xref: /openbmc/linux/include/linux/filter.h (revision f7875966)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX	0x40
74 
75 /* unused opcode to mark call to interpreter with arguments */
76 #define BPF_CALL_ARGS	0xe0
77 
78 /* unused opcode to mark speculation barrier for mitigating
79  * Speculative Store Bypass
80  */
81 #define BPF_NOSPEC	0xc0
82 
83 /* As per nm, we expose JITed images as text (code) section for
84  * kallsyms. That way, tools like perf can find it to match
85  * addresses.
86  */
87 #define BPF_SYM_ELF_TYPE	't'
88 
89 /* BPF program can access up to 512 bytes of stack space. */
90 #define MAX_BPF_STACK	512
91 
92 /* Helper macros for filter block array initializers. */
93 
94 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
95 
96 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
97 	((struct bpf_insn) {					\
98 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
99 		.dst_reg = DST,					\
100 		.src_reg = SRC,					\
101 		.off   = OFF,					\
102 		.imm   = 0 })
103 
104 #define BPF_ALU64_REG(OP, DST, SRC)				\
105 	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
106 
107 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
108 	((struct bpf_insn) {					\
109 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
110 		.dst_reg = DST,					\
111 		.src_reg = SRC,					\
112 		.off   = OFF,					\
113 		.imm   = 0 })
114 
115 #define BPF_ALU32_REG(OP, DST, SRC)				\
116 	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
117 
118 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
119 
120 #define BPF_ALU64_IMM(OP, DST, IMM)				\
121 	((struct bpf_insn) {					\
122 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
123 		.dst_reg = DST,					\
124 		.src_reg = 0,					\
125 		.off   = 0,					\
126 		.imm   = IMM })
127 
128 #define BPF_ALU32_IMM(OP, DST, IMM)				\
129 	((struct bpf_insn) {					\
130 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
131 		.dst_reg = DST,					\
132 		.src_reg = 0,					\
133 		.off   = 0,					\
134 		.imm   = IMM })
135 
136 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
137 
138 #define BPF_ENDIAN(TYPE, DST, LEN)				\
139 	((struct bpf_insn) {					\
140 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
141 		.dst_reg = DST,					\
142 		.src_reg = 0,					\
143 		.off   = 0,					\
144 		.imm   = LEN })
145 
146 /* Short form of mov, dst_reg = src_reg */
147 
148 #define BPF_MOV64_REG(DST, SRC)					\
149 	((struct bpf_insn) {					\
150 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
151 		.dst_reg = DST,					\
152 		.src_reg = SRC,					\
153 		.off   = 0,					\
154 		.imm   = 0 })
155 
156 #define BPF_MOV32_REG(DST, SRC)					\
157 	((struct bpf_insn) {					\
158 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
159 		.dst_reg = DST,					\
160 		.src_reg = SRC,					\
161 		.off   = 0,					\
162 		.imm   = 0 })
163 
164 /* Short form of mov, dst_reg = imm32 */
165 
166 #define BPF_MOV64_IMM(DST, IMM)					\
167 	((struct bpf_insn) {					\
168 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
169 		.dst_reg = DST,					\
170 		.src_reg = 0,					\
171 		.off   = 0,					\
172 		.imm   = IMM })
173 
174 #define BPF_MOV32_IMM(DST, IMM)					\
175 	((struct bpf_insn) {					\
176 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
177 		.dst_reg = DST,					\
178 		.src_reg = 0,					\
179 		.off   = 0,					\
180 		.imm   = IMM })
181 
182 /* Special form of mov32, used for doing explicit zero extension on dst. */
183 #define BPF_ZEXT_REG(DST)					\
184 	((struct bpf_insn) {					\
185 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
186 		.dst_reg = DST,					\
187 		.src_reg = DST,					\
188 		.off   = 0,					\
189 		.imm   = 1 })
190 
191 static inline bool insn_is_zext(const struct bpf_insn *insn)
192 {
193 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
194 }
195 
196 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
197 #define BPF_LD_IMM64(DST, IMM)					\
198 	BPF_LD_IMM64_RAW(DST, 0, IMM)
199 
200 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
201 	((struct bpf_insn) {					\
202 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
203 		.dst_reg = DST,					\
204 		.src_reg = SRC,					\
205 		.off   = 0,					\
206 		.imm   = (__u32) (IMM) }),			\
207 	((struct bpf_insn) {					\
208 		.code  = 0, /* zero is reserved opcode */	\
209 		.dst_reg = 0,					\
210 		.src_reg = 0,					\
211 		.off   = 0,					\
212 		.imm   = ((__u64) (IMM)) >> 32 })
213 
214 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
215 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
216 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
217 
218 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
219 
220 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
221 	((struct bpf_insn) {					\
222 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
223 		.dst_reg = DST,					\
224 		.src_reg = SRC,					\
225 		.off   = 0,					\
226 		.imm   = IMM })
227 
228 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
229 	((struct bpf_insn) {					\
230 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
231 		.dst_reg = DST,					\
232 		.src_reg = SRC,					\
233 		.off   = 0,					\
234 		.imm   = IMM })
235 
236 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
237 
238 #define BPF_LD_ABS(SIZE, IMM)					\
239 	((struct bpf_insn) {					\
240 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
241 		.dst_reg = 0,					\
242 		.src_reg = 0,					\
243 		.off   = 0,					\
244 		.imm   = IMM })
245 
246 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
247 
248 #define BPF_LD_IND(SIZE, SRC, IMM)				\
249 	((struct bpf_insn) {					\
250 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
251 		.dst_reg = 0,					\
252 		.src_reg = SRC,					\
253 		.off   = 0,					\
254 		.imm   = IMM })
255 
256 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
257 
258 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
259 	((struct bpf_insn) {					\
260 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
261 		.dst_reg = DST,					\
262 		.src_reg = SRC,					\
263 		.off   = OFF,					\
264 		.imm   = 0 })
265 
266 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
267 
268 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
269 	((struct bpf_insn) {					\
270 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
271 		.dst_reg = DST,					\
272 		.src_reg = SRC,					\
273 		.off   = OFF,					\
274 		.imm   = 0 })
275 
276 
277 /*
278  * Atomic operations:
279  *
280  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
281  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
282  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
283  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
284  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
285  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
286  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
287  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
288  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
289  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
290  */
291 
292 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
293 	((struct bpf_insn) {					\
294 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
295 		.dst_reg = DST,					\
296 		.src_reg = SRC,					\
297 		.off   = OFF,					\
298 		.imm   = OP })
299 
300 /* Legacy alias */
301 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
302 
303 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
304 
305 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
306 	((struct bpf_insn) {					\
307 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
308 		.dst_reg = DST,					\
309 		.src_reg = 0,					\
310 		.off   = OFF,					\
311 		.imm   = IMM })
312 
313 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
314 
315 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
316 	((struct bpf_insn) {					\
317 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
318 		.dst_reg = DST,					\
319 		.src_reg = SRC,					\
320 		.off   = OFF,					\
321 		.imm   = 0 })
322 
323 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
324 
325 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
326 	((struct bpf_insn) {					\
327 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
328 		.dst_reg = DST,					\
329 		.src_reg = 0,					\
330 		.off   = OFF,					\
331 		.imm   = IMM })
332 
333 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
334 
335 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
336 	((struct bpf_insn) {					\
337 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
338 		.dst_reg = DST,					\
339 		.src_reg = SRC,					\
340 		.off   = OFF,					\
341 		.imm   = 0 })
342 
343 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
344 
345 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
346 	((struct bpf_insn) {					\
347 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
348 		.dst_reg = DST,					\
349 		.src_reg = 0,					\
350 		.off   = OFF,					\
351 		.imm   = IMM })
352 
353 /* Unconditional jumps, goto pc + off16 */
354 
355 #define BPF_JMP_A(OFF)						\
356 	((struct bpf_insn) {					\
357 		.code  = BPF_JMP | BPF_JA,			\
358 		.dst_reg = 0,					\
359 		.src_reg = 0,					\
360 		.off   = OFF,					\
361 		.imm   = 0 })
362 
363 /* Relative call */
364 
365 #define BPF_CALL_REL(TGT)					\
366 	((struct bpf_insn) {					\
367 		.code  = BPF_JMP | BPF_CALL,			\
368 		.dst_reg = 0,					\
369 		.src_reg = BPF_PSEUDO_CALL,			\
370 		.off   = 0,					\
371 		.imm   = TGT })
372 
373 /* Convert function address to BPF immediate */
374 
375 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
376 
377 #define BPF_EMIT_CALL(FUNC)					\
378 	((struct bpf_insn) {					\
379 		.code  = BPF_JMP | BPF_CALL,			\
380 		.dst_reg = 0,					\
381 		.src_reg = 0,					\
382 		.off   = 0,					\
383 		.imm   = BPF_CALL_IMM(FUNC) })
384 
385 /* Raw code statement block */
386 
387 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
388 	((struct bpf_insn) {					\
389 		.code  = CODE,					\
390 		.dst_reg = DST,					\
391 		.src_reg = SRC,					\
392 		.off   = OFF,					\
393 		.imm   = IMM })
394 
395 /* Program exit */
396 
397 #define BPF_EXIT_INSN()						\
398 	((struct bpf_insn) {					\
399 		.code  = BPF_JMP | BPF_EXIT,			\
400 		.dst_reg = 0,					\
401 		.src_reg = 0,					\
402 		.off   = 0,					\
403 		.imm   = 0 })
404 
405 /* Speculation barrier */
406 
407 #define BPF_ST_NOSPEC()						\
408 	((struct bpf_insn) {					\
409 		.code  = BPF_ST | BPF_NOSPEC,			\
410 		.dst_reg = 0,					\
411 		.src_reg = 0,					\
412 		.off   = 0,					\
413 		.imm   = 0 })
414 
415 /* Internal classic blocks for direct assignment */
416 
417 #define __BPF_STMT(CODE, K)					\
418 	((struct sock_filter) BPF_STMT(CODE, K))
419 
420 #define __BPF_JUMP(CODE, K, JT, JF)				\
421 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
422 
423 #define bytes_to_bpf_size(bytes)				\
424 ({								\
425 	int bpf_size = -EINVAL;					\
426 								\
427 	if (bytes == sizeof(u8))				\
428 		bpf_size = BPF_B;				\
429 	else if (bytes == sizeof(u16))				\
430 		bpf_size = BPF_H;				\
431 	else if (bytes == sizeof(u32))				\
432 		bpf_size = BPF_W;				\
433 	else if (bytes == sizeof(u64))				\
434 		bpf_size = BPF_DW;				\
435 								\
436 	bpf_size;						\
437 })
438 
439 #define bpf_size_to_bytes(bpf_size)				\
440 ({								\
441 	int bytes = -EINVAL;					\
442 								\
443 	if (bpf_size == BPF_B)					\
444 		bytes = sizeof(u8);				\
445 	else if (bpf_size == BPF_H)				\
446 		bytes = sizeof(u16);				\
447 	else if (bpf_size == BPF_W)				\
448 		bytes = sizeof(u32);				\
449 	else if (bpf_size == BPF_DW)				\
450 		bytes = sizeof(u64);				\
451 								\
452 	bytes;							\
453 })
454 
455 #define BPF_SIZEOF(type)					\
456 	({							\
457 		const int __size = bytes_to_bpf_size(sizeof(type)); \
458 		BUILD_BUG_ON(__size < 0);			\
459 		__size;						\
460 	})
461 
462 #define BPF_FIELD_SIZEOF(type, field)				\
463 	({							\
464 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
465 		BUILD_BUG_ON(__size < 0);			\
466 		__size;						\
467 	})
468 
469 #define BPF_LDST_BYTES(insn)					\
470 	({							\
471 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
472 		WARN_ON(__size < 0);				\
473 		__size;						\
474 	})
475 
476 #define __BPF_MAP_0(m, v, ...) v
477 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
478 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
479 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
480 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
481 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
482 
483 #define __BPF_REG_0(...) __BPF_PAD(5)
484 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
485 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
486 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
487 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
488 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
489 
490 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
491 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
492 
493 #define __BPF_CAST(t, a)						       \
494 	(__force t)							       \
495 	(__force							       \
496 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
497 				      (unsigned long)0, (t)0))) a
498 #define __BPF_V void
499 #define __BPF_N
500 
501 #define __BPF_DECL_ARGS(t, a) t   a
502 #define __BPF_DECL_REGS(t, a) u64 a
503 
504 #define __BPF_PAD(n)							       \
505 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
506 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
507 
508 #define BPF_CALL_x(x, name, ...)					       \
509 	static __always_inline						       \
510 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
511 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
512 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
513 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
514 	{								       \
515 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
516 	}								       \
517 	static __always_inline						       \
518 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
519 
520 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
521 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
522 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
523 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
524 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
525 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
526 
527 #define bpf_ctx_range(TYPE, MEMBER)						\
528 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
529 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
530 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
531 #if BITS_PER_LONG == 64
532 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
533 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
534 #else
535 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
536 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
537 #endif /* BITS_PER_LONG == 64 */
538 
539 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
540 	({									\
541 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
542 		*(PTR_SIZE) = (SIZE);						\
543 		offsetof(TYPE, MEMBER);						\
544 	})
545 
546 /* A struct sock_filter is architecture independent. */
547 struct compat_sock_fprog {
548 	u16		len;
549 	compat_uptr_t	filter;	/* struct sock_filter * */
550 };
551 
552 struct sock_fprog_kern {
553 	u16			len;
554 	struct sock_filter	*filter;
555 };
556 
557 /* Some arches need doubleword alignment for their instructions and/or data */
558 #define BPF_IMAGE_ALIGNMENT 8
559 
560 struct bpf_binary_header {
561 	u32 size;
562 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
563 };
564 
565 struct bpf_prog_stats {
566 	u64_stats_t cnt;
567 	u64_stats_t nsecs;
568 	u64_stats_t misses;
569 	struct u64_stats_sync syncp;
570 } __aligned(2 * sizeof(u64));
571 
572 struct sk_filter {
573 	refcount_t	refcnt;
574 	struct rcu_head	rcu;
575 	struct bpf_prog	*prog;
576 };
577 
578 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
579 
580 extern struct mutex nf_conn_btf_access_lock;
581 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
582 				     const struct bpf_reg_state *reg,
583 				     int off, int size);
584 
585 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
586 					  const struct bpf_insn *insnsi,
587 					  unsigned int (*bpf_func)(const void *,
588 								   const struct bpf_insn *));
589 
590 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
591 					  const void *ctx,
592 					  bpf_dispatcher_fn dfunc)
593 {
594 	u32 ret;
595 
596 	cant_migrate();
597 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
598 		struct bpf_prog_stats *stats;
599 		u64 start = sched_clock();
600 		unsigned long flags;
601 
602 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
603 		stats = this_cpu_ptr(prog->stats);
604 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
605 		u64_stats_inc(&stats->cnt);
606 		u64_stats_add(&stats->nsecs, sched_clock() - start);
607 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
608 	} else {
609 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
610 	}
611 	return ret;
612 }
613 
614 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
615 {
616 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
617 }
618 
619 /*
620  * Use in preemptible and therefore migratable context to make sure that
621  * the execution of the BPF program runs on one CPU.
622  *
623  * This uses migrate_disable/enable() explicitly to document that the
624  * invocation of a BPF program does not require reentrancy protection
625  * against a BPF program which is invoked from a preempting task.
626  */
627 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
628 					  const void *ctx)
629 {
630 	u32 ret;
631 
632 	migrate_disable();
633 	ret = bpf_prog_run(prog, ctx);
634 	migrate_enable();
635 	return ret;
636 }
637 
638 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
639 
640 struct bpf_skb_data_end {
641 	struct qdisc_skb_cb qdisc_cb;
642 	void *data_meta;
643 	void *data_end;
644 };
645 
646 struct bpf_nh_params {
647 	u32 nh_family;
648 	union {
649 		u32 ipv4_nh;
650 		struct in6_addr ipv6_nh;
651 	};
652 };
653 
654 struct bpf_redirect_info {
655 	u64 tgt_index;
656 	void *tgt_value;
657 	struct bpf_map *map;
658 	u32 flags;
659 	u32 kern_flags;
660 	u32 map_id;
661 	enum bpf_map_type map_type;
662 	struct bpf_nh_params nh;
663 };
664 
665 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
666 
667 /* flags for bpf_redirect_info kern_flags */
668 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
669 
670 /* Compute the linear packet data range [data, data_end) which
671  * will be accessed by various program types (cls_bpf, act_bpf,
672  * lwt, ...). Subsystems allowing direct data access must (!)
673  * ensure that cb[] area can be written to when BPF program is
674  * invoked (otherwise cb[] save/restore is necessary).
675  */
676 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
677 {
678 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
679 
680 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
681 	cb->data_meta = skb->data - skb_metadata_len(skb);
682 	cb->data_end  = skb->data + skb_headlen(skb);
683 }
684 
685 /* Similar to bpf_compute_data_pointers(), except that save orginal
686  * data in cb->data and cb->meta_data for restore.
687  */
688 static inline void bpf_compute_and_save_data_end(
689 	struct sk_buff *skb, void **saved_data_end)
690 {
691 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
692 
693 	*saved_data_end = cb->data_end;
694 	cb->data_end  = skb->data + skb_headlen(skb);
695 }
696 
697 /* Restore data saved by bpf_compute_data_pointers(). */
698 static inline void bpf_restore_data_end(
699 	struct sk_buff *skb, void *saved_data_end)
700 {
701 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
702 
703 	cb->data_end = saved_data_end;
704 }
705 
706 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
707 {
708 	/* eBPF programs may read/write skb->cb[] area to transfer meta
709 	 * data between tail calls. Since this also needs to work with
710 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
711 	 *
712 	 * In some socket filter cases, the cb unfortunately needs to be
713 	 * saved/restored so that protocol specific skb->cb[] data won't
714 	 * be lost. In any case, due to unpriviledged eBPF programs
715 	 * attached to sockets, we need to clear the bpf_skb_cb() area
716 	 * to not leak previous contents to user space.
717 	 */
718 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
719 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
720 		     sizeof_field(struct qdisc_skb_cb, data));
721 
722 	return qdisc_skb_cb(skb)->data;
723 }
724 
725 /* Must be invoked with migration disabled */
726 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
727 					 const void *ctx)
728 {
729 	const struct sk_buff *skb = ctx;
730 	u8 *cb_data = bpf_skb_cb(skb);
731 	u8 cb_saved[BPF_SKB_CB_LEN];
732 	u32 res;
733 
734 	if (unlikely(prog->cb_access)) {
735 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
736 		memset(cb_data, 0, sizeof(cb_saved));
737 	}
738 
739 	res = bpf_prog_run(prog, skb);
740 
741 	if (unlikely(prog->cb_access))
742 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
743 
744 	return res;
745 }
746 
747 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
748 				       struct sk_buff *skb)
749 {
750 	u32 res;
751 
752 	migrate_disable();
753 	res = __bpf_prog_run_save_cb(prog, skb);
754 	migrate_enable();
755 	return res;
756 }
757 
758 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
759 					struct sk_buff *skb)
760 {
761 	u8 *cb_data = bpf_skb_cb(skb);
762 	u32 res;
763 
764 	if (unlikely(prog->cb_access))
765 		memset(cb_data, 0, BPF_SKB_CB_LEN);
766 
767 	res = bpf_prog_run_pin_on_cpu(prog, skb);
768 	return res;
769 }
770 
771 DECLARE_BPF_DISPATCHER(xdp)
772 
773 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
774 
775 u32 xdp_master_redirect(struct xdp_buff *xdp);
776 
777 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
778 
779 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
780 {
781 	return prog->len * sizeof(struct bpf_insn);
782 }
783 
784 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
785 {
786 	return round_up(bpf_prog_insn_size(prog) +
787 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
788 }
789 
790 static inline unsigned int bpf_prog_size(unsigned int proglen)
791 {
792 	return max(sizeof(struct bpf_prog),
793 		   offsetof(struct bpf_prog, insns[proglen]));
794 }
795 
796 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
797 {
798 	/* When classic BPF programs have been loaded and the arch
799 	 * does not have a classic BPF JIT (anymore), they have been
800 	 * converted via bpf_migrate_filter() to eBPF and thus always
801 	 * have an unspec program type.
802 	 */
803 	return prog->type == BPF_PROG_TYPE_UNSPEC;
804 }
805 
806 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
807 {
808 	const u32 size_machine = sizeof(unsigned long);
809 
810 	if (size > size_machine && size % size_machine == 0)
811 		size = size_machine;
812 
813 	return size;
814 }
815 
816 static inline bool
817 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
818 {
819 	return size <= size_default && (size & (size - 1)) == 0;
820 }
821 
822 static inline u8
823 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
824 {
825 	u8 access_off = off & (size_default - 1);
826 
827 #ifdef __LITTLE_ENDIAN
828 	return access_off;
829 #else
830 	return size_default - (access_off + size);
831 #endif
832 }
833 
834 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
835 	(size == sizeof(__u64) &&					\
836 	off >= offsetof(type, field) &&					\
837 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
838 	off % sizeof(__u64) == 0)
839 
840 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
841 
842 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
843 {
844 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
845 	if (!fp->jited) {
846 		set_vm_flush_reset_perms(fp);
847 		set_memory_ro((unsigned long)fp, fp->pages);
848 	}
849 #endif
850 }
851 
852 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
853 {
854 	set_vm_flush_reset_perms(hdr);
855 	set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
856 }
857 
858 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
859 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
860 {
861 	return sk_filter_trim_cap(sk, skb, 1);
862 }
863 
864 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
865 void bpf_prog_free(struct bpf_prog *fp);
866 
867 bool bpf_opcode_in_insntable(u8 code);
868 
869 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
870 			       const u32 *insn_to_jit_off);
871 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
872 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
873 
874 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
875 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
876 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
877 				  gfp_t gfp_extra_flags);
878 void __bpf_prog_free(struct bpf_prog *fp);
879 
880 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
881 {
882 	__bpf_prog_free(fp);
883 }
884 
885 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
886 				       unsigned int flen);
887 
888 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
889 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
890 			      bpf_aux_classic_check_t trans, bool save_orig);
891 void bpf_prog_destroy(struct bpf_prog *fp);
892 
893 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
894 int sk_attach_bpf(u32 ufd, struct sock *sk);
895 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
896 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
897 void sk_reuseport_prog_free(struct bpf_prog *prog);
898 int sk_detach_filter(struct sock *sk);
899 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
900 
901 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
902 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
903 
904 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
905 #define __bpf_call_base_args \
906 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
907 	 (void *)__bpf_call_base)
908 
909 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
910 void bpf_jit_compile(struct bpf_prog *prog);
911 bool bpf_jit_needs_zext(void);
912 bool bpf_jit_supports_subprog_tailcalls(void);
913 bool bpf_jit_supports_kfunc_call(void);
914 bool bpf_jit_supports_far_kfunc_call(void);
915 bool bpf_helper_changes_pkt_data(void *func);
916 
917 static inline bool bpf_dump_raw_ok(const struct cred *cred)
918 {
919 	/* Reconstruction of call-sites is dependent on kallsyms,
920 	 * thus make dump the same restriction.
921 	 */
922 	return kallsyms_show_value(cred);
923 }
924 
925 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
926 				       const struct bpf_insn *patch, u32 len);
927 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
928 
929 void bpf_clear_redirect_map(struct bpf_map *map);
930 
931 static inline bool xdp_return_frame_no_direct(void)
932 {
933 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
934 
935 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
936 }
937 
938 static inline void xdp_set_return_frame_no_direct(void)
939 {
940 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
941 
942 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
943 }
944 
945 static inline void xdp_clear_return_frame_no_direct(void)
946 {
947 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
948 
949 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
950 }
951 
952 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
953 				 unsigned int pktlen)
954 {
955 	unsigned int len;
956 
957 	if (unlikely(!(fwd->flags & IFF_UP)))
958 		return -ENETDOWN;
959 
960 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
961 	if (pktlen > len)
962 		return -EMSGSIZE;
963 
964 	return 0;
965 }
966 
967 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
968  * same cpu context. Further for best results no more than a single map
969  * for the do_redirect/do_flush pair should be used. This limitation is
970  * because we only track one map and force a flush when the map changes.
971  * This does not appear to be a real limitation for existing software.
972  */
973 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
974 			    struct xdp_buff *xdp, struct bpf_prog *prog);
975 int xdp_do_redirect(struct net_device *dev,
976 		    struct xdp_buff *xdp,
977 		    struct bpf_prog *prog);
978 int xdp_do_redirect_frame(struct net_device *dev,
979 			  struct xdp_buff *xdp,
980 			  struct xdp_frame *xdpf,
981 			  struct bpf_prog *prog);
982 void xdp_do_flush(void);
983 
984 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
985  * it is no longer only flushing maps. Keep this define for compatibility
986  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
987  */
988 #define xdp_do_flush_map xdp_do_flush
989 
990 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
991 
992 #ifdef CONFIG_INET
993 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
994 				  struct bpf_prog *prog, struct sk_buff *skb,
995 				  struct sock *migrating_sk,
996 				  u32 hash);
997 #else
998 static inline struct sock *
999 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1000 		     struct bpf_prog *prog, struct sk_buff *skb,
1001 		     struct sock *migrating_sk,
1002 		     u32 hash)
1003 {
1004 	return NULL;
1005 }
1006 #endif
1007 
1008 #ifdef CONFIG_BPF_JIT
1009 extern int bpf_jit_enable;
1010 extern int bpf_jit_harden;
1011 extern int bpf_jit_kallsyms;
1012 extern long bpf_jit_limit;
1013 extern long bpf_jit_limit_max;
1014 
1015 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1016 
1017 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1018 
1019 struct bpf_binary_header *
1020 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1021 		     unsigned int alignment,
1022 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1023 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1024 u64 bpf_jit_alloc_exec_limit(void);
1025 void *bpf_jit_alloc_exec(unsigned long size);
1026 void bpf_jit_free_exec(void *addr);
1027 void bpf_jit_free(struct bpf_prog *fp);
1028 struct bpf_binary_header *
1029 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1030 
1031 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1032 void bpf_prog_pack_free(struct bpf_binary_header *hdr);
1033 
1034 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1035 {
1036 	return list_empty(&fp->aux->ksym.lnode) ||
1037 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
1038 }
1039 
1040 struct bpf_binary_header *
1041 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1042 			  unsigned int alignment,
1043 			  struct bpf_binary_header **rw_hdr,
1044 			  u8 **rw_image,
1045 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1046 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1047 				 struct bpf_binary_header *ro_header,
1048 				 struct bpf_binary_header *rw_header);
1049 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1050 			      struct bpf_binary_header *rw_header);
1051 
1052 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1053 				struct bpf_jit_poke_descriptor *poke);
1054 
1055 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1056 			  const struct bpf_insn *insn, bool extra_pass,
1057 			  u64 *func_addr, bool *func_addr_fixed);
1058 
1059 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1060 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1061 
1062 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1063 				u32 pass, void *image)
1064 {
1065 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1066 	       proglen, pass, image, current->comm, task_pid_nr(current));
1067 
1068 	if (image)
1069 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1070 			       16, 1, image, proglen, false);
1071 }
1072 
1073 static inline bool bpf_jit_is_ebpf(void)
1074 {
1075 # ifdef CONFIG_HAVE_EBPF_JIT
1076 	return true;
1077 # else
1078 	return false;
1079 # endif
1080 }
1081 
1082 static inline bool ebpf_jit_enabled(void)
1083 {
1084 	return bpf_jit_enable && bpf_jit_is_ebpf();
1085 }
1086 
1087 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1088 {
1089 	return fp->jited && bpf_jit_is_ebpf();
1090 }
1091 
1092 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1093 {
1094 	/* These are the prerequisites, should someone ever have the
1095 	 * idea to call blinding outside of them, we make sure to
1096 	 * bail out.
1097 	 */
1098 	if (!bpf_jit_is_ebpf())
1099 		return false;
1100 	if (!prog->jit_requested)
1101 		return false;
1102 	if (!bpf_jit_harden)
1103 		return false;
1104 	if (bpf_jit_harden == 1 && bpf_capable())
1105 		return false;
1106 
1107 	return true;
1108 }
1109 
1110 static inline bool bpf_jit_kallsyms_enabled(void)
1111 {
1112 	/* There are a couple of corner cases where kallsyms should
1113 	 * not be enabled f.e. on hardening.
1114 	 */
1115 	if (bpf_jit_harden)
1116 		return false;
1117 	if (!bpf_jit_kallsyms)
1118 		return false;
1119 	if (bpf_jit_kallsyms == 1)
1120 		return true;
1121 
1122 	return false;
1123 }
1124 
1125 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1126 				 unsigned long *off, char *sym);
1127 bool is_bpf_text_address(unsigned long addr);
1128 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1129 		    char *sym);
1130 
1131 static inline const char *
1132 bpf_address_lookup(unsigned long addr, unsigned long *size,
1133 		   unsigned long *off, char **modname, char *sym)
1134 {
1135 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1136 
1137 	if (ret && modname)
1138 		*modname = NULL;
1139 	return ret;
1140 }
1141 
1142 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1143 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1144 
1145 #else /* CONFIG_BPF_JIT */
1146 
1147 static inline bool ebpf_jit_enabled(void)
1148 {
1149 	return false;
1150 }
1151 
1152 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1153 {
1154 	return false;
1155 }
1156 
1157 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1158 {
1159 	return false;
1160 }
1161 
1162 static inline int
1163 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1164 			    struct bpf_jit_poke_descriptor *poke)
1165 {
1166 	return -ENOTSUPP;
1167 }
1168 
1169 static inline void bpf_jit_free(struct bpf_prog *fp)
1170 {
1171 	bpf_prog_unlock_free(fp);
1172 }
1173 
1174 static inline bool bpf_jit_kallsyms_enabled(void)
1175 {
1176 	return false;
1177 }
1178 
1179 static inline const char *
1180 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1181 		     unsigned long *off, char *sym)
1182 {
1183 	return NULL;
1184 }
1185 
1186 static inline bool is_bpf_text_address(unsigned long addr)
1187 {
1188 	return false;
1189 }
1190 
1191 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1192 				  char *type, char *sym)
1193 {
1194 	return -ERANGE;
1195 }
1196 
1197 static inline const char *
1198 bpf_address_lookup(unsigned long addr, unsigned long *size,
1199 		   unsigned long *off, char **modname, char *sym)
1200 {
1201 	return NULL;
1202 }
1203 
1204 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1205 {
1206 }
1207 
1208 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1209 {
1210 }
1211 
1212 #endif /* CONFIG_BPF_JIT */
1213 
1214 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1215 
1216 #define BPF_ANC		BIT(15)
1217 
1218 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1219 {
1220 	switch (first->code) {
1221 	case BPF_RET | BPF_K:
1222 	case BPF_LD | BPF_W | BPF_LEN:
1223 		return false;
1224 
1225 	case BPF_LD | BPF_W | BPF_ABS:
1226 	case BPF_LD | BPF_H | BPF_ABS:
1227 	case BPF_LD | BPF_B | BPF_ABS:
1228 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1229 			return true;
1230 		return false;
1231 
1232 	default:
1233 		return true;
1234 	}
1235 }
1236 
1237 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1238 {
1239 	BUG_ON(ftest->code & BPF_ANC);
1240 
1241 	switch (ftest->code) {
1242 	case BPF_LD | BPF_W | BPF_ABS:
1243 	case BPF_LD | BPF_H | BPF_ABS:
1244 	case BPF_LD | BPF_B | BPF_ABS:
1245 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1246 				return BPF_ANC | SKF_AD_##CODE
1247 		switch (ftest->k) {
1248 		BPF_ANCILLARY(PROTOCOL);
1249 		BPF_ANCILLARY(PKTTYPE);
1250 		BPF_ANCILLARY(IFINDEX);
1251 		BPF_ANCILLARY(NLATTR);
1252 		BPF_ANCILLARY(NLATTR_NEST);
1253 		BPF_ANCILLARY(MARK);
1254 		BPF_ANCILLARY(QUEUE);
1255 		BPF_ANCILLARY(HATYPE);
1256 		BPF_ANCILLARY(RXHASH);
1257 		BPF_ANCILLARY(CPU);
1258 		BPF_ANCILLARY(ALU_XOR_X);
1259 		BPF_ANCILLARY(VLAN_TAG);
1260 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1261 		BPF_ANCILLARY(PAY_OFFSET);
1262 		BPF_ANCILLARY(RANDOM);
1263 		BPF_ANCILLARY(VLAN_TPID);
1264 		}
1265 		fallthrough;
1266 	default:
1267 		return ftest->code;
1268 	}
1269 }
1270 
1271 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1272 					   int k, unsigned int size);
1273 
1274 static inline int bpf_tell_extensions(void)
1275 {
1276 	return SKF_AD_MAX;
1277 }
1278 
1279 struct bpf_sock_addr_kern {
1280 	struct sock *sk;
1281 	struct sockaddr *uaddr;
1282 	/* Temporary "register" to make indirect stores to nested structures
1283 	 * defined above. We need three registers to make such a store, but
1284 	 * only two (src and dst) are available at convert_ctx_access time
1285 	 */
1286 	u64 tmp_reg;
1287 	void *t_ctx;	/* Attach type specific context. */
1288 };
1289 
1290 struct bpf_sock_ops_kern {
1291 	struct	sock *sk;
1292 	union {
1293 		u32 args[4];
1294 		u32 reply;
1295 		u32 replylong[4];
1296 	};
1297 	struct sk_buff	*syn_skb;
1298 	struct sk_buff	*skb;
1299 	void	*skb_data_end;
1300 	u8	op;
1301 	u8	is_fullsock;
1302 	u8	remaining_opt_len;
1303 	u64	temp;			/* temp and everything after is not
1304 					 * initialized to 0 before calling
1305 					 * the BPF program. New fields that
1306 					 * should be initialized to 0 should
1307 					 * be inserted before temp.
1308 					 * temp is scratch storage used by
1309 					 * sock_ops_convert_ctx_access
1310 					 * as temporary storage of a register.
1311 					 */
1312 };
1313 
1314 struct bpf_sysctl_kern {
1315 	struct ctl_table_header *head;
1316 	struct ctl_table *table;
1317 	void *cur_val;
1318 	size_t cur_len;
1319 	void *new_val;
1320 	size_t new_len;
1321 	int new_updated;
1322 	int write;
1323 	loff_t *ppos;
1324 	/* Temporary "register" for indirect stores to ppos. */
1325 	u64 tmp_reg;
1326 };
1327 
1328 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1329 struct bpf_sockopt_buf {
1330 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1331 };
1332 
1333 struct bpf_sockopt_kern {
1334 	struct sock	*sk;
1335 	u8		*optval;
1336 	u8		*optval_end;
1337 	s32		level;
1338 	s32		optname;
1339 	s32		optlen;
1340 	/* for retval in struct bpf_cg_run_ctx */
1341 	struct task_struct *current_task;
1342 	/* Temporary "register" for indirect stores to ppos. */
1343 	u64		tmp_reg;
1344 };
1345 
1346 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1347 
1348 struct bpf_sk_lookup_kern {
1349 	u16		family;
1350 	u16		protocol;
1351 	__be16		sport;
1352 	u16		dport;
1353 	struct {
1354 		__be32 saddr;
1355 		__be32 daddr;
1356 	} v4;
1357 	struct {
1358 		const struct in6_addr *saddr;
1359 		const struct in6_addr *daddr;
1360 	} v6;
1361 	struct sock	*selected_sk;
1362 	u32		ingress_ifindex;
1363 	bool		no_reuseport;
1364 };
1365 
1366 extern struct static_key_false bpf_sk_lookup_enabled;
1367 
1368 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1369  *
1370  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1371  * SK_DROP. Their meaning is as follows:
1372  *
1373  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1374  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1375  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1376  *
1377  * This macro aggregates return values and selected sockets from
1378  * multiple BPF programs according to following rules in order:
1379  *
1380  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1381  *     macro result is SK_PASS and last ctx.selected_sk is used.
1382  *  2. If any program returned SK_DROP return value,
1383  *     macro result is SK_DROP.
1384  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1385  *
1386  * Caller must ensure that the prog array is non-NULL, and that the
1387  * array as well as the programs it contains remain valid.
1388  */
1389 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1390 	({								\
1391 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1392 		struct bpf_prog_array_item *_item;			\
1393 		struct sock *_selected_sk = NULL;			\
1394 		bool _no_reuseport = false;				\
1395 		struct bpf_prog *_prog;					\
1396 		bool _all_pass = true;					\
1397 		u32 _ret;						\
1398 									\
1399 		migrate_disable();					\
1400 		_item = &(array)->items[0];				\
1401 		while ((_prog = READ_ONCE(_item->prog))) {		\
1402 			/* restore most recent selection */		\
1403 			_ctx->selected_sk = _selected_sk;		\
1404 			_ctx->no_reuseport = _no_reuseport;		\
1405 									\
1406 			_ret = func(_prog, _ctx);			\
1407 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1408 				/* remember last non-NULL socket */	\
1409 				_selected_sk = _ctx->selected_sk;	\
1410 				_no_reuseport = _ctx->no_reuseport;	\
1411 			} else if (_ret == SK_DROP && _all_pass) {	\
1412 				_all_pass = false;			\
1413 			}						\
1414 			_item++;					\
1415 		}							\
1416 		_ctx->selected_sk = _selected_sk;			\
1417 		_ctx->no_reuseport = _no_reuseport;			\
1418 		migrate_enable();					\
1419 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1420 	 })
1421 
1422 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1423 					const __be32 saddr, const __be16 sport,
1424 					const __be32 daddr, const u16 dport,
1425 					const int ifindex, struct sock **psk)
1426 {
1427 	struct bpf_prog_array *run_array;
1428 	struct sock *selected_sk = NULL;
1429 	bool no_reuseport = false;
1430 
1431 	rcu_read_lock();
1432 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1433 	if (run_array) {
1434 		struct bpf_sk_lookup_kern ctx = {
1435 			.family		= AF_INET,
1436 			.protocol	= protocol,
1437 			.v4.saddr	= saddr,
1438 			.v4.daddr	= daddr,
1439 			.sport		= sport,
1440 			.dport		= dport,
1441 			.ingress_ifindex	= ifindex,
1442 		};
1443 		u32 act;
1444 
1445 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1446 		if (act == SK_PASS) {
1447 			selected_sk = ctx.selected_sk;
1448 			no_reuseport = ctx.no_reuseport;
1449 		} else {
1450 			selected_sk = ERR_PTR(-ECONNREFUSED);
1451 		}
1452 	}
1453 	rcu_read_unlock();
1454 	*psk = selected_sk;
1455 	return no_reuseport;
1456 }
1457 
1458 #if IS_ENABLED(CONFIG_IPV6)
1459 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1460 					const struct in6_addr *saddr,
1461 					const __be16 sport,
1462 					const struct in6_addr *daddr,
1463 					const u16 dport,
1464 					const int ifindex, struct sock **psk)
1465 {
1466 	struct bpf_prog_array *run_array;
1467 	struct sock *selected_sk = NULL;
1468 	bool no_reuseport = false;
1469 
1470 	rcu_read_lock();
1471 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1472 	if (run_array) {
1473 		struct bpf_sk_lookup_kern ctx = {
1474 			.family		= AF_INET6,
1475 			.protocol	= protocol,
1476 			.v6.saddr	= saddr,
1477 			.v6.daddr	= daddr,
1478 			.sport		= sport,
1479 			.dport		= dport,
1480 			.ingress_ifindex	= ifindex,
1481 		};
1482 		u32 act;
1483 
1484 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1485 		if (act == SK_PASS) {
1486 			selected_sk = ctx.selected_sk;
1487 			no_reuseport = ctx.no_reuseport;
1488 		} else {
1489 			selected_sk = ERR_PTR(-ECONNREFUSED);
1490 		}
1491 	}
1492 	rcu_read_unlock();
1493 	*psk = selected_sk;
1494 	return no_reuseport;
1495 }
1496 #endif /* IS_ENABLED(CONFIG_IPV6) */
1497 
1498 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1499 						   u64 flags, const u64 flag_mask,
1500 						   void *lookup_elem(struct bpf_map *map, u32 key))
1501 {
1502 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1503 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1504 
1505 	/* Lower bits of the flags are used as return code on lookup failure */
1506 	if (unlikely(flags & ~(action_mask | flag_mask)))
1507 		return XDP_ABORTED;
1508 
1509 	ri->tgt_value = lookup_elem(map, index);
1510 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1511 		/* If the lookup fails we want to clear out the state in the
1512 		 * redirect_info struct completely, so that if an eBPF program
1513 		 * performs multiple lookups, the last one always takes
1514 		 * precedence.
1515 		 */
1516 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1517 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1518 		return flags & action_mask;
1519 	}
1520 
1521 	ri->tgt_index = index;
1522 	ri->map_id = map->id;
1523 	ri->map_type = map->map_type;
1524 
1525 	if (flags & BPF_F_BROADCAST) {
1526 		WRITE_ONCE(ri->map, map);
1527 		ri->flags = flags;
1528 	} else {
1529 		WRITE_ONCE(ri->map, NULL);
1530 		ri->flags = 0;
1531 	}
1532 
1533 	return XDP_REDIRECT;
1534 }
1535 
1536 #ifdef CONFIG_NET
1537 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1538 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1539 			  u32 len, u64 flags);
1540 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1541 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1542 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1543 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1544 		      void *buf, unsigned long len, bool flush);
1545 #else /* CONFIG_NET */
1546 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1547 				       void *to, u32 len)
1548 {
1549 	return -EOPNOTSUPP;
1550 }
1551 
1552 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1553 					const void *from, u32 len, u64 flags)
1554 {
1555 	return -EOPNOTSUPP;
1556 }
1557 
1558 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1559 				       void *buf, u32 len)
1560 {
1561 	return -EOPNOTSUPP;
1562 }
1563 
1564 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1565 					void *buf, u32 len)
1566 {
1567 	return -EOPNOTSUPP;
1568 }
1569 
1570 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1571 {
1572 	return NULL;
1573 }
1574 
1575 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1576 				    unsigned long len, bool flush)
1577 {
1578 }
1579 #endif /* CONFIG_NET */
1580 
1581 #endif /* __LINUX_FILTER_H__ */
1582