1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Copyright 2013 Red Hat Inc. 4 * 5 * Authors: Jérôme Glisse <jglisse@redhat.com> 6 */ 7 /* 8 * Heterogeneous Memory Management (HMM) 9 * 10 * See Documentation/vm/hmm.rst for reasons and overview of what HMM is and it 11 * is for. Here we focus on the HMM API description, with some explanation of 12 * the underlying implementation. 13 * 14 * Short description: HMM provides a set of helpers to share a virtual address 15 * space between CPU and a device, so that the device can access any valid 16 * address of the process (while still obeying memory protection). HMM also 17 * provides helpers to migrate process memory to device memory, and back. Each 18 * set of functionality (address space mirroring, and migration to and from 19 * device memory) can be used independently of the other. 20 * 21 * 22 * HMM address space mirroring API: 23 * 24 * Use HMM address space mirroring if you want to mirror a range of the CPU 25 * page tables of a process into a device page table. Here, "mirror" means "keep 26 * synchronized". Prerequisites: the device must provide the ability to write- 27 * protect its page tables (at PAGE_SIZE granularity), and must be able to 28 * recover from the resulting potential page faults. 29 * 30 * HMM guarantees that at any point in time, a given virtual address points to 31 * either the same memory in both CPU and device page tables (that is: CPU and 32 * device page tables each point to the same pages), or that one page table (CPU 33 * or device) points to no entry, while the other still points to the old page 34 * for the address. The latter case happens when the CPU page table update 35 * happens first, and then the update is mirrored over to the device page table. 36 * This does not cause any issue, because the CPU page table cannot start 37 * pointing to a new page until the device page table is invalidated. 38 * 39 * HMM uses mmu_notifiers to monitor the CPU page tables, and forwards any 40 * updates to each device driver that has registered a mirror. It also provides 41 * some API calls to help with taking a snapshot of the CPU page table, and to 42 * synchronize with any updates that might happen concurrently. 43 * 44 * 45 * HMM migration to and from device memory: 46 * 47 * HMM provides a set of helpers to hotplug device memory as ZONE_DEVICE, with 48 * a new MEMORY_DEVICE_PRIVATE type. This provides a struct page for each page 49 * of the device memory, and allows the device driver to manage its memory 50 * using those struct pages. Having struct pages for device memory makes 51 * migration easier. Because that memory is not addressable by the CPU it must 52 * never be pinned to the device; in other words, any CPU page fault can always 53 * cause the device memory to be migrated (copied/moved) back to regular memory. 54 * 55 * A new migrate helper (migrate_vma()) has been added (see mm/migrate.c) that 56 * allows use of a device DMA engine to perform the copy operation between 57 * regular system memory and device memory. 58 */ 59 #ifndef LINUX_HMM_H 60 #define LINUX_HMM_H 61 62 #include <linux/kconfig.h> 63 #include <asm/pgtable.h> 64 65 #ifdef CONFIG_HMM_MIRROR 66 67 #include <linux/device.h> 68 #include <linux/migrate.h> 69 #include <linux/memremap.h> 70 #include <linux/completion.h> 71 #include <linux/mmu_notifier.h> 72 73 74 /* 75 * struct hmm - HMM per mm struct 76 * 77 * @mm: mm struct this HMM struct is bound to 78 * @lock: lock protecting ranges list 79 * @ranges: list of range being snapshotted 80 * @mirrors: list of mirrors for this mm 81 * @mmu_notifier: mmu notifier to track updates to CPU page table 82 * @mirrors_sem: read/write semaphore protecting the mirrors list 83 * @wq: wait queue for user waiting on a range invalidation 84 * @notifiers: count of active mmu notifiers 85 */ 86 struct hmm { 87 struct mm_struct *mm; 88 struct kref kref; 89 spinlock_t ranges_lock; 90 struct list_head ranges; 91 struct list_head mirrors; 92 struct mmu_notifier mmu_notifier; 93 struct rw_semaphore mirrors_sem; 94 wait_queue_head_t wq; 95 struct rcu_head rcu; 96 long notifiers; 97 }; 98 99 /* 100 * hmm_pfn_flag_e - HMM flag enums 101 * 102 * Flags: 103 * HMM_PFN_VALID: pfn is valid. It has, at least, read permission. 104 * HMM_PFN_WRITE: CPU page table has write permission set 105 * HMM_PFN_DEVICE_PRIVATE: private device memory (ZONE_DEVICE) 106 * 107 * The driver provides a flags array for mapping page protections to device 108 * PTE bits. If the driver valid bit for an entry is bit 3, 109 * i.e., (entry & (1 << 3)), then the driver must provide 110 * an array in hmm_range.flags with hmm_range.flags[HMM_PFN_VALID] == 1 << 3. 111 * Same logic apply to all flags. This is the same idea as vm_page_prot in vma 112 * except that this is per device driver rather than per architecture. 113 */ 114 enum hmm_pfn_flag_e { 115 HMM_PFN_VALID = 0, 116 HMM_PFN_WRITE, 117 HMM_PFN_DEVICE_PRIVATE, 118 HMM_PFN_FLAG_MAX 119 }; 120 121 /* 122 * hmm_pfn_value_e - HMM pfn special value 123 * 124 * Flags: 125 * HMM_PFN_ERROR: corresponding CPU page table entry points to poisoned memory 126 * HMM_PFN_NONE: corresponding CPU page table entry is pte_none() 127 * HMM_PFN_SPECIAL: corresponding CPU page table entry is special; i.e., the 128 * result of vmf_insert_pfn() or vm_insert_page(). Therefore, it should not 129 * be mirrored by a device, because the entry will never have HMM_PFN_VALID 130 * set and the pfn value is undefined. 131 * 132 * Driver provides values for none entry, error entry, and special entry. 133 * Driver can alias (i.e., use same value) error and special, but 134 * it should not alias none with error or special. 135 * 136 * HMM pfn value returned by hmm_vma_get_pfns() or hmm_vma_fault() will be: 137 * hmm_range.values[HMM_PFN_ERROR] if CPU page table entry is poisonous, 138 * hmm_range.values[HMM_PFN_NONE] if there is no CPU page table entry, 139 * hmm_range.values[HMM_PFN_SPECIAL] if CPU page table entry is a special one 140 */ 141 enum hmm_pfn_value_e { 142 HMM_PFN_ERROR, 143 HMM_PFN_NONE, 144 HMM_PFN_SPECIAL, 145 HMM_PFN_VALUE_MAX 146 }; 147 148 /* 149 * struct hmm_range - track invalidation lock on virtual address range 150 * 151 * @hmm: the core HMM structure this range is active against 152 * @vma: the vm area struct for the range 153 * @list: all range lock are on a list 154 * @start: range virtual start address (inclusive) 155 * @end: range virtual end address (exclusive) 156 * @pfns: array of pfns (big enough for the range) 157 * @flags: pfn flags to match device driver page table 158 * @values: pfn value for some special case (none, special, error, ...) 159 * @default_flags: default flags for the range (write, read, ... see hmm doc) 160 * @pfn_flags_mask: allows to mask pfn flags so that only default_flags matter 161 * @page_shift: device virtual address shift value (should be >= PAGE_SHIFT) 162 * @pfn_shifts: pfn shift value (should be <= PAGE_SHIFT) 163 * @valid: pfns array did not change since it has been fill by an HMM function 164 */ 165 struct hmm_range { 166 struct hmm *hmm; 167 struct vm_area_struct *vma; 168 struct list_head list; 169 unsigned long start; 170 unsigned long end; 171 uint64_t *pfns; 172 const uint64_t *flags; 173 const uint64_t *values; 174 uint64_t default_flags; 175 uint64_t pfn_flags_mask; 176 uint8_t page_shift; 177 uint8_t pfn_shift; 178 bool valid; 179 }; 180 181 /* 182 * hmm_range_page_shift() - return the page shift for the range 183 * @range: range being queried 184 * Return: page shift (page size = 1 << page shift) for the range 185 */ 186 static inline unsigned hmm_range_page_shift(const struct hmm_range *range) 187 { 188 return range->page_shift; 189 } 190 191 /* 192 * hmm_range_page_size() - return the page size for the range 193 * @range: range being queried 194 * Return: page size for the range in bytes 195 */ 196 static inline unsigned long hmm_range_page_size(const struct hmm_range *range) 197 { 198 return 1UL << hmm_range_page_shift(range); 199 } 200 201 /* 202 * hmm_range_wait_until_valid() - wait for range to be valid 203 * @range: range affected by invalidation to wait on 204 * @timeout: time out for wait in ms (ie abort wait after that period of time) 205 * Return: true if the range is valid, false otherwise. 206 */ 207 static inline bool hmm_range_wait_until_valid(struct hmm_range *range, 208 unsigned long timeout) 209 { 210 return wait_event_timeout(range->hmm->wq, range->valid, 211 msecs_to_jiffies(timeout)) != 0; 212 } 213 214 /* 215 * hmm_range_valid() - test if a range is valid or not 216 * @range: range 217 * Return: true if the range is valid, false otherwise. 218 */ 219 static inline bool hmm_range_valid(struct hmm_range *range) 220 { 221 return range->valid; 222 } 223 224 /* 225 * hmm_device_entry_to_page() - return struct page pointed to by a device entry 226 * @range: range use to decode device entry value 227 * @entry: device entry value to get corresponding struct page from 228 * Return: struct page pointer if entry is a valid, NULL otherwise 229 * 230 * If the device entry is valid (ie valid flag set) then return the struct page 231 * matching the entry value. Otherwise return NULL. 232 */ 233 static inline struct page *hmm_device_entry_to_page(const struct hmm_range *range, 234 uint64_t entry) 235 { 236 if (entry == range->values[HMM_PFN_NONE]) 237 return NULL; 238 if (entry == range->values[HMM_PFN_ERROR]) 239 return NULL; 240 if (entry == range->values[HMM_PFN_SPECIAL]) 241 return NULL; 242 if (!(entry & range->flags[HMM_PFN_VALID])) 243 return NULL; 244 return pfn_to_page(entry >> range->pfn_shift); 245 } 246 247 /* 248 * hmm_device_entry_to_pfn() - return pfn value store in a device entry 249 * @range: range use to decode device entry value 250 * @entry: device entry to extract pfn from 251 * Return: pfn value if device entry is valid, -1UL otherwise 252 */ 253 static inline unsigned long 254 hmm_device_entry_to_pfn(const struct hmm_range *range, uint64_t pfn) 255 { 256 if (pfn == range->values[HMM_PFN_NONE]) 257 return -1UL; 258 if (pfn == range->values[HMM_PFN_ERROR]) 259 return -1UL; 260 if (pfn == range->values[HMM_PFN_SPECIAL]) 261 return -1UL; 262 if (!(pfn & range->flags[HMM_PFN_VALID])) 263 return -1UL; 264 return (pfn >> range->pfn_shift); 265 } 266 267 /* 268 * hmm_device_entry_from_page() - create a valid device entry for a page 269 * @range: range use to encode HMM pfn value 270 * @page: page for which to create the device entry 271 * Return: valid device entry for the page 272 */ 273 static inline uint64_t hmm_device_entry_from_page(const struct hmm_range *range, 274 struct page *page) 275 { 276 return (page_to_pfn(page) << range->pfn_shift) | 277 range->flags[HMM_PFN_VALID]; 278 } 279 280 /* 281 * hmm_device_entry_from_pfn() - create a valid device entry value from pfn 282 * @range: range use to encode HMM pfn value 283 * @pfn: pfn value for which to create the device entry 284 * Return: valid device entry for the pfn 285 */ 286 static inline uint64_t hmm_device_entry_from_pfn(const struct hmm_range *range, 287 unsigned long pfn) 288 { 289 return (pfn << range->pfn_shift) | 290 range->flags[HMM_PFN_VALID]; 291 } 292 293 /* 294 * Old API: 295 * hmm_pfn_to_page() 296 * hmm_pfn_to_pfn() 297 * hmm_pfn_from_page() 298 * hmm_pfn_from_pfn() 299 * 300 * This are the OLD API please use new API, it is here to avoid cross-tree 301 * merge painfullness ie we convert things to new API in stages. 302 */ 303 static inline struct page *hmm_pfn_to_page(const struct hmm_range *range, 304 uint64_t pfn) 305 { 306 return hmm_device_entry_to_page(range, pfn); 307 } 308 309 static inline unsigned long hmm_pfn_to_pfn(const struct hmm_range *range, 310 uint64_t pfn) 311 { 312 return hmm_device_entry_to_pfn(range, pfn); 313 } 314 315 static inline uint64_t hmm_pfn_from_page(const struct hmm_range *range, 316 struct page *page) 317 { 318 return hmm_device_entry_from_page(range, page); 319 } 320 321 static inline uint64_t hmm_pfn_from_pfn(const struct hmm_range *range, 322 unsigned long pfn) 323 { 324 return hmm_device_entry_from_pfn(range, pfn); 325 } 326 327 /* 328 * Mirroring: how to synchronize device page table with CPU page table. 329 * 330 * A device driver that is participating in HMM mirroring must always 331 * synchronize with CPU page table updates. For this, device drivers can either 332 * directly use mmu_notifier APIs or they can use the hmm_mirror API. Device 333 * drivers can decide to register one mirror per device per process, or just 334 * one mirror per process for a group of devices. The pattern is: 335 * 336 * int device_bind_address_space(..., struct mm_struct *mm, ...) 337 * { 338 * struct device_address_space *das; 339 * 340 * // Device driver specific initialization, and allocation of das 341 * // which contains an hmm_mirror struct as one of its fields. 342 * ... 343 * 344 * ret = hmm_mirror_register(&das->mirror, mm, &device_mirror_ops); 345 * if (ret) { 346 * // Cleanup on error 347 * return ret; 348 * } 349 * 350 * // Other device driver specific initialization 351 * ... 352 * } 353 * 354 * Once an hmm_mirror is registered for an address space, the device driver 355 * will get callbacks through sync_cpu_device_pagetables() operation (see 356 * hmm_mirror_ops struct). 357 * 358 * Device driver must not free the struct containing the hmm_mirror struct 359 * before calling hmm_mirror_unregister(). The expected usage is to do that when 360 * the device driver is unbinding from an address space. 361 * 362 * 363 * void device_unbind_address_space(struct device_address_space *das) 364 * { 365 * // Device driver specific cleanup 366 * ... 367 * 368 * hmm_mirror_unregister(&das->mirror); 369 * 370 * // Other device driver specific cleanup, and now das can be freed 371 * ... 372 * } 373 */ 374 375 struct hmm_mirror; 376 377 /* 378 * enum hmm_update_event - type of update 379 * @HMM_UPDATE_INVALIDATE: invalidate range (no indication as to why) 380 */ 381 enum hmm_update_event { 382 HMM_UPDATE_INVALIDATE, 383 }; 384 385 /* 386 * struct hmm_update - HMM update information for callback 387 * 388 * @start: virtual start address of the range to update 389 * @end: virtual end address of the range to update 390 * @event: event triggering the update (what is happening) 391 * @blockable: can the callback block/sleep ? 392 */ 393 struct hmm_update { 394 unsigned long start; 395 unsigned long end; 396 enum hmm_update_event event; 397 bool blockable; 398 }; 399 400 /* 401 * struct hmm_mirror_ops - HMM mirror device operations callback 402 * 403 * @update: callback to update range on a device 404 */ 405 struct hmm_mirror_ops { 406 /* release() - release hmm_mirror 407 * 408 * @mirror: pointer to struct hmm_mirror 409 * 410 * This is called when the mm_struct is being released. The callback 411 * must ensure that all access to any pages obtained from this mirror 412 * is halted before the callback returns. All future access should 413 * fault. 414 */ 415 void (*release)(struct hmm_mirror *mirror); 416 417 /* sync_cpu_device_pagetables() - synchronize page tables 418 * 419 * @mirror: pointer to struct hmm_mirror 420 * @update: update information (see struct hmm_update) 421 * Return: -EAGAIN if update.blockable false and callback need to 422 * block, 0 otherwise. 423 * 424 * This callback ultimately originates from mmu_notifiers when the CPU 425 * page table is updated. The device driver must update its page table 426 * in response to this callback. The update argument tells what action 427 * to perform. 428 * 429 * The device driver must not return from this callback until the device 430 * page tables are completely updated (TLBs flushed, etc); this is a 431 * synchronous call. 432 */ 433 int (*sync_cpu_device_pagetables)(struct hmm_mirror *mirror, 434 const struct hmm_update *update); 435 }; 436 437 /* 438 * struct hmm_mirror - mirror struct for a device driver 439 * 440 * @hmm: pointer to struct hmm (which is unique per mm_struct) 441 * @ops: device driver callback for HMM mirror operations 442 * @list: for list of mirrors of a given mm 443 * 444 * Each address space (mm_struct) being mirrored by a device must register one 445 * instance of an hmm_mirror struct with HMM. HMM will track the list of all 446 * mirrors for each mm_struct. 447 */ 448 struct hmm_mirror { 449 struct hmm *hmm; 450 const struct hmm_mirror_ops *ops; 451 struct list_head list; 452 }; 453 454 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm); 455 void hmm_mirror_unregister(struct hmm_mirror *mirror); 456 457 /* 458 * Please see Documentation/vm/hmm.rst for how to use the range API. 459 */ 460 int hmm_range_register(struct hmm_range *range, 461 struct hmm_mirror *mirror, 462 unsigned long start, 463 unsigned long end, 464 unsigned page_shift); 465 void hmm_range_unregister(struct hmm_range *range); 466 long hmm_range_snapshot(struct hmm_range *range); 467 long hmm_range_fault(struct hmm_range *range, bool block); 468 long hmm_range_dma_map(struct hmm_range *range, 469 struct device *device, 470 dma_addr_t *daddrs, 471 bool block); 472 long hmm_range_dma_unmap(struct hmm_range *range, 473 struct vm_area_struct *vma, 474 struct device *device, 475 dma_addr_t *daddrs, 476 bool dirty); 477 478 /* 479 * HMM_RANGE_DEFAULT_TIMEOUT - default timeout (ms) when waiting for a range 480 * 481 * When waiting for mmu notifiers we need some kind of time out otherwise we 482 * could potentialy wait for ever, 1000ms ie 1s sounds like a long time to 483 * wait already. 484 */ 485 #define HMM_RANGE_DEFAULT_TIMEOUT 1000 486 487 /* Below are for HMM internal use only! Not to be used by device driver! */ 488 static inline void hmm_mm_init(struct mm_struct *mm) 489 { 490 mm->hmm = NULL; 491 } 492 #else /* IS_ENABLED(CONFIG_HMM_MIRROR) */ 493 static inline void hmm_mm_init(struct mm_struct *mm) {} 494 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */ 495 496 #endif /* LINUX_HMM_H */ 497