xref: /openbmc/linux/include/linux/hyperv.h (revision 44c2cd80)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *
4  * Copyright (c) 2011, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 
12 #ifndef _HYPERV_H
13 #define _HYPERV_H
14 
15 #include <uapi/linux/hyperv.h>
16 
17 #include <linux/mm.h>
18 #include <linux/types.h>
19 #include <linux/scatterlist.h>
20 #include <linux/list.h>
21 #include <linux/timer.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/interrupt.h>
26 #include <linux/reciprocal_div.h>
27 #include <asm/hyperv-tlfs.h>
28 
29 #define MAX_PAGE_BUFFER_COUNT				32
30 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
31 
32 #pragma pack(push, 1)
33 
34 /*
35  * Types for GPADL, decides is how GPADL header is created.
36  *
37  * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the
38  * same as HV_HYP_PAGE_SIZE.
39  *
40  * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers
41  * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put
42  * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each
43  * HV_HYP_PAGE will be different between different types of GPADL, for example
44  * if PAGE_SIZE is 64K:
45  *
46  * BUFFER:
47  *
48  * gva:    |--       64k      --|--       64k      --| ... |
49  * gpa:    | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k |
50  * index:  0    1    2     15   16   17   18 .. 31   32 ...
51  *         |    |    ...   |    |    |   ...    |   ...
52  *         v    V          V    V    V          V
53  * gpadl:  | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... |
54  * index:  0    1    2 ... 15   16   17   18 .. 31   32 ...
55  *
56  * RING:
57  *
58  *         | header  |           data           | header  |     data      |
59  * gva:    |-- 64k --|--       64k      --| ... |-- 64k --|-- 64k --| ... |
60  * gpa:    | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... |
61  * index:  0    1    16   17   18    31   ...   n   n+1  n+16 ...         2n
62  *         |         /    /          /          |         /               /
63  *         |        /    /          /           |        /               /
64  *         |       /    /   ...    /    ...     |       /      ...      /
65  *         |      /    /          /             |      /               /
66  *         |     /    /          /              |     /               /
67  *         V    V    V          V               V    V               v
68  * gpadl:  | 4k | 4k |   ...    |    ...        | 4k | 4k |  ...     |
69  * index:  0    1    2   ...    16   ...       n-15 n-14 n-13  ...  2n-30
70  */
71 enum hv_gpadl_type {
72 	HV_GPADL_BUFFER,
73 	HV_GPADL_RING
74 };
75 
76 /* Single-page buffer */
77 struct hv_page_buffer {
78 	u32 len;
79 	u32 offset;
80 	u64 pfn;
81 };
82 
83 /* Multiple-page buffer */
84 struct hv_multipage_buffer {
85 	/* Length and Offset determines the # of pfns in the array */
86 	u32 len;
87 	u32 offset;
88 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
89 };
90 
91 /*
92  * Multiple-page buffer array; the pfn array is variable size:
93  * The number of entries in the PFN array is determined by
94  * "len" and "offset".
95  */
96 struct hv_mpb_array {
97 	/* Length and Offset determines the # of pfns in the array */
98 	u32 len;
99 	u32 offset;
100 	u64 pfn_array[];
101 };
102 
103 /* 0x18 includes the proprietary packet header */
104 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
105 					(sizeof(struct hv_page_buffer) * \
106 					 MAX_PAGE_BUFFER_COUNT))
107 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
108 					 sizeof(struct hv_multipage_buffer))
109 
110 
111 #pragma pack(pop)
112 
113 struct hv_ring_buffer {
114 	/* Offset in bytes from the start of ring data below */
115 	u32 write_index;
116 
117 	/* Offset in bytes from the start of ring data below */
118 	u32 read_index;
119 
120 	u32 interrupt_mask;
121 
122 	/*
123 	 * WS2012/Win8 and later versions of Hyper-V implement interrupt
124 	 * driven flow management. The feature bit feat_pending_send_sz
125 	 * is set by the host on the host->guest ring buffer, and by the
126 	 * guest on the guest->host ring buffer.
127 	 *
128 	 * The meaning of the feature bit is a bit complex in that it has
129 	 * semantics that apply to both ring buffers.  If the guest sets
130 	 * the feature bit in the guest->host ring buffer, the guest is
131 	 * telling the host that:
132 	 * 1) It will set the pending_send_sz field in the guest->host ring
133 	 *    buffer when it is waiting for space to become available, and
134 	 * 2) It will read the pending_send_sz field in the host->guest
135 	 *    ring buffer and interrupt the host when it frees enough space
136 	 *
137 	 * Similarly, if the host sets the feature bit in the host->guest
138 	 * ring buffer, the host is telling the guest that:
139 	 * 1) It will set the pending_send_sz field in the host->guest ring
140 	 *    buffer when it is waiting for space to become available, and
141 	 * 2) It will read the pending_send_sz field in the guest->host
142 	 *    ring buffer and interrupt the guest when it frees enough space
143 	 *
144 	 * If either the guest or host does not set the feature bit that it
145 	 * owns, that guest or host must do polling if it encounters a full
146 	 * ring buffer, and not signal the other end with an interrupt.
147 	 */
148 	u32 pending_send_sz;
149 	u32 reserved1[12];
150 	union {
151 		struct {
152 			u32 feat_pending_send_sz:1;
153 		};
154 		u32 value;
155 	} feature_bits;
156 
157 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
158 	u8	reserved2[PAGE_SIZE - 68];
159 
160 	/*
161 	 * Ring data starts here + RingDataStartOffset
162 	 * !!! DO NOT place any fields below this !!!
163 	 */
164 	u8 buffer[];
165 } __packed;
166 
167 /* Calculate the proper size of a ringbuffer, it must be page-aligned */
168 #define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(sizeof(struct hv_ring_buffer) + \
169 					       (payload_sz))
170 
171 struct hv_ring_buffer_info {
172 	struct hv_ring_buffer *ring_buffer;
173 	u32 ring_size;			/* Include the shared header */
174 	struct reciprocal_value ring_size_div10_reciprocal;
175 	spinlock_t ring_lock;
176 
177 	u32 ring_datasize;		/* < ring_size */
178 	u32 priv_read_index;
179 	/*
180 	 * The ring buffer mutex lock. This lock prevents the ring buffer from
181 	 * being freed while the ring buffer is being accessed.
182 	 */
183 	struct mutex ring_buffer_mutex;
184 
185 	/* Buffer that holds a copy of an incoming host packet */
186 	void *pkt_buffer;
187 	u32 pkt_buffer_size;
188 };
189 
190 
191 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
192 {
193 	u32 read_loc, write_loc, dsize, read;
194 
195 	dsize = rbi->ring_datasize;
196 	read_loc = rbi->ring_buffer->read_index;
197 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
198 
199 	read = write_loc >= read_loc ? (write_loc - read_loc) :
200 		(dsize - read_loc) + write_loc;
201 
202 	return read;
203 }
204 
205 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
206 {
207 	u32 read_loc, write_loc, dsize, write;
208 
209 	dsize = rbi->ring_datasize;
210 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
211 	write_loc = rbi->ring_buffer->write_index;
212 
213 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
214 		read_loc - write_loc;
215 	return write;
216 }
217 
218 static inline u32 hv_get_avail_to_write_percent(
219 		const struct hv_ring_buffer_info *rbi)
220 {
221 	u32 avail_write = hv_get_bytes_to_write(rbi);
222 
223 	return reciprocal_divide(
224 			(avail_write  << 3) + (avail_write << 1),
225 			rbi->ring_size_div10_reciprocal);
226 }
227 
228 /*
229  * VMBUS version is 32 bit entity broken up into
230  * two 16 bit quantities: major_number. minor_number.
231  *
232  * 0 . 13 (Windows Server 2008)
233  * 1 . 1  (Windows 7)
234  * 2 . 4  (Windows 8)
235  * 3 . 0  (Windows 8 R2)
236  * 4 . 0  (Windows 10)
237  * 4 . 1  (Windows 10 RS3)
238  * 5 . 0  (Newer Windows 10)
239  * 5 . 1  (Windows 10 RS4)
240  * 5 . 2  (Windows Server 2019, RS5)
241  * 5 . 3  (Windows Server 2022)
242  */
243 
244 #define VERSION_WS2008  ((0 << 16) | (13))
245 #define VERSION_WIN7    ((1 << 16) | (1))
246 #define VERSION_WIN8    ((2 << 16) | (4))
247 #define VERSION_WIN8_1    ((3 << 16) | (0))
248 #define VERSION_WIN10 ((4 << 16) | (0))
249 #define VERSION_WIN10_V4_1 ((4 << 16) | (1))
250 #define VERSION_WIN10_V5 ((5 << 16) | (0))
251 #define VERSION_WIN10_V5_1 ((5 << 16) | (1))
252 #define VERSION_WIN10_V5_2 ((5 << 16) | (2))
253 #define VERSION_WIN10_V5_3 ((5 << 16) | (3))
254 
255 /* Make maximum size of pipe payload of 16K */
256 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
257 
258 /* Define PipeMode values. */
259 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
260 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
261 
262 /* The size of the user defined data buffer for non-pipe offers. */
263 #define MAX_USER_DEFINED_BYTES		120
264 
265 /* The size of the user defined data buffer for pipe offers. */
266 #define MAX_PIPE_USER_DEFINED_BYTES	116
267 
268 /*
269  * At the center of the Channel Management library is the Channel Offer. This
270  * struct contains the fundamental information about an offer.
271  */
272 struct vmbus_channel_offer {
273 	guid_t if_type;
274 	guid_t if_instance;
275 
276 	/*
277 	 * These two fields are not currently used.
278 	 */
279 	u64 reserved1;
280 	u64 reserved2;
281 
282 	u16 chn_flags;
283 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
284 
285 	union {
286 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
287 		struct {
288 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
289 		} std;
290 
291 		/*
292 		 * Pipes:
293 		 * The following structure is an integrated pipe protocol, which
294 		 * is implemented on top of standard user-defined data. Pipe
295 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
296 		 * use.
297 		 */
298 		struct {
299 			u32  pipe_mode;
300 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
301 		} pipe;
302 	} u;
303 	/*
304 	 * The sub_channel_index is defined in Win8: a value of zero means a
305 	 * primary channel and a value of non-zero means a sub-channel.
306 	 *
307 	 * Before Win8, the field is reserved, meaning it's always zero.
308 	 */
309 	u16 sub_channel_index;
310 	u16 reserved3;
311 } __packed;
312 
313 /* Server Flags */
314 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
315 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
316 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
317 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
318 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
319 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
320 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
321 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
322 
323 struct vmpacket_descriptor {
324 	u16 type;
325 	u16 offset8;
326 	u16 len8;
327 	u16 flags;
328 	u64 trans_id;
329 } __packed;
330 
331 struct vmpacket_header {
332 	u32 prev_pkt_start_offset;
333 	struct vmpacket_descriptor descriptor;
334 } __packed;
335 
336 struct vmtransfer_page_range {
337 	u32 byte_count;
338 	u32 byte_offset;
339 } __packed;
340 
341 struct vmtransfer_page_packet_header {
342 	struct vmpacket_descriptor d;
343 	u16 xfer_pageset_id;
344 	u8  sender_owns_set;
345 	u8 reserved;
346 	u32 range_cnt;
347 	struct vmtransfer_page_range ranges[1];
348 } __packed;
349 
350 struct vmgpadl_packet_header {
351 	struct vmpacket_descriptor d;
352 	u32 gpadl;
353 	u32 reserved;
354 } __packed;
355 
356 struct vmadd_remove_transfer_page_set {
357 	struct vmpacket_descriptor d;
358 	u32 gpadl;
359 	u16 xfer_pageset_id;
360 	u16 reserved;
361 } __packed;
362 
363 /*
364  * This structure defines a range in guest physical space that can be made to
365  * look virtually contiguous.
366  */
367 struct gpa_range {
368 	u32 byte_count;
369 	u32 byte_offset;
370 	u64 pfn_array[];
371 };
372 
373 /*
374  * This is the format for an Establish Gpadl packet, which contains a handle by
375  * which this GPADL will be known and a set of GPA ranges associated with it.
376  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
377  * ranges, then the resulting MDL will be "chained," representing multiple VA
378  * ranges.
379  */
380 struct vmestablish_gpadl {
381 	struct vmpacket_descriptor d;
382 	u32 gpadl;
383 	u32 range_cnt;
384 	struct gpa_range range[1];
385 } __packed;
386 
387 /*
388  * This is the format for a Teardown Gpadl packet, which indicates that the
389  * GPADL handle in the Establish Gpadl packet will never be referenced again.
390  */
391 struct vmteardown_gpadl {
392 	struct vmpacket_descriptor d;
393 	u32 gpadl;
394 	u32 reserved;	/* for alignment to a 8-byte boundary */
395 } __packed;
396 
397 /*
398  * This is the format for a GPA-Direct packet, which contains a set of GPA
399  * ranges, in addition to commands and/or data.
400  */
401 struct vmdata_gpa_direct {
402 	struct vmpacket_descriptor d;
403 	u32 reserved;
404 	u32 range_cnt;
405 	struct gpa_range range[1];
406 } __packed;
407 
408 /* This is the format for a Additional Data Packet. */
409 struct vmadditional_data {
410 	struct vmpacket_descriptor d;
411 	u64 total_bytes;
412 	u32 offset;
413 	u32 byte_cnt;
414 	unsigned char data[1];
415 } __packed;
416 
417 union vmpacket_largest_possible_header {
418 	struct vmpacket_descriptor simple_hdr;
419 	struct vmtransfer_page_packet_header xfer_page_hdr;
420 	struct vmgpadl_packet_header gpadl_hdr;
421 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
422 	struct vmestablish_gpadl establish_gpadl_hdr;
423 	struct vmteardown_gpadl teardown_gpadl_hdr;
424 	struct vmdata_gpa_direct data_gpa_direct_hdr;
425 };
426 
427 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
428 	(void *)(((unsigned char *)__packet) +	\
429 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
430 
431 #define VMPACKET_DATA_LENGTH(__packet)		\
432 	((((struct vmpacket_descriptor)__packet)->len8 -	\
433 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
434 
435 #define VMPACKET_TRANSFER_MODE(__packet)	\
436 	(((struct IMPACT)__packet)->type)
437 
438 enum vmbus_packet_type {
439 	VM_PKT_INVALID				= 0x0,
440 	VM_PKT_SYNCH				= 0x1,
441 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
442 	VM_PKT_RM_XFER_PAGESET			= 0x3,
443 	VM_PKT_ESTABLISH_GPADL			= 0x4,
444 	VM_PKT_TEARDOWN_GPADL			= 0x5,
445 	VM_PKT_DATA_INBAND			= 0x6,
446 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
447 	VM_PKT_DATA_USING_GPADL			= 0x8,
448 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
449 	VM_PKT_CANCEL_REQUEST			= 0xa,
450 	VM_PKT_COMP				= 0xb,
451 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
452 	VM_PKT_ADDITIONAL_DATA			= 0xd
453 };
454 
455 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
456 
457 
458 /* Version 1 messages */
459 enum vmbus_channel_message_type {
460 	CHANNELMSG_INVALID			=  0,
461 	CHANNELMSG_OFFERCHANNEL		=  1,
462 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
463 	CHANNELMSG_REQUESTOFFERS		=  3,
464 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
465 	CHANNELMSG_OPENCHANNEL		=  5,
466 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
467 	CHANNELMSG_CLOSECHANNEL		=  7,
468 	CHANNELMSG_GPADL_HEADER		=  8,
469 	CHANNELMSG_GPADL_BODY			=  9,
470 	CHANNELMSG_GPADL_CREATED		= 10,
471 	CHANNELMSG_GPADL_TEARDOWN		= 11,
472 	CHANNELMSG_GPADL_TORNDOWN		= 12,
473 	CHANNELMSG_RELID_RELEASED		= 13,
474 	CHANNELMSG_INITIATE_CONTACT		= 14,
475 	CHANNELMSG_VERSION_RESPONSE		= 15,
476 	CHANNELMSG_UNLOAD			= 16,
477 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
478 	CHANNELMSG_18				= 18,
479 	CHANNELMSG_19				= 19,
480 	CHANNELMSG_20				= 20,
481 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
482 	CHANNELMSG_MODIFYCHANNEL		= 22,
483 	CHANNELMSG_TL_CONNECT_RESULT		= 23,
484 	CHANNELMSG_MODIFYCHANNEL_RESPONSE	= 24,
485 	CHANNELMSG_COUNT
486 };
487 
488 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
489 #define INVALID_RELID	U32_MAX
490 
491 struct vmbus_channel_message_header {
492 	enum vmbus_channel_message_type msgtype;
493 	u32 padding;
494 } __packed;
495 
496 /* Query VMBus Version parameters */
497 struct vmbus_channel_query_vmbus_version {
498 	struct vmbus_channel_message_header header;
499 	u32 version;
500 } __packed;
501 
502 /* VMBus Version Supported parameters */
503 struct vmbus_channel_version_supported {
504 	struct vmbus_channel_message_header header;
505 	u8 version_supported;
506 } __packed;
507 
508 /* Offer Channel parameters */
509 struct vmbus_channel_offer_channel {
510 	struct vmbus_channel_message_header header;
511 	struct vmbus_channel_offer offer;
512 	u32 child_relid;
513 	u8 monitorid;
514 	/*
515 	 * win7 and beyond splits this field into a bit field.
516 	 */
517 	u8 monitor_allocated:1;
518 	u8 reserved:7;
519 	/*
520 	 * These are new fields added in win7 and later.
521 	 * Do not access these fields without checking the
522 	 * negotiated protocol.
523 	 *
524 	 * If "is_dedicated_interrupt" is set, we must not set the
525 	 * associated bit in the channel bitmap while sending the
526 	 * interrupt to the host.
527 	 *
528 	 * connection_id is to be used in signaling the host.
529 	 */
530 	u16 is_dedicated_interrupt:1;
531 	u16 reserved1:15;
532 	u32 connection_id;
533 } __packed;
534 
535 /* Rescind Offer parameters */
536 struct vmbus_channel_rescind_offer {
537 	struct vmbus_channel_message_header header;
538 	u32 child_relid;
539 } __packed;
540 
541 static inline u32
542 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
543 {
544 	return rbi->ring_buffer->pending_send_sz;
545 }
546 
547 /*
548  * Request Offer -- no parameters, SynIC message contains the partition ID
549  * Set Snoop -- no parameters, SynIC message contains the partition ID
550  * Clear Snoop -- no parameters, SynIC message contains the partition ID
551  * All Offers Delivered -- no parameters, SynIC message contains the partition
552  *		           ID
553  * Flush Client -- no parameters, SynIC message contains the partition ID
554  */
555 
556 /* Open Channel parameters */
557 struct vmbus_channel_open_channel {
558 	struct vmbus_channel_message_header header;
559 
560 	/* Identifies the specific VMBus channel that is being opened. */
561 	u32 child_relid;
562 
563 	/* ID making a particular open request at a channel offer unique. */
564 	u32 openid;
565 
566 	/* GPADL for the channel's ring buffer. */
567 	u32 ringbuffer_gpadlhandle;
568 
569 	/*
570 	 * Starting with win8, this field will be used to specify
571 	 * the target virtual processor on which to deliver the interrupt for
572 	 * the host to guest communication.
573 	 * Prior to win8, incoming channel interrupts would only
574 	 * be delivered on cpu 0. Setting this value to 0 would
575 	 * preserve the earlier behavior.
576 	 */
577 	u32 target_vp;
578 
579 	/*
580 	 * The upstream ring buffer begins at offset zero in the memory
581 	 * described by RingBufferGpadlHandle. The downstream ring buffer
582 	 * follows it at this offset (in pages).
583 	 */
584 	u32 downstream_ringbuffer_pageoffset;
585 
586 	/* User-specific data to be passed along to the server endpoint. */
587 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
588 } __packed;
589 
590 /* Open Channel Result parameters */
591 struct vmbus_channel_open_result {
592 	struct vmbus_channel_message_header header;
593 	u32 child_relid;
594 	u32 openid;
595 	u32 status;
596 } __packed;
597 
598 /* Modify Channel Result parameters */
599 struct vmbus_channel_modifychannel_response {
600 	struct vmbus_channel_message_header header;
601 	u32 child_relid;
602 	u32 status;
603 } __packed;
604 
605 /* Close channel parameters; */
606 struct vmbus_channel_close_channel {
607 	struct vmbus_channel_message_header header;
608 	u32 child_relid;
609 } __packed;
610 
611 /* Channel Message GPADL */
612 #define GPADL_TYPE_RING_BUFFER		1
613 #define GPADL_TYPE_SERVER_SAVE_AREA	2
614 #define GPADL_TYPE_TRANSACTION		8
615 
616 /*
617  * The number of PFNs in a GPADL message is defined by the number of
618  * pages that would be spanned by ByteCount and ByteOffset.  If the
619  * implied number of PFNs won't fit in this packet, there will be a
620  * follow-up packet that contains more.
621  */
622 struct vmbus_channel_gpadl_header {
623 	struct vmbus_channel_message_header header;
624 	u32 child_relid;
625 	u32 gpadl;
626 	u16 range_buflen;
627 	u16 rangecount;
628 	struct gpa_range range[];
629 } __packed;
630 
631 /* This is the followup packet that contains more PFNs. */
632 struct vmbus_channel_gpadl_body {
633 	struct vmbus_channel_message_header header;
634 	u32 msgnumber;
635 	u32 gpadl;
636 	u64 pfn[];
637 } __packed;
638 
639 struct vmbus_channel_gpadl_created {
640 	struct vmbus_channel_message_header header;
641 	u32 child_relid;
642 	u32 gpadl;
643 	u32 creation_status;
644 } __packed;
645 
646 struct vmbus_channel_gpadl_teardown {
647 	struct vmbus_channel_message_header header;
648 	u32 child_relid;
649 	u32 gpadl;
650 } __packed;
651 
652 struct vmbus_channel_gpadl_torndown {
653 	struct vmbus_channel_message_header header;
654 	u32 gpadl;
655 } __packed;
656 
657 struct vmbus_channel_relid_released {
658 	struct vmbus_channel_message_header header;
659 	u32 child_relid;
660 } __packed;
661 
662 struct vmbus_channel_initiate_contact {
663 	struct vmbus_channel_message_header header;
664 	u32 vmbus_version_requested;
665 	u32 target_vcpu; /* The VCPU the host should respond to */
666 	union {
667 		u64 interrupt_page;
668 		struct {
669 			u8	msg_sint;
670 			u8	padding1[3];
671 			u32	padding2;
672 		};
673 	};
674 	u64 monitor_page1;
675 	u64 monitor_page2;
676 } __packed;
677 
678 /* Hyper-V socket: guest's connect()-ing to host */
679 struct vmbus_channel_tl_connect_request {
680 	struct vmbus_channel_message_header header;
681 	guid_t guest_endpoint_id;
682 	guid_t host_service_id;
683 } __packed;
684 
685 /* Modify Channel parameters, cf. vmbus_send_modifychannel() */
686 struct vmbus_channel_modifychannel {
687 	struct vmbus_channel_message_header header;
688 	u32 child_relid;
689 	u32 target_vp;
690 } __packed;
691 
692 struct vmbus_channel_version_response {
693 	struct vmbus_channel_message_header header;
694 	u8 version_supported;
695 
696 	u8 connection_state;
697 	u16 padding;
698 
699 	/*
700 	 * On new hosts that support VMBus protocol 5.0, we must use
701 	 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
702 	 * and for subsequent messages, we must use the Message Connection ID
703 	 * field in the host-returned Version Response Message.
704 	 *
705 	 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
706 	 */
707 	u32 msg_conn_id;
708 } __packed;
709 
710 enum vmbus_channel_state {
711 	CHANNEL_OFFER_STATE,
712 	CHANNEL_OPENING_STATE,
713 	CHANNEL_OPEN_STATE,
714 	CHANNEL_OPENED_STATE,
715 };
716 
717 /*
718  * Represents each channel msg on the vmbus connection This is a
719  * variable-size data structure depending on the msg type itself
720  */
721 struct vmbus_channel_msginfo {
722 	/* Bookkeeping stuff */
723 	struct list_head msglistentry;
724 
725 	/* So far, this is only used to handle gpadl body message */
726 	struct list_head submsglist;
727 
728 	/* Synchronize the request/response if needed */
729 	struct completion  waitevent;
730 	struct vmbus_channel *waiting_channel;
731 	union {
732 		struct vmbus_channel_version_supported version_supported;
733 		struct vmbus_channel_open_result open_result;
734 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
735 		struct vmbus_channel_gpadl_created gpadl_created;
736 		struct vmbus_channel_version_response version_response;
737 		struct vmbus_channel_modifychannel_response modify_response;
738 	} response;
739 
740 	u32 msgsize;
741 	/*
742 	 * The channel message that goes out on the "wire".
743 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
744 	 */
745 	unsigned char msg[];
746 };
747 
748 struct vmbus_close_msg {
749 	struct vmbus_channel_msginfo info;
750 	struct vmbus_channel_close_channel msg;
751 };
752 
753 /* Define connection identifier type. */
754 union hv_connection_id {
755 	u32 asu32;
756 	struct {
757 		u32 id:24;
758 		u32 reserved:8;
759 	} u;
760 };
761 
762 enum vmbus_device_type {
763 	HV_IDE = 0,
764 	HV_SCSI,
765 	HV_FC,
766 	HV_NIC,
767 	HV_ND,
768 	HV_PCIE,
769 	HV_FB,
770 	HV_KBD,
771 	HV_MOUSE,
772 	HV_KVP,
773 	HV_TS,
774 	HV_HB,
775 	HV_SHUTDOWN,
776 	HV_FCOPY,
777 	HV_BACKUP,
778 	HV_DM,
779 	HV_UNKNOWN,
780 };
781 
782 /*
783  * Provides request ids for VMBus. Encapsulates guest memory
784  * addresses and stores the next available slot in req_arr
785  * to generate new ids in constant time.
786  */
787 struct vmbus_requestor {
788 	u64 *req_arr;
789 	unsigned long *req_bitmap; /* is a given slot available? */
790 	u32 size;
791 	u64 next_request_id;
792 	spinlock_t req_lock; /* provides atomicity */
793 };
794 
795 #define VMBUS_NO_RQSTOR U64_MAX
796 #define VMBUS_RQST_ERROR (U64_MAX - 1)
797 /* NetVSC-specific */
798 #define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2)
799 /* StorVSC-specific */
800 #define VMBUS_RQST_INIT (U64_MAX - 2)
801 #define VMBUS_RQST_RESET (U64_MAX - 3)
802 
803 struct vmbus_device {
804 	u16  dev_type;
805 	guid_t guid;
806 	bool perf_device;
807 	bool allowed_in_isolated;
808 };
809 
810 #define VMBUS_DEFAULT_MAX_PKT_SIZE 4096
811 
812 struct vmbus_channel {
813 	struct list_head listentry;
814 
815 	struct hv_device *device_obj;
816 
817 	enum vmbus_channel_state state;
818 
819 	struct vmbus_channel_offer_channel offermsg;
820 	/*
821 	 * These are based on the OfferMsg.MonitorId.
822 	 * Save it here for easy access.
823 	 */
824 	u8 monitor_grp;
825 	u8 monitor_bit;
826 
827 	bool rescind; /* got rescind msg */
828 	bool rescind_ref; /* got rescind msg, got channel reference */
829 	struct completion rescind_event;
830 
831 	u32 ringbuffer_gpadlhandle;
832 
833 	/* Allocated memory for ring buffer */
834 	struct page *ringbuffer_page;
835 	u32 ringbuffer_pagecount;
836 	u32 ringbuffer_send_offset;
837 	struct hv_ring_buffer_info outbound;	/* send to parent */
838 	struct hv_ring_buffer_info inbound;	/* receive from parent */
839 
840 	struct vmbus_close_msg close_msg;
841 
842 	/* Statistics */
843 	u64	interrupts;	/* Host to Guest interrupts */
844 	u64	sig_events;	/* Guest to Host events */
845 
846 	/*
847 	 * Guest to host interrupts caused by the outbound ring buffer changing
848 	 * from empty to not empty.
849 	 */
850 	u64 intr_out_empty;
851 
852 	/*
853 	 * Indicates that a full outbound ring buffer was encountered. The flag
854 	 * is set to true when a full outbound ring buffer is encountered and
855 	 * set to false when a write to the outbound ring buffer is completed.
856 	 */
857 	bool out_full_flag;
858 
859 	/* Channel callback's invoked in softirq context */
860 	struct tasklet_struct callback_event;
861 	void (*onchannel_callback)(void *context);
862 	void *channel_callback_context;
863 
864 	void (*change_target_cpu_callback)(struct vmbus_channel *channel,
865 			u32 old, u32 new);
866 
867 	/*
868 	 * Synchronize channel scheduling and channel removal; see the inline
869 	 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
870 	 */
871 	spinlock_t sched_lock;
872 
873 	/*
874 	 * A channel can be marked for one of three modes of reading:
875 	 *   BATCHED - callback called from taslket and should read
876 	 *            channel until empty. Interrupts from the host
877 	 *            are masked while read is in process (default).
878 	 *   DIRECT - callback called from tasklet (softirq).
879 	 *   ISR - callback called in interrupt context and must
880 	 *         invoke its own deferred processing.
881 	 *         Host interrupts are disabled and must be re-enabled
882 	 *         when ring is empty.
883 	 */
884 	enum hv_callback_mode {
885 		HV_CALL_BATCHED,
886 		HV_CALL_DIRECT,
887 		HV_CALL_ISR
888 	} callback_mode;
889 
890 	bool is_dedicated_interrupt;
891 	u64 sig_event;
892 
893 	/*
894 	 * Starting with win8, this field will be used to specify the
895 	 * target CPU on which to deliver the interrupt for the host
896 	 * to guest communication.
897 	 *
898 	 * Prior to win8, incoming channel interrupts would only be
899 	 * delivered on CPU 0. Setting this value to 0 would preserve
900 	 * the earlier behavior.
901 	 */
902 	u32 target_cpu;
903 	/*
904 	 * Support for sub-channels. For high performance devices,
905 	 * it will be useful to have multiple sub-channels to support
906 	 * a scalable communication infrastructure with the host.
907 	 * The support for sub-channels is implemented as an extension
908 	 * to the current infrastructure.
909 	 * The initial offer is considered the primary channel and this
910 	 * offer message will indicate if the host supports sub-channels.
911 	 * The guest is free to ask for sub-channels to be offered and can
912 	 * open these sub-channels as a normal "primary" channel. However,
913 	 * all sub-channels will have the same type and instance guids as the
914 	 * primary channel. Requests sent on a given channel will result in a
915 	 * response on the same channel.
916 	 */
917 
918 	/*
919 	 * Sub-channel creation callback. This callback will be called in
920 	 * process context when a sub-channel offer is received from the host.
921 	 * The guest can open the sub-channel in the context of this callback.
922 	 */
923 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
924 
925 	/*
926 	 * Channel rescind callback. Some channels (the hvsock ones), need to
927 	 * register a callback which is invoked in vmbus_onoffer_rescind().
928 	 */
929 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
930 
931 	/*
932 	 * All Sub-channels of a primary channel are linked here.
933 	 */
934 	struct list_head sc_list;
935 	/*
936 	 * The primary channel this sub-channel belongs to.
937 	 * This will be NULL for the primary channel.
938 	 */
939 	struct vmbus_channel *primary_channel;
940 	/*
941 	 * Support per-channel state for use by vmbus drivers.
942 	 */
943 	void *per_channel_state;
944 
945 	/*
946 	 * Defer freeing channel until after all cpu's have
947 	 * gone through grace period.
948 	 */
949 	struct rcu_head rcu;
950 
951 	/*
952 	 * For sysfs per-channel properties.
953 	 */
954 	struct kobject			kobj;
955 
956 	/*
957 	 * For performance critical channels (storage, networking
958 	 * etc,), Hyper-V has a mechanism to enhance the throughput
959 	 * at the expense of latency:
960 	 * When the host is to be signaled, we just set a bit in a shared page
961 	 * and this bit will be inspected by the hypervisor within a certain
962 	 * window and if the bit is set, the host will be signaled. The window
963 	 * of time is the monitor latency - currently around 100 usecs. This
964 	 * mechanism improves throughput by:
965 	 *
966 	 * A) Making the host more efficient - each time it wakes up,
967 	 *    potentially it will process morev number of packets. The
968 	 *    monitor latency allows a batch to build up.
969 	 * B) By deferring the hypercall to signal, we will also minimize
970 	 *    the interrupts.
971 	 *
972 	 * Clearly, these optimizations improve throughput at the expense of
973 	 * latency. Furthermore, since the channel is shared for both
974 	 * control and data messages, control messages currently suffer
975 	 * unnecessary latency adversely impacting performance and boot
976 	 * time. To fix this issue, permit tagging the channel as being
977 	 * in "low latency" mode. In this mode, we will bypass the monitor
978 	 * mechanism.
979 	 */
980 	bool low_latency;
981 
982 	bool probe_done;
983 
984 	/*
985 	 * Cache the device ID here for easy access; this is useful, in
986 	 * particular, in situations where the channel's device_obj has
987 	 * not been allocated/initialized yet.
988 	 */
989 	u16 device_id;
990 
991 	/*
992 	 * We must offload the handling of the primary/sub channels
993 	 * from the single-threaded vmbus_connection.work_queue to
994 	 * two different workqueue, otherwise we can block
995 	 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
996 	 */
997 	struct work_struct add_channel_work;
998 
999 	/*
1000 	 * Guest to host interrupts caused by the inbound ring buffer changing
1001 	 * from full to not full while a packet is waiting.
1002 	 */
1003 	u64 intr_in_full;
1004 
1005 	/*
1006 	 * The total number of write operations that encountered a full
1007 	 * outbound ring buffer.
1008 	 */
1009 	u64 out_full_total;
1010 
1011 	/*
1012 	 * The number of write operations that were the first to encounter a
1013 	 * full outbound ring buffer.
1014 	 */
1015 	u64 out_full_first;
1016 
1017 	/* enabling/disabling fuzz testing on the channel (default is false)*/
1018 	bool fuzz_testing_state;
1019 
1020 	/*
1021 	 * Interrupt delay will delay the guest from emptying the ring buffer
1022 	 * for a specific amount of time. The delay is in microseconds and will
1023 	 * be between 1 to a maximum of 1000, its default is 0 (no delay).
1024 	 * The  Message delay will delay guest reading on a per message basis
1025 	 * in microseconds between 1 to 1000 with the default being 0
1026 	 * (no delay).
1027 	 */
1028 	u32 fuzz_testing_interrupt_delay;
1029 	u32 fuzz_testing_message_delay;
1030 
1031 	/* callback to generate a request ID from a request address */
1032 	u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr);
1033 	/* callback to retrieve a request address from a request ID */
1034 	u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id);
1035 
1036 	/* request/transaction ids for VMBus */
1037 	struct vmbus_requestor requestor;
1038 	u32 rqstor_size;
1039 
1040 	/* The max size of a packet on this channel */
1041 	u32 max_pkt_size;
1042 };
1043 
1044 u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr);
1045 u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id);
1046 
1047 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
1048 {
1049 	return !!(c->offermsg.offer.chn_flags &
1050 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
1051 }
1052 
1053 static inline bool is_sub_channel(const struct vmbus_channel *c)
1054 {
1055 	return c->offermsg.offer.sub_channel_index != 0;
1056 }
1057 
1058 static inline void set_channel_read_mode(struct vmbus_channel *c,
1059 					enum hv_callback_mode mode)
1060 {
1061 	c->callback_mode = mode;
1062 }
1063 
1064 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
1065 {
1066 	c->per_channel_state = s;
1067 }
1068 
1069 static inline void *get_per_channel_state(struct vmbus_channel *c)
1070 {
1071 	return c->per_channel_state;
1072 }
1073 
1074 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
1075 						 u32 size)
1076 {
1077 	unsigned long flags;
1078 
1079 	if (size) {
1080 		spin_lock_irqsave(&c->outbound.ring_lock, flags);
1081 		++c->out_full_total;
1082 
1083 		if (!c->out_full_flag) {
1084 			++c->out_full_first;
1085 			c->out_full_flag = true;
1086 		}
1087 		spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1088 	} else {
1089 		c->out_full_flag = false;
1090 	}
1091 
1092 	c->outbound.ring_buffer->pending_send_sz = size;
1093 }
1094 
1095 static inline void set_low_latency_mode(struct vmbus_channel *c)
1096 {
1097 	c->low_latency = true;
1098 }
1099 
1100 static inline void clear_low_latency_mode(struct vmbus_channel *c)
1101 {
1102 	c->low_latency = false;
1103 }
1104 
1105 void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1106 
1107 int vmbus_request_offers(void);
1108 
1109 /*
1110  * APIs for managing sub-channels.
1111  */
1112 
1113 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1114 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1115 
1116 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1117 		void (*chn_rescind_cb)(struct vmbus_channel *));
1118 
1119 /*
1120  * Check if sub-channels have already been offerred. This API will be useful
1121  * when the driver is unloaded after establishing sub-channels. In this case,
1122  * when the driver is re-loaded, the driver would have to check if the
1123  * subchannels have already been established before attempting to request
1124  * the creation of sub-channels.
1125  * This function returns TRUE to indicate that subchannels have already been
1126  * created.
1127  * This function should be invoked after setting the callback function for
1128  * sub-channel creation.
1129  */
1130 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1131 
1132 /* The format must be the same as struct vmdata_gpa_direct */
1133 struct vmbus_channel_packet_page_buffer {
1134 	u16 type;
1135 	u16 dataoffset8;
1136 	u16 length8;
1137 	u16 flags;
1138 	u64 transactionid;
1139 	u32 reserved;
1140 	u32 rangecount;
1141 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1142 } __packed;
1143 
1144 /* The format must be the same as struct vmdata_gpa_direct */
1145 struct vmbus_channel_packet_multipage_buffer {
1146 	u16 type;
1147 	u16 dataoffset8;
1148 	u16 length8;
1149 	u16 flags;
1150 	u64 transactionid;
1151 	u32 reserved;
1152 	u32 rangecount;		/* Always 1 in this case */
1153 	struct hv_multipage_buffer range;
1154 } __packed;
1155 
1156 /* The format must be the same as struct vmdata_gpa_direct */
1157 struct vmbus_packet_mpb_array {
1158 	u16 type;
1159 	u16 dataoffset8;
1160 	u16 length8;
1161 	u16 flags;
1162 	u64 transactionid;
1163 	u32 reserved;
1164 	u32 rangecount;         /* Always 1 in this case */
1165 	struct hv_mpb_array range;
1166 } __packed;
1167 
1168 int vmbus_alloc_ring(struct vmbus_channel *channel,
1169 		     u32 send_size, u32 recv_size);
1170 void vmbus_free_ring(struct vmbus_channel *channel);
1171 
1172 int vmbus_connect_ring(struct vmbus_channel *channel,
1173 		       void (*onchannel_callback)(void *context),
1174 		       void *context);
1175 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1176 
1177 extern int vmbus_open(struct vmbus_channel *channel,
1178 			    u32 send_ringbuffersize,
1179 			    u32 recv_ringbuffersize,
1180 			    void *userdata,
1181 			    u32 userdatalen,
1182 			    void (*onchannel_callback)(void *context),
1183 			    void *context);
1184 
1185 extern void vmbus_close(struct vmbus_channel *channel);
1186 
1187 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1188 				  void *buffer,
1189 				  u32 bufferLen,
1190 				  u64 requestid,
1191 				  enum vmbus_packet_type type,
1192 				  u32 flags);
1193 
1194 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1195 					    struct hv_page_buffer pagebuffers[],
1196 					    u32 pagecount,
1197 					    void *buffer,
1198 					    u32 bufferlen,
1199 					    u64 requestid);
1200 
1201 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1202 				     struct vmbus_packet_mpb_array *mpb,
1203 				     u32 desc_size,
1204 				     void *buffer,
1205 				     u32 bufferlen,
1206 				     u64 requestid);
1207 
1208 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1209 				      void *kbuffer,
1210 				      u32 size,
1211 				      u32 *gpadl_handle);
1212 
1213 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1214 				     u32 gpadl_handle);
1215 
1216 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1217 
1218 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1219 				  void *buffer,
1220 				  u32 bufferlen,
1221 				  u32 *buffer_actual_len,
1222 				  u64 *requestid);
1223 
1224 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1225 				     void *buffer,
1226 				     u32 bufferlen,
1227 				     u32 *buffer_actual_len,
1228 				     u64 *requestid);
1229 
1230 
1231 extern void vmbus_ontimer(unsigned long data);
1232 
1233 /* Base driver object */
1234 struct hv_driver {
1235 	const char *name;
1236 
1237 	/*
1238 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1239 	 * channel flag, actually doesn't mean a synthetic device because the
1240 	 * offer's if_type/if_instance can change for every new hvsock
1241 	 * connection.
1242 	 *
1243 	 * However, to facilitate the notification of new-offer/rescind-offer
1244 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1245 	 * a special vmbus device, and hence we need the below flag to
1246 	 * indicate if the driver is the hvsock driver or not: we need to
1247 	 * specially treat the hvosck offer & driver in vmbus_match().
1248 	 */
1249 	bool hvsock;
1250 
1251 	/* the device type supported by this driver */
1252 	guid_t dev_type;
1253 	const struct hv_vmbus_device_id *id_table;
1254 
1255 	struct device_driver driver;
1256 
1257 	/* dynamic device GUID's */
1258 	struct  {
1259 		spinlock_t lock;
1260 		struct list_head list;
1261 	} dynids;
1262 
1263 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1264 	int (*remove)(struct hv_device *);
1265 	void (*shutdown)(struct hv_device *);
1266 
1267 	int (*suspend)(struct hv_device *);
1268 	int (*resume)(struct hv_device *);
1269 
1270 };
1271 
1272 /* Base device object */
1273 struct hv_device {
1274 	/* the device type id of this device */
1275 	guid_t dev_type;
1276 
1277 	/* the device instance id of this device */
1278 	guid_t dev_instance;
1279 	u16 vendor_id;
1280 	u16 device_id;
1281 
1282 	struct device device;
1283 	char *driver_override; /* Driver name to force a match */
1284 
1285 	struct vmbus_channel *channel;
1286 	struct kset	     *channels_kset;
1287 
1288 	/* place holder to keep track of the dir for hv device in debugfs */
1289 	struct dentry *debug_dir;
1290 
1291 };
1292 
1293 
1294 static inline struct hv_device *device_to_hv_device(struct device *d)
1295 {
1296 	return container_of(d, struct hv_device, device);
1297 }
1298 
1299 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1300 {
1301 	return container_of(d, struct hv_driver, driver);
1302 }
1303 
1304 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1305 {
1306 	dev_set_drvdata(&dev->device, data);
1307 }
1308 
1309 static inline void *hv_get_drvdata(struct hv_device *dev)
1310 {
1311 	return dev_get_drvdata(&dev->device);
1312 }
1313 
1314 struct hv_ring_buffer_debug_info {
1315 	u32 current_interrupt_mask;
1316 	u32 current_read_index;
1317 	u32 current_write_index;
1318 	u32 bytes_avail_toread;
1319 	u32 bytes_avail_towrite;
1320 };
1321 
1322 
1323 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1324 				struct hv_ring_buffer_debug_info *debug_info);
1325 
1326 /* Vmbus interface */
1327 #define vmbus_driver_register(driver)	\
1328 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1329 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1330 					 struct module *owner,
1331 					 const char *mod_name);
1332 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1333 
1334 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1335 
1336 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1337 			resource_size_t min, resource_size_t max,
1338 			resource_size_t size, resource_size_t align,
1339 			bool fb_overlap_ok);
1340 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1341 
1342 /*
1343  * GUID definitions of various offer types - services offered to the guest.
1344  */
1345 
1346 /*
1347  * Network GUID
1348  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1349  */
1350 #define HV_NIC_GUID \
1351 	.guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1352 			  0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1353 
1354 /*
1355  * IDE GUID
1356  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1357  */
1358 #define HV_IDE_GUID \
1359 	.guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1360 			  0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1361 
1362 /*
1363  * SCSI GUID
1364  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1365  */
1366 #define HV_SCSI_GUID \
1367 	.guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1368 			  0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1369 
1370 /*
1371  * Shutdown GUID
1372  * {0e0b6031-5213-4934-818b-38d90ced39db}
1373  */
1374 #define HV_SHUTDOWN_GUID \
1375 	.guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1376 			  0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1377 
1378 /*
1379  * Time Synch GUID
1380  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1381  */
1382 #define HV_TS_GUID \
1383 	.guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1384 			  0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1385 
1386 /*
1387  * Heartbeat GUID
1388  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1389  */
1390 #define HV_HEART_BEAT_GUID \
1391 	.guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1392 			  0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1393 
1394 /*
1395  * KVP GUID
1396  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1397  */
1398 #define HV_KVP_GUID \
1399 	.guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1400 			  0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1401 
1402 /*
1403  * Dynamic memory GUID
1404  * {525074dc-8985-46e2-8057-a307dc18a502}
1405  */
1406 #define HV_DM_GUID \
1407 	.guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1408 			  0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1409 
1410 /*
1411  * Mouse GUID
1412  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1413  */
1414 #define HV_MOUSE_GUID \
1415 	.guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1416 			  0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1417 
1418 /*
1419  * Keyboard GUID
1420  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1421  */
1422 #define HV_KBD_GUID \
1423 	.guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1424 			  0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1425 
1426 /*
1427  * VSS (Backup/Restore) GUID
1428  */
1429 #define HV_VSS_GUID \
1430 	.guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1431 			  0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1432 /*
1433  * Synthetic Video GUID
1434  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1435  */
1436 #define HV_SYNTHVID_GUID \
1437 	.guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1438 			  0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1439 
1440 /*
1441  * Synthetic FC GUID
1442  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1443  */
1444 #define HV_SYNTHFC_GUID \
1445 	.guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1446 			  0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1447 
1448 /*
1449  * Guest File Copy Service
1450  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1451  */
1452 
1453 #define HV_FCOPY_GUID \
1454 	.guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1455 			  0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1456 
1457 /*
1458  * NetworkDirect. This is the guest RDMA service.
1459  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1460  */
1461 #define HV_ND_GUID \
1462 	.guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1463 			  0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1464 
1465 /*
1466  * PCI Express Pass Through
1467  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1468  */
1469 
1470 #define HV_PCIE_GUID \
1471 	.guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1472 			  0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1473 
1474 /*
1475  * Linux doesn't support the 3 devices: the first two are for
1476  * Automatic Virtual Machine Activation, and the third is for
1477  * Remote Desktop Virtualization.
1478  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1479  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1480  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1481  */
1482 
1483 #define HV_AVMA1_GUID \
1484 	.guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1485 			  0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1486 
1487 #define HV_AVMA2_GUID \
1488 	.guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1489 			  0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1490 
1491 #define HV_RDV_GUID \
1492 	.guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1493 			  0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1494 
1495 /*
1496  * Common header for Hyper-V ICs
1497  */
1498 
1499 #define ICMSGTYPE_NEGOTIATE		0
1500 #define ICMSGTYPE_HEARTBEAT		1
1501 #define ICMSGTYPE_KVPEXCHANGE		2
1502 #define ICMSGTYPE_SHUTDOWN		3
1503 #define ICMSGTYPE_TIMESYNC		4
1504 #define ICMSGTYPE_VSS			5
1505 #define ICMSGTYPE_FCOPY			7
1506 
1507 #define ICMSGHDRFLAG_TRANSACTION	1
1508 #define ICMSGHDRFLAG_REQUEST		2
1509 #define ICMSGHDRFLAG_RESPONSE		4
1510 
1511 
1512 /*
1513  * While we want to handle util services as regular devices,
1514  * there is only one instance of each of these services; so
1515  * we statically allocate the service specific state.
1516  */
1517 
1518 struct hv_util_service {
1519 	u8 *recv_buffer;
1520 	void *channel;
1521 	void (*util_cb)(void *);
1522 	int (*util_init)(struct hv_util_service *);
1523 	void (*util_deinit)(void);
1524 	int (*util_pre_suspend)(void);
1525 	int (*util_pre_resume)(void);
1526 };
1527 
1528 struct vmbuspipe_hdr {
1529 	u32 flags;
1530 	u32 msgsize;
1531 } __packed;
1532 
1533 struct ic_version {
1534 	u16 major;
1535 	u16 minor;
1536 } __packed;
1537 
1538 struct icmsg_hdr {
1539 	struct ic_version icverframe;
1540 	u16 icmsgtype;
1541 	struct ic_version icvermsg;
1542 	u16 icmsgsize;
1543 	u32 status;
1544 	u8 ictransaction_id;
1545 	u8 icflags;
1546 	u8 reserved[2];
1547 } __packed;
1548 
1549 #define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100
1550 #define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr))
1551 #define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \
1552 	(ICMSG_HDR + sizeof(struct icmsg_negotiate) + \
1553 	 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version)))
1554 
1555 struct icmsg_negotiate {
1556 	u16 icframe_vercnt;
1557 	u16 icmsg_vercnt;
1558 	u32 reserved;
1559 	struct ic_version icversion_data[]; /* any size array */
1560 } __packed;
1561 
1562 struct shutdown_msg_data {
1563 	u32 reason_code;
1564 	u32 timeout_seconds;
1565 	u32 flags;
1566 	u8  display_message[2048];
1567 } __packed;
1568 
1569 struct heartbeat_msg_data {
1570 	u64 seq_num;
1571 	u32 reserved[8];
1572 } __packed;
1573 
1574 /* Time Sync IC defs */
1575 #define ICTIMESYNCFLAG_PROBE	0
1576 #define ICTIMESYNCFLAG_SYNC	1
1577 #define ICTIMESYNCFLAG_SAMPLE	2
1578 
1579 #ifdef __x86_64__
1580 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1581 #else
1582 #define WLTIMEDELTA	116444736000000000LL
1583 #endif
1584 
1585 struct ictimesync_data {
1586 	u64 parenttime;
1587 	u64 childtime;
1588 	u64 roundtriptime;
1589 	u8 flags;
1590 } __packed;
1591 
1592 struct ictimesync_ref_data {
1593 	u64 parenttime;
1594 	u64 vmreferencetime;
1595 	u8 flags;
1596 	char leapflags;
1597 	char stratum;
1598 	u8 reserved[3];
1599 } __packed;
1600 
1601 struct hyperv_service_callback {
1602 	u8 msg_type;
1603 	char *log_msg;
1604 	guid_t data;
1605 	struct vmbus_channel *channel;
1606 	void (*callback)(void *context);
1607 };
1608 
1609 #define MAX_SRV_VER	0x7ffffff
1610 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen,
1611 				const int *fw_version, int fw_vercnt,
1612 				const int *srv_version, int srv_vercnt,
1613 				int *nego_fw_version, int *nego_srv_version);
1614 
1615 void hv_process_channel_removal(struct vmbus_channel *channel);
1616 
1617 void vmbus_setevent(struct vmbus_channel *channel);
1618 /*
1619  * Negotiated version with the Host.
1620  */
1621 
1622 extern __u32 vmbus_proto_version;
1623 
1624 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1625 				  const guid_t *shv_host_servie_id);
1626 int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp);
1627 void vmbus_set_event(struct vmbus_channel *channel);
1628 
1629 /* Get the start of the ring buffer. */
1630 static inline void *
1631 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1632 {
1633 	return ring_info->ring_buffer->buffer;
1634 }
1635 
1636 /*
1637  * Mask off host interrupt callback notifications
1638  */
1639 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1640 {
1641 	rbi->ring_buffer->interrupt_mask = 1;
1642 
1643 	/* make sure mask update is not reordered */
1644 	virt_mb();
1645 }
1646 
1647 /*
1648  * Re-enable host callback and return number of outstanding bytes
1649  */
1650 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1651 {
1652 
1653 	rbi->ring_buffer->interrupt_mask = 0;
1654 
1655 	/* make sure mask update is not reordered */
1656 	virt_mb();
1657 
1658 	/*
1659 	 * Now check to see if the ring buffer is still empty.
1660 	 * If it is not, we raced and we need to process new
1661 	 * incoming messages.
1662 	 */
1663 	return hv_get_bytes_to_read(rbi);
1664 }
1665 
1666 /*
1667  * An API to support in-place processing of incoming VMBUS packets.
1668  */
1669 
1670 /* Get data payload associated with descriptor */
1671 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1672 {
1673 	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1674 }
1675 
1676 /* Get data size associated with descriptor */
1677 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1678 {
1679 	return (desc->len8 << 3) - (desc->offset8 << 3);
1680 }
1681 
1682 
1683 struct vmpacket_descriptor *
1684 hv_pkt_iter_first_raw(struct vmbus_channel *channel);
1685 
1686 struct vmpacket_descriptor *
1687 hv_pkt_iter_first(struct vmbus_channel *channel);
1688 
1689 struct vmpacket_descriptor *
1690 __hv_pkt_iter_next(struct vmbus_channel *channel,
1691 		   const struct vmpacket_descriptor *pkt,
1692 		   bool copy);
1693 
1694 void hv_pkt_iter_close(struct vmbus_channel *channel);
1695 
1696 static inline struct vmpacket_descriptor *
1697 hv_pkt_iter_next_pkt(struct vmbus_channel *channel,
1698 		     const struct vmpacket_descriptor *pkt,
1699 		     bool copy)
1700 {
1701 	struct vmpacket_descriptor *nxt;
1702 
1703 	nxt = __hv_pkt_iter_next(channel, pkt, copy);
1704 	if (!nxt)
1705 		hv_pkt_iter_close(channel);
1706 
1707 	return nxt;
1708 }
1709 
1710 /*
1711  * Get next packet descriptor without copying it out of the ring buffer
1712  * If at end of list, return NULL and update host.
1713  */
1714 static inline struct vmpacket_descriptor *
1715 hv_pkt_iter_next_raw(struct vmbus_channel *channel,
1716 		     const struct vmpacket_descriptor *pkt)
1717 {
1718 	return hv_pkt_iter_next_pkt(channel, pkt, false);
1719 }
1720 
1721 /*
1722  * Get next packet descriptor from iterator
1723  * If at end of list, return NULL and update host.
1724  */
1725 static inline struct vmpacket_descriptor *
1726 hv_pkt_iter_next(struct vmbus_channel *channel,
1727 		 const struct vmpacket_descriptor *pkt)
1728 {
1729 	return hv_pkt_iter_next_pkt(channel, pkt, true);
1730 }
1731 
1732 #define foreach_vmbus_pkt(pkt, channel) \
1733 	for (pkt = hv_pkt_iter_first(channel); pkt; \
1734 	    pkt = hv_pkt_iter_next(channel, pkt))
1735 
1736 /*
1737  * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1738  * sends requests to read and write blocks. Each block must be 128 bytes or
1739  * smaller. Optionally, the VF driver can register a callback function which
1740  * will be invoked when the host says that one or more of the first 64 block
1741  * IDs is "invalid" which means that the VF driver should reread them.
1742  */
1743 #define HV_CONFIG_BLOCK_SIZE_MAX 128
1744 
1745 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1746 			unsigned int block_id, unsigned int *bytes_returned);
1747 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1748 			 unsigned int block_id);
1749 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1750 				void (*block_invalidate)(void *context,
1751 							 u64 block_mask));
1752 
1753 struct hyperv_pci_block_ops {
1754 	int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1755 			  unsigned int block_id, unsigned int *bytes_returned);
1756 	int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1757 			   unsigned int block_id);
1758 	int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1759 				  void (*block_invalidate)(void *context,
1760 							   u64 block_mask));
1761 };
1762 
1763 extern struct hyperv_pci_block_ops hvpci_block_ops;
1764 
1765 static inline unsigned long virt_to_hvpfn(void *addr)
1766 {
1767 	phys_addr_t paddr;
1768 
1769 	if (is_vmalloc_addr(addr))
1770 		paddr = page_to_phys(vmalloc_to_page(addr)) +
1771 				     offset_in_page(addr);
1772 	else
1773 		paddr = __pa(addr);
1774 
1775 	return  paddr >> HV_HYP_PAGE_SHIFT;
1776 }
1777 
1778 #define NR_HV_HYP_PAGES_IN_PAGE	(PAGE_SIZE / HV_HYP_PAGE_SIZE)
1779 #define offset_in_hvpage(ptr)	((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK)
1780 #define HVPFN_UP(x)	(((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT)
1781 #define HVPFN_DOWN(x)	((x) >> HV_HYP_PAGE_SHIFT)
1782 #define page_to_hvpfn(page)	(page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE)
1783 
1784 #endif /* _HYPERV_H */
1785