xref: /openbmc/linux/include/linux/hyperv.h (revision 630dce28)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *
4  * Copyright (c) 2011, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 
12 #ifndef _HYPERV_H
13 #define _HYPERV_H
14 
15 #include <uapi/linux/hyperv.h>
16 
17 #include <linux/mm.h>
18 #include <linux/types.h>
19 #include <linux/scatterlist.h>
20 #include <linux/list.h>
21 #include <linux/timer.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/interrupt.h>
26 #include <linux/reciprocal_div.h>
27 #include <asm/hyperv-tlfs.h>
28 
29 #define MAX_PAGE_BUFFER_COUNT				32
30 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
31 
32 #pragma pack(push, 1)
33 
34 /*
35  * Types for GPADL, decides is how GPADL header is created.
36  *
37  * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the
38  * same as HV_HYP_PAGE_SIZE.
39  *
40  * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers
41  * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put
42  * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each
43  * HV_HYP_PAGE will be different between different types of GPADL, for example
44  * if PAGE_SIZE is 64K:
45  *
46  * BUFFER:
47  *
48  * gva:    |--       64k      --|--       64k      --| ... |
49  * gpa:    | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k |
50  * index:  0    1    2     15   16   17   18 .. 31   32 ...
51  *         |    |    ...   |    |    |   ...    |   ...
52  *         v    V          V    V    V          V
53  * gpadl:  | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... |
54  * index:  0    1    2 ... 15   16   17   18 .. 31   32 ...
55  *
56  * RING:
57  *
58  *         | header  |           data           | header  |     data      |
59  * gva:    |-- 64k --|--       64k      --| ... |-- 64k --|-- 64k --| ... |
60  * gpa:    | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... |
61  * index:  0    1    16   17   18    31   ...   n   n+1  n+16 ...         2n
62  *         |         /    /          /          |         /               /
63  *         |        /    /          /           |        /               /
64  *         |       /    /   ...    /    ...     |       /      ...      /
65  *         |      /    /          /             |      /               /
66  *         |     /    /          /              |     /               /
67  *         V    V    V          V               V    V               v
68  * gpadl:  | 4k | 4k |   ...    |    ...        | 4k | 4k |  ...     |
69  * index:  0    1    2   ...    16   ...       n-15 n-14 n-13  ...  2n-30
70  */
71 enum hv_gpadl_type {
72 	HV_GPADL_BUFFER,
73 	HV_GPADL_RING
74 };
75 
76 /* Single-page buffer */
77 struct hv_page_buffer {
78 	u32 len;
79 	u32 offset;
80 	u64 pfn;
81 };
82 
83 /* Multiple-page buffer */
84 struct hv_multipage_buffer {
85 	/* Length and Offset determines the # of pfns in the array */
86 	u32 len;
87 	u32 offset;
88 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
89 };
90 
91 /*
92  * Multiple-page buffer array; the pfn array is variable size:
93  * The number of entries in the PFN array is determined by
94  * "len" and "offset".
95  */
96 struct hv_mpb_array {
97 	/* Length and Offset determines the # of pfns in the array */
98 	u32 len;
99 	u32 offset;
100 	u64 pfn_array[];
101 };
102 
103 /* 0x18 includes the proprietary packet header */
104 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
105 					(sizeof(struct hv_page_buffer) * \
106 					 MAX_PAGE_BUFFER_COUNT))
107 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
108 					 sizeof(struct hv_multipage_buffer))
109 
110 
111 #pragma pack(pop)
112 
113 struct hv_ring_buffer {
114 	/* Offset in bytes from the start of ring data below */
115 	u32 write_index;
116 
117 	/* Offset in bytes from the start of ring data below */
118 	u32 read_index;
119 
120 	u32 interrupt_mask;
121 
122 	/*
123 	 * WS2012/Win8 and later versions of Hyper-V implement interrupt
124 	 * driven flow management. The feature bit feat_pending_send_sz
125 	 * is set by the host on the host->guest ring buffer, and by the
126 	 * guest on the guest->host ring buffer.
127 	 *
128 	 * The meaning of the feature bit is a bit complex in that it has
129 	 * semantics that apply to both ring buffers.  If the guest sets
130 	 * the feature bit in the guest->host ring buffer, the guest is
131 	 * telling the host that:
132 	 * 1) It will set the pending_send_sz field in the guest->host ring
133 	 *    buffer when it is waiting for space to become available, and
134 	 * 2) It will read the pending_send_sz field in the host->guest
135 	 *    ring buffer and interrupt the host when it frees enough space
136 	 *
137 	 * Similarly, if the host sets the feature bit in the host->guest
138 	 * ring buffer, the host is telling the guest that:
139 	 * 1) It will set the pending_send_sz field in the host->guest ring
140 	 *    buffer when it is waiting for space to become available, and
141 	 * 2) It will read the pending_send_sz field in the guest->host
142 	 *    ring buffer and interrupt the guest when it frees enough space
143 	 *
144 	 * If either the guest or host does not set the feature bit that it
145 	 * owns, that guest or host must do polling if it encounters a full
146 	 * ring buffer, and not signal the other end with an interrupt.
147 	 */
148 	u32 pending_send_sz;
149 	u32 reserved1[12];
150 	union {
151 		struct {
152 			u32 feat_pending_send_sz:1;
153 		};
154 		u32 value;
155 	} feature_bits;
156 
157 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
158 	u8	reserved2[PAGE_SIZE - 68];
159 
160 	/*
161 	 * Ring data starts here + RingDataStartOffset
162 	 * !!! DO NOT place any fields below this !!!
163 	 */
164 	u8 buffer[];
165 } __packed;
166 
167 /* Calculate the proper size of a ringbuffer, it must be page-aligned */
168 #define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(sizeof(struct hv_ring_buffer) + \
169 					       (payload_sz))
170 
171 struct hv_ring_buffer_info {
172 	struct hv_ring_buffer *ring_buffer;
173 	u32 ring_size;			/* Include the shared header */
174 	struct reciprocal_value ring_size_div10_reciprocal;
175 	spinlock_t ring_lock;
176 
177 	u32 ring_datasize;		/* < ring_size */
178 	u32 priv_read_index;
179 	/*
180 	 * The ring buffer mutex lock. This lock prevents the ring buffer from
181 	 * being freed while the ring buffer is being accessed.
182 	 */
183 	struct mutex ring_buffer_mutex;
184 };
185 
186 
187 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
188 {
189 	u32 read_loc, write_loc, dsize, read;
190 
191 	dsize = rbi->ring_datasize;
192 	read_loc = rbi->ring_buffer->read_index;
193 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
194 
195 	read = write_loc >= read_loc ? (write_loc - read_loc) :
196 		(dsize - read_loc) + write_loc;
197 
198 	return read;
199 }
200 
201 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
202 {
203 	u32 read_loc, write_loc, dsize, write;
204 
205 	dsize = rbi->ring_datasize;
206 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
207 	write_loc = rbi->ring_buffer->write_index;
208 
209 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
210 		read_loc - write_loc;
211 	return write;
212 }
213 
214 static inline u32 hv_get_avail_to_write_percent(
215 		const struct hv_ring_buffer_info *rbi)
216 {
217 	u32 avail_write = hv_get_bytes_to_write(rbi);
218 
219 	return reciprocal_divide(
220 			(avail_write  << 3) + (avail_write << 1),
221 			rbi->ring_size_div10_reciprocal);
222 }
223 
224 /*
225  * VMBUS version is 32 bit entity broken up into
226  * two 16 bit quantities: major_number. minor_number.
227  *
228  * 0 . 13 (Windows Server 2008)
229  * 1 . 1  (Windows 7)
230  * 2 . 4  (Windows 8)
231  * 3 . 0  (Windows 8 R2)
232  * 4 . 0  (Windows 10)
233  * 4 . 1  (Windows 10 RS3)
234  * 5 . 0  (Newer Windows 10)
235  * 5 . 1  (Windows 10 RS4)
236  * 5 . 2  (Windows Server 2019, RS5)
237  */
238 
239 #define VERSION_WS2008  ((0 << 16) | (13))
240 #define VERSION_WIN7    ((1 << 16) | (1))
241 #define VERSION_WIN8    ((2 << 16) | (4))
242 #define VERSION_WIN8_1    ((3 << 16) | (0))
243 #define VERSION_WIN10 ((4 << 16) | (0))
244 #define VERSION_WIN10_V4_1 ((4 << 16) | (1))
245 #define VERSION_WIN10_V5 ((5 << 16) | (0))
246 #define VERSION_WIN10_V5_1 ((5 << 16) | (1))
247 #define VERSION_WIN10_V5_2 ((5 << 16) | (2))
248 
249 /* Make maximum size of pipe payload of 16K */
250 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
251 
252 /* Define PipeMode values. */
253 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
254 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
255 
256 /* The size of the user defined data buffer for non-pipe offers. */
257 #define MAX_USER_DEFINED_BYTES		120
258 
259 /* The size of the user defined data buffer for pipe offers. */
260 #define MAX_PIPE_USER_DEFINED_BYTES	116
261 
262 /*
263  * At the center of the Channel Management library is the Channel Offer. This
264  * struct contains the fundamental information about an offer.
265  */
266 struct vmbus_channel_offer {
267 	guid_t if_type;
268 	guid_t if_instance;
269 
270 	/*
271 	 * These two fields are not currently used.
272 	 */
273 	u64 reserved1;
274 	u64 reserved2;
275 
276 	u16 chn_flags;
277 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
278 
279 	union {
280 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
281 		struct {
282 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
283 		} std;
284 
285 		/*
286 		 * Pipes:
287 		 * The following sructure is an integrated pipe protocol, which
288 		 * is implemented on top of standard user-defined data. Pipe
289 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
290 		 * use.
291 		 */
292 		struct {
293 			u32  pipe_mode;
294 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
295 		} pipe;
296 	} u;
297 	/*
298 	 * The sub_channel_index is defined in Win8: a value of zero means a
299 	 * primary channel and a value of non-zero means a sub-channel.
300 	 *
301 	 * Before Win8, the field is reserved, meaning it's always zero.
302 	 */
303 	u16 sub_channel_index;
304 	u16 reserved3;
305 } __packed;
306 
307 /* Server Flags */
308 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
309 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
310 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
311 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
312 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
313 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
314 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
315 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
316 
317 struct vmpacket_descriptor {
318 	u16 type;
319 	u16 offset8;
320 	u16 len8;
321 	u16 flags;
322 	u64 trans_id;
323 } __packed;
324 
325 struct vmpacket_header {
326 	u32 prev_pkt_start_offset;
327 	struct vmpacket_descriptor descriptor;
328 } __packed;
329 
330 struct vmtransfer_page_range {
331 	u32 byte_count;
332 	u32 byte_offset;
333 } __packed;
334 
335 struct vmtransfer_page_packet_header {
336 	struct vmpacket_descriptor d;
337 	u16 xfer_pageset_id;
338 	u8  sender_owns_set;
339 	u8 reserved;
340 	u32 range_cnt;
341 	struct vmtransfer_page_range ranges[1];
342 } __packed;
343 
344 struct vmgpadl_packet_header {
345 	struct vmpacket_descriptor d;
346 	u32 gpadl;
347 	u32 reserved;
348 } __packed;
349 
350 struct vmadd_remove_transfer_page_set {
351 	struct vmpacket_descriptor d;
352 	u32 gpadl;
353 	u16 xfer_pageset_id;
354 	u16 reserved;
355 } __packed;
356 
357 /*
358  * This structure defines a range in guest physical space that can be made to
359  * look virtually contiguous.
360  */
361 struct gpa_range {
362 	u32 byte_count;
363 	u32 byte_offset;
364 	u64 pfn_array[];
365 };
366 
367 /*
368  * This is the format for an Establish Gpadl packet, which contains a handle by
369  * which this GPADL will be known and a set of GPA ranges associated with it.
370  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
371  * ranges, then the resulting MDL will be "chained," representing multiple VA
372  * ranges.
373  */
374 struct vmestablish_gpadl {
375 	struct vmpacket_descriptor d;
376 	u32 gpadl;
377 	u32 range_cnt;
378 	struct gpa_range range[1];
379 } __packed;
380 
381 /*
382  * This is the format for a Teardown Gpadl packet, which indicates that the
383  * GPADL handle in the Establish Gpadl packet will never be referenced again.
384  */
385 struct vmteardown_gpadl {
386 	struct vmpacket_descriptor d;
387 	u32 gpadl;
388 	u32 reserved;	/* for alignment to a 8-byte boundary */
389 } __packed;
390 
391 /*
392  * This is the format for a GPA-Direct packet, which contains a set of GPA
393  * ranges, in addition to commands and/or data.
394  */
395 struct vmdata_gpa_direct {
396 	struct vmpacket_descriptor d;
397 	u32 reserved;
398 	u32 range_cnt;
399 	struct gpa_range range[1];
400 } __packed;
401 
402 /* This is the format for a Additional Data Packet. */
403 struct vmadditional_data {
404 	struct vmpacket_descriptor d;
405 	u64 total_bytes;
406 	u32 offset;
407 	u32 byte_cnt;
408 	unsigned char data[1];
409 } __packed;
410 
411 union vmpacket_largest_possible_header {
412 	struct vmpacket_descriptor simple_hdr;
413 	struct vmtransfer_page_packet_header xfer_page_hdr;
414 	struct vmgpadl_packet_header gpadl_hdr;
415 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
416 	struct vmestablish_gpadl establish_gpadl_hdr;
417 	struct vmteardown_gpadl teardown_gpadl_hdr;
418 	struct vmdata_gpa_direct data_gpa_direct_hdr;
419 };
420 
421 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
422 	(void *)(((unsigned char *)__packet) +	\
423 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
424 
425 #define VMPACKET_DATA_LENGTH(__packet)		\
426 	((((struct vmpacket_descriptor)__packet)->len8 -	\
427 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
428 
429 #define VMPACKET_TRANSFER_MODE(__packet)	\
430 	(((struct IMPACT)__packet)->type)
431 
432 enum vmbus_packet_type {
433 	VM_PKT_INVALID				= 0x0,
434 	VM_PKT_SYNCH				= 0x1,
435 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
436 	VM_PKT_RM_XFER_PAGESET			= 0x3,
437 	VM_PKT_ESTABLISH_GPADL			= 0x4,
438 	VM_PKT_TEARDOWN_GPADL			= 0x5,
439 	VM_PKT_DATA_INBAND			= 0x6,
440 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
441 	VM_PKT_DATA_USING_GPADL			= 0x8,
442 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
443 	VM_PKT_CANCEL_REQUEST			= 0xa,
444 	VM_PKT_COMP				= 0xb,
445 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
446 	VM_PKT_ADDITIONAL_DATA			= 0xd
447 };
448 
449 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
450 
451 
452 /* Version 1 messages */
453 enum vmbus_channel_message_type {
454 	CHANNELMSG_INVALID			=  0,
455 	CHANNELMSG_OFFERCHANNEL		=  1,
456 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
457 	CHANNELMSG_REQUESTOFFERS		=  3,
458 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
459 	CHANNELMSG_OPENCHANNEL		=  5,
460 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
461 	CHANNELMSG_CLOSECHANNEL		=  7,
462 	CHANNELMSG_GPADL_HEADER		=  8,
463 	CHANNELMSG_GPADL_BODY			=  9,
464 	CHANNELMSG_GPADL_CREATED		= 10,
465 	CHANNELMSG_GPADL_TEARDOWN		= 11,
466 	CHANNELMSG_GPADL_TORNDOWN		= 12,
467 	CHANNELMSG_RELID_RELEASED		= 13,
468 	CHANNELMSG_INITIATE_CONTACT		= 14,
469 	CHANNELMSG_VERSION_RESPONSE		= 15,
470 	CHANNELMSG_UNLOAD			= 16,
471 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
472 	CHANNELMSG_18				= 18,
473 	CHANNELMSG_19				= 19,
474 	CHANNELMSG_20				= 20,
475 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
476 	CHANNELMSG_MODIFYCHANNEL		= 22,
477 	CHANNELMSG_TL_CONNECT_RESULT		= 23,
478 	CHANNELMSG_COUNT
479 };
480 
481 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
482 #define INVALID_RELID	U32_MAX
483 
484 struct vmbus_channel_message_header {
485 	enum vmbus_channel_message_type msgtype;
486 	u32 padding;
487 } __packed;
488 
489 /* Query VMBus Version parameters */
490 struct vmbus_channel_query_vmbus_version {
491 	struct vmbus_channel_message_header header;
492 	u32 version;
493 } __packed;
494 
495 /* VMBus Version Supported parameters */
496 struct vmbus_channel_version_supported {
497 	struct vmbus_channel_message_header header;
498 	u8 version_supported;
499 } __packed;
500 
501 /* Offer Channel parameters */
502 struct vmbus_channel_offer_channel {
503 	struct vmbus_channel_message_header header;
504 	struct vmbus_channel_offer offer;
505 	u32 child_relid;
506 	u8 monitorid;
507 	/*
508 	 * win7 and beyond splits this field into a bit field.
509 	 */
510 	u8 monitor_allocated:1;
511 	u8 reserved:7;
512 	/*
513 	 * These are new fields added in win7 and later.
514 	 * Do not access these fields without checking the
515 	 * negotiated protocol.
516 	 *
517 	 * If "is_dedicated_interrupt" is set, we must not set the
518 	 * associated bit in the channel bitmap while sending the
519 	 * interrupt to the host.
520 	 *
521 	 * connection_id is to be used in signaling the host.
522 	 */
523 	u16 is_dedicated_interrupt:1;
524 	u16 reserved1:15;
525 	u32 connection_id;
526 } __packed;
527 
528 /* Rescind Offer parameters */
529 struct vmbus_channel_rescind_offer {
530 	struct vmbus_channel_message_header header;
531 	u32 child_relid;
532 } __packed;
533 
534 static inline u32
535 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
536 {
537 	return rbi->ring_buffer->pending_send_sz;
538 }
539 
540 /*
541  * Request Offer -- no parameters, SynIC message contains the partition ID
542  * Set Snoop -- no parameters, SynIC message contains the partition ID
543  * Clear Snoop -- no parameters, SynIC message contains the partition ID
544  * All Offers Delivered -- no parameters, SynIC message contains the partition
545  *		           ID
546  * Flush Client -- no parameters, SynIC message contains the partition ID
547  */
548 
549 /* Open Channel parameters */
550 struct vmbus_channel_open_channel {
551 	struct vmbus_channel_message_header header;
552 
553 	/* Identifies the specific VMBus channel that is being opened. */
554 	u32 child_relid;
555 
556 	/* ID making a particular open request at a channel offer unique. */
557 	u32 openid;
558 
559 	/* GPADL for the channel's ring buffer. */
560 	u32 ringbuffer_gpadlhandle;
561 
562 	/*
563 	 * Starting with win8, this field will be used to specify
564 	 * the target virtual processor on which to deliver the interrupt for
565 	 * the host to guest communication.
566 	 * Prior to win8, incoming channel interrupts would only
567 	 * be delivered on cpu 0. Setting this value to 0 would
568 	 * preserve the earlier behavior.
569 	 */
570 	u32 target_vp;
571 
572 	/*
573 	 * The upstream ring buffer begins at offset zero in the memory
574 	 * described by RingBufferGpadlHandle. The downstream ring buffer
575 	 * follows it at this offset (in pages).
576 	 */
577 	u32 downstream_ringbuffer_pageoffset;
578 
579 	/* User-specific data to be passed along to the server endpoint. */
580 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
581 } __packed;
582 
583 /* Open Channel Result parameters */
584 struct vmbus_channel_open_result {
585 	struct vmbus_channel_message_header header;
586 	u32 child_relid;
587 	u32 openid;
588 	u32 status;
589 } __packed;
590 
591 /* Close channel parameters; */
592 struct vmbus_channel_close_channel {
593 	struct vmbus_channel_message_header header;
594 	u32 child_relid;
595 } __packed;
596 
597 /* Channel Message GPADL */
598 #define GPADL_TYPE_RING_BUFFER		1
599 #define GPADL_TYPE_SERVER_SAVE_AREA	2
600 #define GPADL_TYPE_TRANSACTION		8
601 
602 /*
603  * The number of PFNs in a GPADL message is defined by the number of
604  * pages that would be spanned by ByteCount and ByteOffset.  If the
605  * implied number of PFNs won't fit in this packet, there will be a
606  * follow-up packet that contains more.
607  */
608 struct vmbus_channel_gpadl_header {
609 	struct vmbus_channel_message_header header;
610 	u32 child_relid;
611 	u32 gpadl;
612 	u16 range_buflen;
613 	u16 rangecount;
614 	struct gpa_range range[];
615 } __packed;
616 
617 /* This is the followup packet that contains more PFNs. */
618 struct vmbus_channel_gpadl_body {
619 	struct vmbus_channel_message_header header;
620 	u32 msgnumber;
621 	u32 gpadl;
622 	u64 pfn[];
623 } __packed;
624 
625 struct vmbus_channel_gpadl_created {
626 	struct vmbus_channel_message_header header;
627 	u32 child_relid;
628 	u32 gpadl;
629 	u32 creation_status;
630 } __packed;
631 
632 struct vmbus_channel_gpadl_teardown {
633 	struct vmbus_channel_message_header header;
634 	u32 child_relid;
635 	u32 gpadl;
636 } __packed;
637 
638 struct vmbus_channel_gpadl_torndown {
639 	struct vmbus_channel_message_header header;
640 	u32 gpadl;
641 } __packed;
642 
643 struct vmbus_channel_relid_released {
644 	struct vmbus_channel_message_header header;
645 	u32 child_relid;
646 } __packed;
647 
648 struct vmbus_channel_initiate_contact {
649 	struct vmbus_channel_message_header header;
650 	u32 vmbus_version_requested;
651 	u32 target_vcpu; /* The VCPU the host should respond to */
652 	union {
653 		u64 interrupt_page;
654 		struct {
655 			u8	msg_sint;
656 			u8	padding1[3];
657 			u32	padding2;
658 		};
659 	};
660 	u64 monitor_page1;
661 	u64 monitor_page2;
662 } __packed;
663 
664 /* Hyper-V socket: guest's connect()-ing to host */
665 struct vmbus_channel_tl_connect_request {
666 	struct vmbus_channel_message_header header;
667 	guid_t guest_endpoint_id;
668 	guid_t host_service_id;
669 } __packed;
670 
671 /* Modify Channel parameters, cf. vmbus_send_modifychannel() */
672 struct vmbus_channel_modifychannel {
673 	struct vmbus_channel_message_header header;
674 	u32 child_relid;
675 	u32 target_vp;
676 } __packed;
677 
678 struct vmbus_channel_version_response {
679 	struct vmbus_channel_message_header header;
680 	u8 version_supported;
681 
682 	u8 connection_state;
683 	u16 padding;
684 
685 	/*
686 	 * On new hosts that support VMBus protocol 5.0, we must use
687 	 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
688 	 * and for subsequent messages, we must use the Message Connection ID
689 	 * field in the host-returned Version Response Message.
690 	 *
691 	 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
692 	 */
693 	u32 msg_conn_id;
694 } __packed;
695 
696 enum vmbus_channel_state {
697 	CHANNEL_OFFER_STATE,
698 	CHANNEL_OPENING_STATE,
699 	CHANNEL_OPEN_STATE,
700 	CHANNEL_OPENED_STATE,
701 };
702 
703 /*
704  * Represents each channel msg on the vmbus connection This is a
705  * variable-size data structure depending on the msg type itself
706  */
707 struct vmbus_channel_msginfo {
708 	/* Bookkeeping stuff */
709 	struct list_head msglistentry;
710 
711 	/* So far, this is only used to handle gpadl body message */
712 	struct list_head submsglist;
713 
714 	/* Synchronize the request/response if needed */
715 	struct completion  waitevent;
716 	struct vmbus_channel *waiting_channel;
717 	union {
718 		struct vmbus_channel_version_supported version_supported;
719 		struct vmbus_channel_open_result open_result;
720 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
721 		struct vmbus_channel_gpadl_created gpadl_created;
722 		struct vmbus_channel_version_response version_response;
723 	} response;
724 
725 	u32 msgsize;
726 	/*
727 	 * The channel message that goes out on the "wire".
728 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
729 	 */
730 	unsigned char msg[];
731 };
732 
733 struct vmbus_close_msg {
734 	struct vmbus_channel_msginfo info;
735 	struct vmbus_channel_close_channel msg;
736 };
737 
738 /* Define connection identifier type. */
739 union hv_connection_id {
740 	u32 asu32;
741 	struct {
742 		u32 id:24;
743 		u32 reserved:8;
744 	} u;
745 };
746 
747 enum vmbus_device_type {
748 	HV_IDE = 0,
749 	HV_SCSI,
750 	HV_FC,
751 	HV_NIC,
752 	HV_ND,
753 	HV_PCIE,
754 	HV_FB,
755 	HV_KBD,
756 	HV_MOUSE,
757 	HV_KVP,
758 	HV_TS,
759 	HV_HB,
760 	HV_SHUTDOWN,
761 	HV_FCOPY,
762 	HV_BACKUP,
763 	HV_DM,
764 	HV_UNKNOWN,
765 };
766 
767 /*
768  * Provides request ids for VMBus. Encapsulates guest memory
769  * addresses and stores the next available slot in req_arr
770  * to generate new ids in constant time.
771  */
772 struct vmbus_requestor {
773 	u64 *req_arr;
774 	unsigned long *req_bitmap; /* is a given slot available? */
775 	u32 size;
776 	u64 next_request_id;
777 	spinlock_t req_lock; /* provides atomicity */
778 };
779 
780 #define VMBUS_NO_RQSTOR U64_MAX
781 #define VMBUS_RQST_ERROR (U64_MAX - 1)
782 #define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2)
783 
784 struct vmbus_device {
785 	u16  dev_type;
786 	guid_t guid;
787 	bool perf_device;
788 };
789 
790 struct vmbus_channel {
791 	struct list_head listentry;
792 
793 	struct hv_device *device_obj;
794 
795 	enum vmbus_channel_state state;
796 
797 	struct vmbus_channel_offer_channel offermsg;
798 	/*
799 	 * These are based on the OfferMsg.MonitorId.
800 	 * Save it here for easy access.
801 	 */
802 	u8 monitor_grp;
803 	u8 monitor_bit;
804 
805 	bool rescind; /* got rescind msg */
806 	struct completion rescind_event;
807 
808 	u32 ringbuffer_gpadlhandle;
809 
810 	/* Allocated memory for ring buffer */
811 	struct page *ringbuffer_page;
812 	u32 ringbuffer_pagecount;
813 	u32 ringbuffer_send_offset;
814 	struct hv_ring_buffer_info outbound;	/* send to parent */
815 	struct hv_ring_buffer_info inbound;	/* receive from parent */
816 
817 	struct vmbus_close_msg close_msg;
818 
819 	/* Statistics */
820 	u64	interrupts;	/* Host to Guest interrupts */
821 	u64	sig_events;	/* Guest to Host events */
822 
823 	/*
824 	 * Guest to host interrupts caused by the outbound ring buffer changing
825 	 * from empty to not empty.
826 	 */
827 	u64 intr_out_empty;
828 
829 	/*
830 	 * Indicates that a full outbound ring buffer was encountered. The flag
831 	 * is set to true when a full outbound ring buffer is encountered and
832 	 * set to false when a write to the outbound ring buffer is completed.
833 	 */
834 	bool out_full_flag;
835 
836 	/* Channel callback's invoked in softirq context */
837 	struct tasklet_struct callback_event;
838 	void (*onchannel_callback)(void *context);
839 	void *channel_callback_context;
840 
841 	void (*change_target_cpu_callback)(struct vmbus_channel *channel,
842 			u32 old, u32 new);
843 
844 	/*
845 	 * Synchronize channel scheduling and channel removal; see the inline
846 	 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
847 	 */
848 	spinlock_t sched_lock;
849 
850 	/*
851 	 * A channel can be marked for one of three modes of reading:
852 	 *   BATCHED - callback called from taslket and should read
853 	 *            channel until empty. Interrupts from the host
854 	 *            are masked while read is in process (default).
855 	 *   DIRECT - callback called from tasklet (softirq).
856 	 *   ISR - callback called in interrupt context and must
857 	 *         invoke its own deferred processing.
858 	 *         Host interrupts are disabled and must be re-enabled
859 	 *         when ring is empty.
860 	 */
861 	enum hv_callback_mode {
862 		HV_CALL_BATCHED,
863 		HV_CALL_DIRECT,
864 		HV_CALL_ISR
865 	} callback_mode;
866 
867 	bool is_dedicated_interrupt;
868 	u64 sig_event;
869 
870 	/*
871 	 * Starting with win8, this field will be used to specify the
872 	 * target CPU on which to deliver the interrupt for the host
873 	 * to guest communication.
874 	 *
875 	 * Prior to win8, incoming channel interrupts would only be
876 	 * delivered on CPU 0. Setting this value to 0 would preserve
877 	 * the earlier behavior.
878 	 */
879 	u32 target_cpu;
880 	/*
881 	 * Support for sub-channels. For high performance devices,
882 	 * it will be useful to have multiple sub-channels to support
883 	 * a scalable communication infrastructure with the host.
884 	 * The support for sub-channels is implemented as an extention
885 	 * to the current infrastructure.
886 	 * The initial offer is considered the primary channel and this
887 	 * offer message will indicate if the host supports sub-channels.
888 	 * The guest is free to ask for sub-channels to be offerred and can
889 	 * open these sub-channels as a normal "primary" channel. However,
890 	 * all sub-channels will have the same type and instance guids as the
891 	 * primary channel. Requests sent on a given channel will result in a
892 	 * response on the same channel.
893 	 */
894 
895 	/*
896 	 * Sub-channel creation callback. This callback will be called in
897 	 * process context when a sub-channel offer is received from the host.
898 	 * The guest can open the sub-channel in the context of this callback.
899 	 */
900 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
901 
902 	/*
903 	 * Channel rescind callback. Some channels (the hvsock ones), need to
904 	 * register a callback which is invoked in vmbus_onoffer_rescind().
905 	 */
906 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
907 
908 	/*
909 	 * All Sub-channels of a primary channel are linked here.
910 	 */
911 	struct list_head sc_list;
912 	/*
913 	 * The primary channel this sub-channel belongs to.
914 	 * This will be NULL for the primary channel.
915 	 */
916 	struct vmbus_channel *primary_channel;
917 	/*
918 	 * Support per-channel state for use by vmbus drivers.
919 	 */
920 	void *per_channel_state;
921 
922 	/*
923 	 * Defer freeing channel until after all cpu's have
924 	 * gone through grace period.
925 	 */
926 	struct rcu_head rcu;
927 
928 	/*
929 	 * For sysfs per-channel properties.
930 	 */
931 	struct kobject			kobj;
932 
933 	/*
934 	 * For performance critical channels (storage, networking
935 	 * etc,), Hyper-V has a mechanism to enhance the throughput
936 	 * at the expense of latency:
937 	 * When the host is to be signaled, we just set a bit in a shared page
938 	 * and this bit will be inspected by the hypervisor within a certain
939 	 * window and if the bit is set, the host will be signaled. The window
940 	 * of time is the monitor latency - currently around 100 usecs. This
941 	 * mechanism improves throughput by:
942 	 *
943 	 * A) Making the host more efficient - each time it wakes up,
944 	 *    potentially it will process morev number of packets. The
945 	 *    monitor latency allows a batch to build up.
946 	 * B) By deferring the hypercall to signal, we will also minimize
947 	 *    the interrupts.
948 	 *
949 	 * Clearly, these optimizations improve throughput at the expense of
950 	 * latency. Furthermore, since the channel is shared for both
951 	 * control and data messages, control messages currently suffer
952 	 * unnecessary latency adversley impacting performance and boot
953 	 * time. To fix this issue, permit tagging the channel as being
954 	 * in "low latency" mode. In this mode, we will bypass the monitor
955 	 * mechanism.
956 	 */
957 	bool low_latency;
958 
959 	bool probe_done;
960 
961 	/*
962 	 * Cache the device ID here for easy access; this is useful, in
963 	 * particular, in situations where the channel's device_obj has
964 	 * not been allocated/initialized yet.
965 	 */
966 	u16 device_id;
967 
968 	/*
969 	 * We must offload the handling of the primary/sub channels
970 	 * from the single-threaded vmbus_connection.work_queue to
971 	 * two different workqueue, otherwise we can block
972 	 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
973 	 */
974 	struct work_struct add_channel_work;
975 
976 	/*
977 	 * Guest to host interrupts caused by the inbound ring buffer changing
978 	 * from full to not full while a packet is waiting.
979 	 */
980 	u64 intr_in_full;
981 
982 	/*
983 	 * The total number of write operations that encountered a full
984 	 * outbound ring buffer.
985 	 */
986 	u64 out_full_total;
987 
988 	/*
989 	 * The number of write operations that were the first to encounter a
990 	 * full outbound ring buffer.
991 	 */
992 	u64 out_full_first;
993 
994 	/* enabling/disabling fuzz testing on the channel (default is false)*/
995 	bool fuzz_testing_state;
996 
997 	/*
998 	 * Interrupt delay will delay the guest from emptying the ring buffer
999 	 * for a specific amount of time. The delay is in microseconds and will
1000 	 * be between 1 to a maximum of 1000, its default is 0 (no delay).
1001 	 * The  Message delay will delay guest reading on a per message basis
1002 	 * in microseconds between 1 to 1000 with the default being 0
1003 	 * (no delay).
1004 	 */
1005 	u32 fuzz_testing_interrupt_delay;
1006 	u32 fuzz_testing_message_delay;
1007 
1008 	/* request/transaction ids for VMBus */
1009 	struct vmbus_requestor requestor;
1010 	u32 rqstor_size;
1011 };
1012 
1013 u64 vmbus_next_request_id(struct vmbus_requestor *rqstor, u64 rqst_addr);
1014 u64 vmbus_request_addr(struct vmbus_requestor *rqstor, u64 trans_id);
1015 
1016 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
1017 {
1018 	return !!(c->offermsg.offer.chn_flags &
1019 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
1020 }
1021 
1022 static inline bool is_sub_channel(const struct vmbus_channel *c)
1023 {
1024 	return c->offermsg.offer.sub_channel_index != 0;
1025 }
1026 
1027 static inline void set_channel_read_mode(struct vmbus_channel *c,
1028 					enum hv_callback_mode mode)
1029 {
1030 	c->callback_mode = mode;
1031 }
1032 
1033 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
1034 {
1035 	c->per_channel_state = s;
1036 }
1037 
1038 static inline void *get_per_channel_state(struct vmbus_channel *c)
1039 {
1040 	return c->per_channel_state;
1041 }
1042 
1043 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
1044 						 u32 size)
1045 {
1046 	unsigned long flags;
1047 
1048 	if (size) {
1049 		spin_lock_irqsave(&c->outbound.ring_lock, flags);
1050 		++c->out_full_total;
1051 
1052 		if (!c->out_full_flag) {
1053 			++c->out_full_first;
1054 			c->out_full_flag = true;
1055 		}
1056 		spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1057 	} else {
1058 		c->out_full_flag = false;
1059 	}
1060 
1061 	c->outbound.ring_buffer->pending_send_sz = size;
1062 }
1063 
1064 static inline void set_low_latency_mode(struct vmbus_channel *c)
1065 {
1066 	c->low_latency = true;
1067 }
1068 
1069 static inline void clear_low_latency_mode(struct vmbus_channel *c)
1070 {
1071 	c->low_latency = false;
1072 }
1073 
1074 void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1075 
1076 int vmbus_request_offers(void);
1077 
1078 /*
1079  * APIs for managing sub-channels.
1080  */
1081 
1082 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1083 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1084 
1085 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1086 		void (*chn_rescind_cb)(struct vmbus_channel *));
1087 
1088 /*
1089  * Check if sub-channels have already been offerred. This API will be useful
1090  * when the driver is unloaded after establishing sub-channels. In this case,
1091  * when the driver is re-loaded, the driver would have to check if the
1092  * subchannels have already been established before attempting to request
1093  * the creation of sub-channels.
1094  * This function returns TRUE to indicate that subchannels have already been
1095  * created.
1096  * This function should be invoked after setting the callback function for
1097  * sub-channel creation.
1098  */
1099 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1100 
1101 /* The format must be the same as struct vmdata_gpa_direct */
1102 struct vmbus_channel_packet_page_buffer {
1103 	u16 type;
1104 	u16 dataoffset8;
1105 	u16 length8;
1106 	u16 flags;
1107 	u64 transactionid;
1108 	u32 reserved;
1109 	u32 rangecount;
1110 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1111 } __packed;
1112 
1113 /* The format must be the same as struct vmdata_gpa_direct */
1114 struct vmbus_channel_packet_multipage_buffer {
1115 	u16 type;
1116 	u16 dataoffset8;
1117 	u16 length8;
1118 	u16 flags;
1119 	u64 transactionid;
1120 	u32 reserved;
1121 	u32 rangecount;		/* Always 1 in this case */
1122 	struct hv_multipage_buffer range;
1123 } __packed;
1124 
1125 /* The format must be the same as struct vmdata_gpa_direct */
1126 struct vmbus_packet_mpb_array {
1127 	u16 type;
1128 	u16 dataoffset8;
1129 	u16 length8;
1130 	u16 flags;
1131 	u64 transactionid;
1132 	u32 reserved;
1133 	u32 rangecount;         /* Always 1 in this case */
1134 	struct hv_mpb_array range;
1135 } __packed;
1136 
1137 int vmbus_alloc_ring(struct vmbus_channel *channel,
1138 		     u32 send_size, u32 recv_size);
1139 void vmbus_free_ring(struct vmbus_channel *channel);
1140 
1141 int vmbus_connect_ring(struct vmbus_channel *channel,
1142 		       void (*onchannel_callback)(void *context),
1143 		       void *context);
1144 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1145 
1146 extern int vmbus_open(struct vmbus_channel *channel,
1147 			    u32 send_ringbuffersize,
1148 			    u32 recv_ringbuffersize,
1149 			    void *userdata,
1150 			    u32 userdatalen,
1151 			    void (*onchannel_callback)(void *context),
1152 			    void *context);
1153 
1154 extern void vmbus_close(struct vmbus_channel *channel);
1155 
1156 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1157 				  void *buffer,
1158 				  u32 bufferLen,
1159 				  u64 requestid,
1160 				  enum vmbus_packet_type type,
1161 				  u32 flags);
1162 
1163 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1164 					    struct hv_page_buffer pagebuffers[],
1165 					    u32 pagecount,
1166 					    void *buffer,
1167 					    u32 bufferlen,
1168 					    u64 requestid);
1169 
1170 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1171 				     struct vmbus_packet_mpb_array *mpb,
1172 				     u32 desc_size,
1173 				     void *buffer,
1174 				     u32 bufferlen,
1175 				     u64 requestid);
1176 
1177 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1178 				      void *kbuffer,
1179 				      u32 size,
1180 				      u32 *gpadl_handle);
1181 
1182 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1183 				     u32 gpadl_handle);
1184 
1185 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1186 
1187 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1188 				  void *buffer,
1189 				  u32 bufferlen,
1190 				  u32 *buffer_actual_len,
1191 				  u64 *requestid);
1192 
1193 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1194 				     void *buffer,
1195 				     u32 bufferlen,
1196 				     u32 *buffer_actual_len,
1197 				     u64 *requestid);
1198 
1199 
1200 extern void vmbus_ontimer(unsigned long data);
1201 
1202 /* Base driver object */
1203 struct hv_driver {
1204 	const char *name;
1205 
1206 	/*
1207 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1208 	 * channel flag, actually doesn't mean a synthetic device because the
1209 	 * offer's if_type/if_instance can change for every new hvsock
1210 	 * connection.
1211 	 *
1212 	 * However, to facilitate the notification of new-offer/rescind-offer
1213 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1214 	 * a special vmbus device, and hence we need the below flag to
1215 	 * indicate if the driver is the hvsock driver or not: we need to
1216 	 * specially treat the hvosck offer & driver in vmbus_match().
1217 	 */
1218 	bool hvsock;
1219 
1220 	/* the device type supported by this driver */
1221 	guid_t dev_type;
1222 	const struct hv_vmbus_device_id *id_table;
1223 
1224 	struct device_driver driver;
1225 
1226 	/* dynamic device GUID's */
1227 	struct  {
1228 		spinlock_t lock;
1229 		struct list_head list;
1230 	} dynids;
1231 
1232 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1233 	int (*remove)(struct hv_device *);
1234 	void (*shutdown)(struct hv_device *);
1235 
1236 	int (*suspend)(struct hv_device *);
1237 	int (*resume)(struct hv_device *);
1238 
1239 };
1240 
1241 /* Base device object */
1242 struct hv_device {
1243 	/* the device type id of this device */
1244 	guid_t dev_type;
1245 
1246 	/* the device instance id of this device */
1247 	guid_t dev_instance;
1248 	u16 vendor_id;
1249 	u16 device_id;
1250 
1251 	struct device device;
1252 	char *driver_override; /* Driver name to force a match */
1253 
1254 	struct vmbus_channel *channel;
1255 	struct kset	     *channels_kset;
1256 
1257 	/* place holder to keep track of the dir for hv device in debugfs */
1258 	struct dentry *debug_dir;
1259 
1260 };
1261 
1262 
1263 static inline struct hv_device *device_to_hv_device(struct device *d)
1264 {
1265 	return container_of(d, struct hv_device, device);
1266 }
1267 
1268 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1269 {
1270 	return container_of(d, struct hv_driver, driver);
1271 }
1272 
1273 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1274 {
1275 	dev_set_drvdata(&dev->device, data);
1276 }
1277 
1278 static inline void *hv_get_drvdata(struct hv_device *dev)
1279 {
1280 	return dev_get_drvdata(&dev->device);
1281 }
1282 
1283 struct hv_ring_buffer_debug_info {
1284 	u32 current_interrupt_mask;
1285 	u32 current_read_index;
1286 	u32 current_write_index;
1287 	u32 bytes_avail_toread;
1288 	u32 bytes_avail_towrite;
1289 };
1290 
1291 
1292 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1293 				struct hv_ring_buffer_debug_info *debug_info);
1294 
1295 /* Vmbus interface */
1296 #define vmbus_driver_register(driver)	\
1297 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1298 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1299 					 struct module *owner,
1300 					 const char *mod_name);
1301 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1302 
1303 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1304 
1305 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1306 			resource_size_t min, resource_size_t max,
1307 			resource_size_t size, resource_size_t align,
1308 			bool fb_overlap_ok);
1309 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1310 
1311 /*
1312  * GUID definitions of various offer types - services offered to the guest.
1313  */
1314 
1315 /*
1316  * Network GUID
1317  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1318  */
1319 #define HV_NIC_GUID \
1320 	.guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1321 			  0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1322 
1323 /*
1324  * IDE GUID
1325  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1326  */
1327 #define HV_IDE_GUID \
1328 	.guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1329 			  0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1330 
1331 /*
1332  * SCSI GUID
1333  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1334  */
1335 #define HV_SCSI_GUID \
1336 	.guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1337 			  0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1338 
1339 /*
1340  * Shutdown GUID
1341  * {0e0b6031-5213-4934-818b-38d90ced39db}
1342  */
1343 #define HV_SHUTDOWN_GUID \
1344 	.guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1345 			  0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1346 
1347 /*
1348  * Time Synch GUID
1349  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1350  */
1351 #define HV_TS_GUID \
1352 	.guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1353 			  0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1354 
1355 /*
1356  * Heartbeat GUID
1357  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1358  */
1359 #define HV_HEART_BEAT_GUID \
1360 	.guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1361 			  0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1362 
1363 /*
1364  * KVP GUID
1365  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1366  */
1367 #define HV_KVP_GUID \
1368 	.guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1369 			  0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1370 
1371 /*
1372  * Dynamic memory GUID
1373  * {525074dc-8985-46e2-8057-a307dc18a502}
1374  */
1375 #define HV_DM_GUID \
1376 	.guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1377 			  0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1378 
1379 /*
1380  * Mouse GUID
1381  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1382  */
1383 #define HV_MOUSE_GUID \
1384 	.guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1385 			  0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1386 
1387 /*
1388  * Keyboard GUID
1389  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1390  */
1391 #define HV_KBD_GUID \
1392 	.guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1393 			  0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1394 
1395 /*
1396  * VSS (Backup/Restore) GUID
1397  */
1398 #define HV_VSS_GUID \
1399 	.guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1400 			  0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1401 /*
1402  * Synthetic Video GUID
1403  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1404  */
1405 #define HV_SYNTHVID_GUID \
1406 	.guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1407 			  0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1408 
1409 /*
1410  * Synthetic FC GUID
1411  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1412  */
1413 #define HV_SYNTHFC_GUID \
1414 	.guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1415 			  0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1416 
1417 /*
1418  * Guest File Copy Service
1419  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1420  */
1421 
1422 #define HV_FCOPY_GUID \
1423 	.guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1424 			  0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1425 
1426 /*
1427  * NetworkDirect. This is the guest RDMA service.
1428  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1429  */
1430 #define HV_ND_GUID \
1431 	.guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1432 			  0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1433 
1434 /*
1435  * PCI Express Pass Through
1436  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1437  */
1438 
1439 #define HV_PCIE_GUID \
1440 	.guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1441 			  0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1442 
1443 /*
1444  * Linux doesn't support the 3 devices: the first two are for
1445  * Automatic Virtual Machine Activation, and the third is for
1446  * Remote Desktop Virtualization.
1447  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1448  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1449  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1450  */
1451 
1452 #define HV_AVMA1_GUID \
1453 	.guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1454 			  0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1455 
1456 #define HV_AVMA2_GUID \
1457 	.guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1458 			  0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1459 
1460 #define HV_RDV_GUID \
1461 	.guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1462 			  0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1463 
1464 /*
1465  * Common header for Hyper-V ICs
1466  */
1467 
1468 #define ICMSGTYPE_NEGOTIATE		0
1469 #define ICMSGTYPE_HEARTBEAT		1
1470 #define ICMSGTYPE_KVPEXCHANGE		2
1471 #define ICMSGTYPE_SHUTDOWN		3
1472 #define ICMSGTYPE_TIMESYNC		4
1473 #define ICMSGTYPE_VSS			5
1474 
1475 #define ICMSGHDRFLAG_TRANSACTION	1
1476 #define ICMSGHDRFLAG_REQUEST		2
1477 #define ICMSGHDRFLAG_RESPONSE		4
1478 
1479 
1480 /*
1481  * While we want to handle util services as regular devices,
1482  * there is only one instance of each of these services; so
1483  * we statically allocate the service specific state.
1484  */
1485 
1486 struct hv_util_service {
1487 	u8 *recv_buffer;
1488 	void *channel;
1489 	void (*util_cb)(void *);
1490 	int (*util_init)(struct hv_util_service *);
1491 	void (*util_deinit)(void);
1492 	int (*util_pre_suspend)(void);
1493 	int (*util_pre_resume)(void);
1494 };
1495 
1496 struct vmbuspipe_hdr {
1497 	u32 flags;
1498 	u32 msgsize;
1499 } __packed;
1500 
1501 struct ic_version {
1502 	u16 major;
1503 	u16 minor;
1504 } __packed;
1505 
1506 struct icmsg_hdr {
1507 	struct ic_version icverframe;
1508 	u16 icmsgtype;
1509 	struct ic_version icvermsg;
1510 	u16 icmsgsize;
1511 	u32 status;
1512 	u8 ictransaction_id;
1513 	u8 icflags;
1514 	u8 reserved[2];
1515 } __packed;
1516 
1517 struct icmsg_negotiate {
1518 	u16 icframe_vercnt;
1519 	u16 icmsg_vercnt;
1520 	u32 reserved;
1521 	struct ic_version icversion_data[1]; /* any size array */
1522 } __packed;
1523 
1524 struct shutdown_msg_data {
1525 	u32 reason_code;
1526 	u32 timeout_seconds;
1527 	u32 flags;
1528 	u8  display_message[2048];
1529 } __packed;
1530 
1531 struct heartbeat_msg_data {
1532 	u64 seq_num;
1533 	u32 reserved[8];
1534 } __packed;
1535 
1536 /* Time Sync IC defs */
1537 #define ICTIMESYNCFLAG_PROBE	0
1538 #define ICTIMESYNCFLAG_SYNC	1
1539 #define ICTIMESYNCFLAG_SAMPLE	2
1540 
1541 #ifdef __x86_64__
1542 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1543 #else
1544 #define WLTIMEDELTA	116444736000000000LL
1545 #endif
1546 
1547 struct ictimesync_data {
1548 	u64 parenttime;
1549 	u64 childtime;
1550 	u64 roundtriptime;
1551 	u8 flags;
1552 } __packed;
1553 
1554 struct ictimesync_ref_data {
1555 	u64 parenttime;
1556 	u64 vmreferencetime;
1557 	u8 flags;
1558 	char leapflags;
1559 	char stratum;
1560 	u8 reserved[3];
1561 } __packed;
1562 
1563 struct hyperv_service_callback {
1564 	u8 msg_type;
1565 	char *log_msg;
1566 	guid_t data;
1567 	struct vmbus_channel *channel;
1568 	void (*callback)(void *context);
1569 };
1570 
1571 #define MAX_SRV_VER	0x7ffffff
1572 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1573 				const int *fw_version, int fw_vercnt,
1574 				const int *srv_version, int srv_vercnt,
1575 				int *nego_fw_version, int *nego_srv_version);
1576 
1577 void hv_process_channel_removal(struct vmbus_channel *channel);
1578 
1579 void vmbus_setevent(struct vmbus_channel *channel);
1580 /*
1581  * Negotiated version with the Host.
1582  */
1583 
1584 extern __u32 vmbus_proto_version;
1585 
1586 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1587 				  const guid_t *shv_host_servie_id);
1588 int vmbus_send_modifychannel(u32 child_relid, u32 target_vp);
1589 void vmbus_set_event(struct vmbus_channel *channel);
1590 
1591 /* Get the start of the ring buffer. */
1592 static inline void *
1593 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1594 {
1595 	return ring_info->ring_buffer->buffer;
1596 }
1597 
1598 /*
1599  * Mask off host interrupt callback notifications
1600  */
1601 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1602 {
1603 	rbi->ring_buffer->interrupt_mask = 1;
1604 
1605 	/* make sure mask update is not reordered */
1606 	virt_mb();
1607 }
1608 
1609 /*
1610  * Re-enable host callback and return number of outstanding bytes
1611  */
1612 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1613 {
1614 
1615 	rbi->ring_buffer->interrupt_mask = 0;
1616 
1617 	/* make sure mask update is not reordered */
1618 	virt_mb();
1619 
1620 	/*
1621 	 * Now check to see if the ring buffer is still empty.
1622 	 * If it is not, we raced and we need to process new
1623 	 * incoming messages.
1624 	 */
1625 	return hv_get_bytes_to_read(rbi);
1626 }
1627 
1628 /*
1629  * An API to support in-place processing of incoming VMBUS packets.
1630  */
1631 
1632 /* Get data payload associated with descriptor */
1633 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1634 {
1635 	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1636 }
1637 
1638 /* Get data size associated with descriptor */
1639 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1640 {
1641 	return (desc->len8 << 3) - (desc->offset8 << 3);
1642 }
1643 
1644 
1645 struct vmpacket_descriptor *
1646 hv_pkt_iter_first(struct vmbus_channel *channel);
1647 
1648 struct vmpacket_descriptor *
1649 __hv_pkt_iter_next(struct vmbus_channel *channel,
1650 		   const struct vmpacket_descriptor *pkt);
1651 
1652 void hv_pkt_iter_close(struct vmbus_channel *channel);
1653 
1654 /*
1655  * Get next packet descriptor from iterator
1656  * If at end of list, return NULL and update host.
1657  */
1658 static inline struct vmpacket_descriptor *
1659 hv_pkt_iter_next(struct vmbus_channel *channel,
1660 		 const struct vmpacket_descriptor *pkt)
1661 {
1662 	struct vmpacket_descriptor *nxt;
1663 
1664 	nxt = __hv_pkt_iter_next(channel, pkt);
1665 	if (!nxt)
1666 		hv_pkt_iter_close(channel);
1667 
1668 	return nxt;
1669 }
1670 
1671 #define foreach_vmbus_pkt(pkt, channel) \
1672 	for (pkt = hv_pkt_iter_first(channel); pkt; \
1673 	    pkt = hv_pkt_iter_next(channel, pkt))
1674 
1675 /*
1676  * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1677  * sends requests to read and write blocks. Each block must be 128 bytes or
1678  * smaller. Optionally, the VF driver can register a callback function which
1679  * will be invoked when the host says that one or more of the first 64 block
1680  * IDs is "invalid" which means that the VF driver should reread them.
1681  */
1682 #define HV_CONFIG_BLOCK_SIZE_MAX 128
1683 
1684 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1685 			unsigned int block_id, unsigned int *bytes_returned);
1686 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1687 			 unsigned int block_id);
1688 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1689 				void (*block_invalidate)(void *context,
1690 							 u64 block_mask));
1691 
1692 struct hyperv_pci_block_ops {
1693 	int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1694 			  unsigned int block_id, unsigned int *bytes_returned);
1695 	int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1696 			   unsigned int block_id);
1697 	int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1698 				  void (*block_invalidate)(void *context,
1699 							   u64 block_mask));
1700 };
1701 
1702 extern struct hyperv_pci_block_ops hvpci_block_ops;
1703 
1704 static inline unsigned long virt_to_hvpfn(void *addr)
1705 {
1706 	phys_addr_t paddr;
1707 
1708 	if (is_vmalloc_addr(addr))
1709 		paddr = page_to_phys(vmalloc_to_page(addr)) +
1710 				     offset_in_page(addr);
1711 	else
1712 		paddr = __pa(addr);
1713 
1714 	return  paddr >> HV_HYP_PAGE_SHIFT;
1715 }
1716 
1717 #define NR_HV_HYP_PAGES_IN_PAGE	(PAGE_SIZE / HV_HYP_PAGE_SIZE)
1718 #define offset_in_hvpage(ptr)	((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK)
1719 #define HVPFN_UP(x)	(((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT)
1720 #define page_to_hvpfn(page)	(page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE)
1721 
1722 #endif /* _HYPERV_H */
1723