
262 /**
263  * ASSERT_EXCLUSIVE_WRITER - assert no concurrent writes to @var
264  *
265  * Assert that there are no concurrent writes to @var; other readers are
266  * allowed. This assertion can be used to specify properties of concurrent code,
267  * where violation cannot be detected as a normal data race.
268  *
269  * For example, if we only have a single writer, but multiple concurrent
270  * readers, to avoid data races, all these accesses must be marked; even
271  * concurrent marked writes racing with the single writer are bugs.
272  * Unfortunately, due to being marked, they are no longer data races. For cases
273  * like these, we can use the macro as follows:
274  *
275  * .. code-block:: c
276  *
277  *	void writer(void) {
278  *		spin_lock(&update_foo_lock);
279  *		ASSERT_EXCLUSIVE_WRITER(shared_foo);
280  *		WRITE_ONCE(shared_foo, ...);
281  *		spin_unlock(&update_foo_lock);
282  *	}
283  *	void reader(void) {
284  *		// update_foo_lock does not need to be held!
285  *		... = READ_ONCE(shared_foo);
286  *	}
287  *
288  * Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough
289  * checking if a clear scope where no concurrent writes are expected exists.
290  *
291  * @var: variable to assert on
292  */
293 #define ASSERT_EXCLUSIVE_WRITER(var)                                           \
294 	__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT)
295 
296 /*
297  * Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is
298  * expected to be unique for the scope in which instances of kcsan_scoped_access
299  * are declared.
300  */
301 #define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix
302 #define __ASSERT_EXCLUSIVE_SCOPED(var, type, id)                               \
303 	struct kcsan_scoped_access __kcsan_scoped_name(id, _)                  \
304 		__kcsan_cleanup_scoped;                                        \
305 	struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p)          \
306 		__maybe_unused = kcsan_begin_scoped_access(                    \
307 			&(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type),     \
308 			&__kcsan_scoped_name(id, _))
309 
310 /**
311  * ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope
312  *
313  * Scoped variant of ASSERT_EXCLUSIVE_WRITER().
314  *
315  * Assert that there are no concurrent writes to @var for the duration of the
316  * scope in which it is introduced. This provides a better way to fully cover
317  * the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and
318  * increases the likelihood for KCSAN to detect racing accesses.
319  *
320  * For example, it allows finding race-condition bugs that only occur due to
321  * state changes within the scope itself:
322  *
323  * .. code-block:: c
324  *
325  *	void writer(void) {
326  *		spin_lock(&update_foo_lock);
327  *		{
328  *			ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo);
329  *			WRITE_ONCE(shared_foo, 42);
330  *			...
331  *			// shared_foo should still be 42 here!
332  *		}
333  *		spin_unlock(&update_foo_lock);
334  *	}
335  *	void buggy(void) {
336  *		if (READ_ONCE(shared_foo) == 42)
337  *			WRITE_ONCE(shared_foo, 1); // bug!
338  *	}
339  *
340  * @var: variable to assert on
341  */
342 #define ASSERT_EXCLUSIVE_WRITER_SCOPED(var)                                    \
343 	__ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__)
344 
345 /**
346  * ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var
347  *
348  * Assert that there are no concurrent accesses to @var (no readers nor
349  * writers). This assertion can be used to specify properties of concurrent
350  * code, where violation cannot be detected as a normal data race.
351  *
352  * For example, where exclusive access is expected after determining no other
353  * users of an object are left, but the object is not actually freed. We can
354  * check that this property actually holds as follows:
355  *
356  * .. code-block:: c
357  *
358  *	if (refcount_dec_and_test(&obj->refcnt)) {
359  *		ASSERT_EXCLUSIVE_ACCESS(*obj);
360  *		do_some_cleanup(obj);
361  *		release_for_reuse(obj);
362  *	}
363  *
364  * Note:
365  *
366  * 1. ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough
367  *    checking if a clear scope where no concurrent accesses are expected exists.
368  *
369  * 2. For cases where the object is freed, `KASAN <kasan.html>`_ is a better
370  *    fit to detect use-after-free bugs.
371  *
372  * @var: variable to assert on
373  */
374 #define ASSERT_EXCLUSIVE_ACCESS(var)                                           \
375 	__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT)
376 
377 /**
378  * ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope
379  *
380  * Scoped variant of ASSERT_EXCLUSIVE_ACCESS().
381  *
382  * Assert that there are no concurrent accesses to @var (no readers nor writers)
383  * for the entire duration of the scope in which it is introduced. This provides
384  * a better way to fully cover the enclosing scope, compared to multiple
385  * ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect
386  * racing accesses.
387  *
388  * @var: variable to assert on
389  */
390 #define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var)                                    \
391 	__ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__)
392 
393 /**
394  * ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var
395  *
396  * Bit-granular variant of ASSERT_EXCLUSIVE_WRITER().
397  *
398  * Assert that there are no concurrent writes to a subset of bits in @var;
399  * concurrent readers are permitted. This assertion captures more detailed
400  * bit-level properties, compared to the other (word granularity) assertions.
401  * Only the bits set in @mask are checked for concurrent modifications, while
402  * ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits
403  * are ignored.
404  *
405  * Use this for variables, where some bits must not be modified concurrently,
406  * yet other bits are expected to be modified concurrently.
407  *
408  * For example, variables where, after initialization, some bits are read-only,
409  * but other bits may still be modified concurrently. A reader may wish to
410  * assert that this is true as follows:
411  *
412  * .. code-block:: c
413  *
414  *	ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
415  *	foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
416  *
417  * Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed
418  * to access the masked bits only, and KCSAN optimistically assumes it is
419  * therefore safe, even in the presence of data races, and marking it with
420  * READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that
421  * it may still be advisable to do so, since we cannot reason about all compiler
422  * optimizations when it comes to bit manipulations (on the reader and writer
423  * side). If you are sure nothing can go wrong, we can write the above simply
424  * as:
425  *
426  * .. code-block:: c
427  *
428  *	ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
429  *	foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
430  *
431  * Another example, where this may be used, is when certain bits of @var may
432  * only be modified when holding the appropriate lock, but other bits may still
433  * be modified concurrently. Writers, where other bits may change concurrently,
434  * could use the assertion as follows:
435  *
436  * .. code-block:: c
437  *
438  *	spin_lock(&foo_lock);
439  *	ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK);
440  *	old_flags = flags;
441  *	new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT);
442  *	if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... }
443  *	spin_unlock(&foo_lock);
444  *
445  * @var: variable to assert on
446  * @mask: only check for modifications to bits set in @mask
447  */
448 #define ASSERT_EXCLUSIVE_BITS(var, mask)                                       \
449 	do {                                                                   \
450 		kcsan_set_access_mask(mask);                                   \
451 		__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT);\
452 		kcsan_set_access_mask(0);                                      \
453 		kcsan_atomic_next(1);                                          \
454 	} while (0)
455 
456 #endif /* _LINUX_KCSAN_CHECKS_H */
457