xref: /openbmc/linux/include/linux/edac.h (revision 160b8e75)
1 /*
2  * Generic EDAC defs
3  *
4  * Author: Dave Jiang <djiang@mvista.com>
5  *
6  * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7  * the terms of the GNU General Public License version 2. This program
8  * is licensed "as is" without any warranty of any kind, whether express
9  * or implied.
10  *
11  */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14 
15 #include <linux/atomic.h>
16 #include <linux/device.h>
17 #include <linux/completion.h>
18 #include <linux/workqueue.h>
19 #include <linux/debugfs.h>
20 
21 #define EDAC_DEVICE_NAME_LEN	31
22 
23 struct device;
24 
25 #define EDAC_OPSTATE_INVAL	-1
26 #define EDAC_OPSTATE_POLL	0
27 #define EDAC_OPSTATE_NMI	1
28 #define EDAC_OPSTATE_INT	2
29 
30 extern int edac_op_state;
31 
32 struct bus_type *edac_get_sysfs_subsys(void);
33 int edac_get_report_status(void);
34 void edac_set_report_status(int new);
35 
36 enum {
37 	EDAC_REPORTING_ENABLED,
38 	EDAC_REPORTING_DISABLED,
39 	EDAC_REPORTING_FORCE
40 };
41 
42 static inline void opstate_init(void)
43 {
44 	switch (edac_op_state) {
45 	case EDAC_OPSTATE_POLL:
46 	case EDAC_OPSTATE_NMI:
47 		break;
48 	default:
49 		edac_op_state = EDAC_OPSTATE_POLL;
50 	}
51 	return;
52 }
53 
54 /* Max length of a DIMM label*/
55 #define EDAC_MC_LABEL_LEN	31
56 
57 /* Maximum size of the location string */
58 #define LOCATION_SIZE 256
59 
60 /* Defines the maximum number of labels that can be reported */
61 #define EDAC_MAX_LABELS		8
62 
63 /* String used to join two or more labels */
64 #define OTHER_LABEL " or "
65 
66 /**
67  * enum dev_type - describe the type of memory DRAM chips used at the stick
68  * @DEV_UNKNOWN:	Can't be determined, or MC doesn't support detect it
69  * @DEV_X1:		1 bit for data
70  * @DEV_X2:		2 bits for data
71  * @DEV_X4:		4 bits for data
72  * @DEV_X8:		8 bits for data
73  * @DEV_X16:		16 bits for data
74  * @DEV_X32:		32 bits for data
75  * @DEV_X64:		64 bits for data
76  *
77  * Typical values are x4 and x8.
78  */
79 enum dev_type {
80 	DEV_UNKNOWN = 0,
81 	DEV_X1,
82 	DEV_X2,
83 	DEV_X4,
84 	DEV_X8,
85 	DEV_X16,
86 	DEV_X32,		/* Do these parts exist? */
87 	DEV_X64			/* Do these parts exist? */
88 };
89 
90 #define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
91 #define DEV_FLAG_X1		BIT(DEV_X1)
92 #define DEV_FLAG_X2		BIT(DEV_X2)
93 #define DEV_FLAG_X4		BIT(DEV_X4)
94 #define DEV_FLAG_X8		BIT(DEV_X8)
95 #define DEV_FLAG_X16		BIT(DEV_X16)
96 #define DEV_FLAG_X32		BIT(DEV_X32)
97 #define DEV_FLAG_X64		BIT(DEV_X64)
98 
99 /**
100  * enum hw_event_mc_err_type - type of the detected error
101  *
102  * @HW_EVENT_ERR_CORRECTED:	Corrected Error - Indicates that an ECC
103  *				corrected error was detected
104  * @HW_EVENT_ERR_UNCORRECTED:	Uncorrected Error - Indicates an error that
105  *				can't be corrected by ECC, but it is not
106  *				fatal (maybe it is on an unused memory area,
107  *				or the memory controller could recover from
108  *				it for example, by re-trying the operation).
109  * @HW_EVENT_ERR_DEFERRED:	Deferred Error - Indicates an uncorrectable
110  *				error whose handling is not urgent. This could
111  *				be due to hardware data poisoning where the
112  *				system can continue operation until the poisoned
113  *				data is consumed. Preemptive measures may also
114  *				be taken, e.g. offlining pages, etc.
115  * @HW_EVENT_ERR_FATAL:		Fatal Error - Uncorrected error that could not
116  *				be recovered.
117  * @HW_EVENT_ERR_INFO:		Informational - The CPER spec defines a forth
118  *				type of error: informational logs.
119  */
120 enum hw_event_mc_err_type {
121 	HW_EVENT_ERR_CORRECTED,
122 	HW_EVENT_ERR_UNCORRECTED,
123 	HW_EVENT_ERR_DEFERRED,
124 	HW_EVENT_ERR_FATAL,
125 	HW_EVENT_ERR_INFO,
126 };
127 
128 static inline char *mc_event_error_type(const unsigned int err_type)
129 {
130 	switch (err_type) {
131 	case HW_EVENT_ERR_CORRECTED:
132 		return "Corrected";
133 	case HW_EVENT_ERR_UNCORRECTED:
134 		return "Uncorrected";
135 	case HW_EVENT_ERR_DEFERRED:
136 		return "Deferred";
137 	case HW_EVENT_ERR_FATAL:
138 		return "Fatal";
139 	default:
140 	case HW_EVENT_ERR_INFO:
141 		return "Info";
142 	}
143 }
144 
145 /**
146  * enum mem_type - memory types. For a more detailed reference, please see
147  *			http://en.wikipedia.org/wiki/DRAM
148  *
149  * @MEM_EMPTY:		Empty csrow
150  * @MEM_RESERVED:	Reserved csrow type
151  * @MEM_UNKNOWN:	Unknown csrow type
152  * @MEM_FPM:		FPM - Fast Page Mode, used on systems up to 1995.
153  * @MEM_EDO:		EDO - Extended data out, used on systems up to 1998.
154  * @MEM_BEDO:		BEDO - Burst Extended data out, an EDO variant.
155  * @MEM_SDR:		SDR - Single data rate SDRAM
156  *			http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
157  *			They use 3 pins for chip select: Pins 0 and 2 are
158  *			for rank 0; pins 1 and 3 are for rank 1, if the memory
159  *			is dual-rank.
160  * @MEM_RDR:		Registered SDR SDRAM
161  * @MEM_DDR:		Double data rate SDRAM
162  *			http://en.wikipedia.org/wiki/DDR_SDRAM
163  * @MEM_RDDR:		Registered Double data rate SDRAM
164  *			This is a variant of the DDR memories.
165  *			A registered memory has a buffer inside it, hiding
166  *			part of the memory details to the memory controller.
167  * @MEM_RMBS:		Rambus DRAM, used on a few Pentium III/IV controllers.
168  * @MEM_DDR2:		DDR2 RAM, as described at JEDEC JESD79-2F.
169  *			Those memories are labeled as "PC2-" instead of "PC" to
170  *			differentiate from DDR.
171  * @MEM_FB_DDR2:	Fully-Buffered DDR2, as described at JEDEC Std No. 205
172  *			and JESD206.
173  *			Those memories are accessed per DIMM slot, and not by
174  *			a chip select signal.
175  * @MEM_RDDR2:		Registered DDR2 RAM
176  *			This is a variant of the DDR2 memories.
177  * @MEM_XDR:		Rambus XDR
178  *			It is an evolution of the original RAMBUS memories,
179  *			created to compete with DDR2. Weren't used on any
180  *			x86 arch, but cell_edac PPC memory controller uses it.
181  * @MEM_DDR3:		DDR3 RAM
182  * @MEM_RDDR3:		Registered DDR3 RAM
183  *			This is a variant of the DDR3 memories.
184  * @MEM_LRDDR3:		Load-Reduced DDR3 memory.
185  * @MEM_DDR4:		Unbuffered DDR4 RAM
186  * @MEM_RDDR4:		Registered DDR4 RAM
187  *			This is a variant of the DDR4 memories.
188  * @MEM_LRDDR4:		Load-Reduced DDR4 memory.
189  */
190 enum mem_type {
191 	MEM_EMPTY = 0,
192 	MEM_RESERVED,
193 	MEM_UNKNOWN,
194 	MEM_FPM,
195 	MEM_EDO,
196 	MEM_BEDO,
197 	MEM_SDR,
198 	MEM_RDR,
199 	MEM_DDR,
200 	MEM_RDDR,
201 	MEM_RMBS,
202 	MEM_DDR2,
203 	MEM_FB_DDR2,
204 	MEM_RDDR2,
205 	MEM_XDR,
206 	MEM_DDR3,
207 	MEM_RDDR3,
208 	MEM_LRDDR3,
209 	MEM_DDR4,
210 	MEM_RDDR4,
211 	MEM_LRDDR4,
212 };
213 
214 #define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
215 #define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
216 #define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
217 #define MEM_FLAG_FPM		BIT(MEM_FPM)
218 #define MEM_FLAG_EDO		BIT(MEM_EDO)
219 #define MEM_FLAG_BEDO		BIT(MEM_BEDO)
220 #define MEM_FLAG_SDR		BIT(MEM_SDR)
221 #define MEM_FLAG_RDR		BIT(MEM_RDR)
222 #define MEM_FLAG_DDR		BIT(MEM_DDR)
223 #define MEM_FLAG_RDDR		BIT(MEM_RDDR)
224 #define MEM_FLAG_RMBS		BIT(MEM_RMBS)
225 #define MEM_FLAG_DDR2           BIT(MEM_DDR2)
226 #define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
227 #define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
228 #define MEM_FLAG_XDR            BIT(MEM_XDR)
229 #define MEM_FLAG_DDR3           BIT(MEM_DDR3)
230 #define MEM_FLAG_RDDR3          BIT(MEM_RDDR3)
231 #define MEM_FLAG_DDR4           BIT(MEM_DDR4)
232 #define MEM_FLAG_RDDR4          BIT(MEM_RDDR4)
233 #define MEM_FLAG_LRDDR4         BIT(MEM_LRDDR4)
234 
235 /**
236  * enum edac-type - Error Detection and Correction capabilities and mode
237  * @EDAC_UNKNOWN:	Unknown if ECC is available
238  * @EDAC_NONE:		Doesn't support ECC
239  * @EDAC_RESERVED:	Reserved ECC type
240  * @EDAC_PARITY:	Detects parity errors
241  * @EDAC_EC:		Error Checking - no correction
242  * @EDAC_SECDED:	Single bit error correction, Double detection
243  * @EDAC_S2ECD2ED:	Chipkill x2 devices - do these exist?
244  * @EDAC_S4ECD4ED:	Chipkill x4 devices
245  * @EDAC_S8ECD8ED:	Chipkill x8 devices
246  * @EDAC_S16ECD16ED:	Chipkill x16 devices
247  */
248 enum edac_type {
249 	EDAC_UNKNOWN =	0,
250 	EDAC_NONE,
251 	EDAC_RESERVED,
252 	EDAC_PARITY,
253 	EDAC_EC,
254 	EDAC_SECDED,
255 	EDAC_S2ECD2ED,
256 	EDAC_S4ECD4ED,
257 	EDAC_S8ECD8ED,
258 	EDAC_S16ECD16ED,
259 };
260 
261 #define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
262 #define EDAC_FLAG_NONE		BIT(EDAC_NONE)
263 #define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
264 #define EDAC_FLAG_EC		BIT(EDAC_EC)
265 #define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
266 #define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
267 #define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
268 #define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
269 #define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
270 
271 /**
272  * enum scrub_type - scrubbing capabilities
273  * @SCRUB_UNKNOWN:		Unknown if scrubber is available
274  * @SCRUB_NONE:			No scrubber
275  * @SCRUB_SW_PROG:		SW progressive (sequential) scrubbing
276  * @SCRUB_SW_SRC:		Software scrub only errors
277  * @SCRUB_SW_PROG_SRC:		Progressive software scrub from an error
278  * @SCRUB_SW_TUNABLE:		Software scrub frequency is tunable
279  * @SCRUB_HW_PROG:		HW progressive (sequential) scrubbing
280  * @SCRUB_HW_SRC:		Hardware scrub only errors
281  * @SCRUB_HW_PROG_SRC:		Progressive hardware scrub from an error
282  * @SCRUB_HW_TUNABLE:		Hardware scrub frequency is tunable
283  */
284 enum scrub_type {
285 	SCRUB_UNKNOWN =	0,
286 	SCRUB_NONE,
287 	SCRUB_SW_PROG,
288 	SCRUB_SW_SRC,
289 	SCRUB_SW_PROG_SRC,
290 	SCRUB_SW_TUNABLE,
291 	SCRUB_HW_PROG,
292 	SCRUB_HW_SRC,
293 	SCRUB_HW_PROG_SRC,
294 	SCRUB_HW_TUNABLE
295 };
296 
297 #define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
298 #define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC)
299 #define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC)
300 #define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
301 #define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
302 #define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC)
303 #define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC)
304 #define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
305 
306 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
307 
308 /* EDAC internal operation states */
309 #define	OP_ALLOC		0x100
310 #define OP_RUNNING_POLL		0x201
311 #define OP_RUNNING_INTERRUPT	0x202
312 #define OP_RUNNING_POLL_INTR	0x203
313 #define OP_OFFLINE		0x300
314 
315 /**
316  * enum edac_mc_layer - memory controller hierarchy layer
317  *
318  * @EDAC_MC_LAYER_BRANCH:	memory layer is named "branch"
319  * @EDAC_MC_LAYER_CHANNEL:	memory layer is named "channel"
320  * @EDAC_MC_LAYER_SLOT:		memory layer is named "slot"
321  * @EDAC_MC_LAYER_CHIP_SELECT:	memory layer is named "chip select"
322  * @EDAC_MC_LAYER_ALL_MEM:	memory layout is unknown. All memory is mapped
323  *				as a single memory area. This is used when
324  *				retrieving errors from a firmware driven driver.
325  *
326  * This enum is used by the drivers to tell edac_mc_sysfs what name should
327  * be used when describing a memory stick location.
328  */
329 enum edac_mc_layer_type {
330 	EDAC_MC_LAYER_BRANCH,
331 	EDAC_MC_LAYER_CHANNEL,
332 	EDAC_MC_LAYER_SLOT,
333 	EDAC_MC_LAYER_CHIP_SELECT,
334 	EDAC_MC_LAYER_ALL_MEM,
335 };
336 
337 /**
338  * struct edac_mc_layer - describes the memory controller hierarchy
339  * @type:		layer type
340  * @size:		number of components per layer. For example,
341  *			if the channel layer has two channels, size = 2
342  * @is_virt_csrow:	This layer is part of the "csrow" when old API
343  *			compatibility mode is enabled. Otherwise, it is
344  *			a channel
345  */
346 struct edac_mc_layer {
347 	enum edac_mc_layer_type	type;
348 	unsigned		size;
349 	bool			is_virt_csrow;
350 };
351 
352 /*
353  * Maximum number of layers used by the memory controller to uniquely
354  * identify a single memory stick.
355  * NOTE: Changing this constant requires not only to change the constant
356  * below, but also to change the existing code at the core, as there are
357  * some code there that are optimized for 3 layers.
358  */
359 #define EDAC_MAX_LAYERS		3
360 
361 /**
362  * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer
363  *		   array for the element given by [layer0,layer1,layer2]
364  *		   position
365  *
366  * @layers:	a struct edac_mc_layer array, describing how many elements
367  *		were allocated for each layer
368  * @nlayers:	Number of layers at the @layers array
369  * @layer0:	layer0 position
370  * @layer1:	layer1 position. Unused if n_layers < 2
371  * @layer2:	layer2 position. Unused if n_layers < 3
372  *
373  * For 1 layer, this macro returns "var[layer0] - var";
374  *
375  * For 2 layers, this macro is similar to allocate a bi-dimensional array
376  * and to return "var[layer0][layer1] - var";
377  *
378  * For 3 layers, this macro is similar to allocate a tri-dimensional array
379  * and to return "var[layer0][layer1][layer2] - var".
380  *
381  * A loop could be used here to make it more generic, but, as we only have
382  * 3 layers, this is a little faster.
383  *
384  * By design, layers can never be 0 or more than 3. If that ever happens,
385  * a NULL is returned, causing an OOPS during the memory allocation routine,
386  * with would point to the developer that he's doing something wrong.
387  */
388 #define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({		\
389 	int __i;							\
390 	if ((nlayers) == 1)						\
391 		__i = layer0;						\
392 	else if ((nlayers) == 2)					\
393 		__i = (layer1) + ((layers[1]).size * (layer0));		\
394 	else if ((nlayers) == 3)					\
395 		__i = (layer2) + ((layers[2]).size * ((layer1) +	\
396 			    ((layers[1]).size * (layer0))));		\
397 	else								\
398 		__i = -EINVAL;						\
399 	__i;								\
400 })
401 
402 /**
403  * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
404  *		   for the element given by [layer0,layer1,layer2] position
405  *
406  * @layers:	a struct edac_mc_layer array, describing how many elements
407  *		were allocated for each layer
408  * @var:	name of the var where we want to get the pointer
409  *		(like mci->dimms)
410  * @nlayers:	Number of layers at the @layers array
411  * @layer0:	layer0 position
412  * @layer1:	layer1 position. Unused if n_layers < 2
413  * @layer2:	layer2 position. Unused if n_layers < 3
414  *
415  * For 1 layer, this macro returns "var[layer0]";
416  *
417  * For 2 layers, this macro is similar to allocate a bi-dimensional array
418  * and to return "var[layer0][layer1]";
419  *
420  * For 3 layers, this macro is similar to allocate a tri-dimensional array
421  * and to return "var[layer0][layer1][layer2]";
422  */
423 #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({	\
424 	typeof(*var) __p;						\
425 	int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);	\
426 	if (___i < 0)							\
427 		__p = NULL;						\
428 	else								\
429 		__p = (var)[___i];					\
430 	__p;								\
431 })
432 
433 struct dimm_info {
434 	struct device dev;
435 
436 	char label[EDAC_MC_LABEL_LEN + 1];	/* DIMM label on motherboard */
437 
438 	/* Memory location data */
439 	unsigned location[EDAC_MAX_LAYERS];
440 
441 	struct mem_ctl_info *mci;	/* the parent */
442 
443 	u32 grain;		/* granularity of reported error in bytes */
444 	enum dev_type dtype;	/* memory device type */
445 	enum mem_type mtype;	/* memory dimm type */
446 	enum edac_type edac_mode;	/* EDAC mode for this dimm */
447 
448 	u32 nr_pages;			/* number of pages on this dimm */
449 
450 	unsigned csrow, cschannel;	/* Points to the old API data */
451 };
452 
453 /**
454  * struct rank_info - contains the information for one DIMM rank
455  *
456  * @chan_idx:	channel number where the rank is (typically, 0 or 1)
457  * @ce_count:	number of correctable errors for this rank
458  * @csrow:	A pointer to the chip select row structure (the parent
459  *		structure). The location of the rank is given by
460  *		the (csrow->csrow_idx, chan_idx) vector.
461  * @dimm:	A pointer to the DIMM structure, where the DIMM label
462  *		information is stored.
463  *
464  * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
465  *	  This is a bad assumption, but it makes this patch easier. Later
466  *	  patches in this series will fix this issue.
467  */
468 struct rank_info {
469 	int chan_idx;
470 	struct csrow_info *csrow;
471 	struct dimm_info *dimm;
472 
473 	u32 ce_count;		/* Correctable Errors for this csrow */
474 };
475 
476 struct csrow_info {
477 	struct device dev;
478 
479 	/* Used only by edac_mc_find_csrow_by_page() */
480 	unsigned long first_page;	/* first page number in csrow */
481 	unsigned long last_page;	/* last page number in csrow */
482 	unsigned long page_mask;	/* used for interleaving -
483 					 * 0UL for non intlv */
484 
485 	int csrow_idx;			/* the chip-select row */
486 
487 	u32 ue_count;		/* Uncorrectable Errors for this csrow */
488 	u32 ce_count;		/* Correctable Errors for this csrow */
489 
490 	struct mem_ctl_info *mci;	/* the parent */
491 
492 	/* channel information for this csrow */
493 	u32 nr_channels;
494 	struct rank_info **channels;
495 };
496 
497 /*
498  * struct errcount_attribute - used to store the several error counts
499  */
500 struct errcount_attribute_data {
501 	int n_layers;
502 	int pos[EDAC_MAX_LAYERS];
503 	int layer0, layer1, layer2;
504 };
505 
506 /**
507  * struct edac_raw_error_desc - Raw error report structure
508  * @grain:			minimum granularity for an error report, in bytes
509  * @error_count:		number of errors of the same type
510  * @top_layer:			top layer of the error (layer[0])
511  * @mid_layer:			middle layer of the error (layer[1])
512  * @low_layer:			low layer of the error (layer[2])
513  * @page_frame_number:		page where the error happened
514  * @offset_in_page:		page offset
515  * @syndrome:			syndrome of the error (or 0 if unknown or if
516  * 				the syndrome is not applicable)
517  * @msg:			error message
518  * @location:			location of the error
519  * @label:			label of the affected DIMM(s)
520  * @other_detail:		other driver-specific detail about the error
521  * @enable_per_layer_report:	if false, the error affects all layers
522  *				(typically, a memory controller error)
523  */
524 struct edac_raw_error_desc {
525 	/*
526 	 * NOTE: everything before grain won't be cleaned by
527 	 * edac_raw_error_desc_clean()
528 	 */
529 	char location[LOCATION_SIZE];
530 	char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
531 	long grain;
532 
533 	/* the vars below and grain will be cleaned on every new error report */
534 	u16 error_count;
535 	int top_layer;
536 	int mid_layer;
537 	int low_layer;
538 	unsigned long page_frame_number;
539 	unsigned long offset_in_page;
540 	unsigned long syndrome;
541 	const char *msg;
542 	const char *other_detail;
543 	bool enable_per_layer_report;
544 };
545 
546 /* MEMORY controller information structure
547  */
548 struct mem_ctl_info {
549 	struct device			dev;
550 	struct bus_type			*bus;
551 
552 	struct list_head link;	/* for global list of mem_ctl_info structs */
553 
554 	struct module *owner;	/* Module owner of this control struct */
555 
556 	unsigned long mtype_cap;	/* memory types supported by mc */
557 	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
558 	unsigned long edac_cap;	/* configuration capabilities - this is
559 				 * closely related to edac_ctl_cap.  The
560 				 * difference is that the controller may be
561 				 * capable of s4ecd4ed which would be listed
562 				 * in edac_ctl_cap, but if channels aren't
563 				 * capable of s4ecd4ed then the edac_cap would
564 				 * not have that capability.
565 				 */
566 	unsigned long scrub_cap;	/* chipset scrub capabilities */
567 	enum scrub_type scrub_mode;	/* current scrub mode */
568 
569 	/* Translates sdram memory scrub rate given in bytes/sec to the
570 	   internal representation and configures whatever else needs
571 	   to be configured.
572 	 */
573 	int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
574 
575 	/* Get the current sdram memory scrub rate from the internal
576 	   representation and converts it to the closest matching
577 	   bandwidth in bytes/sec.
578 	 */
579 	int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
580 
581 
582 	/* pointer to edac checking routine */
583 	void (*edac_check) (struct mem_ctl_info * mci);
584 
585 	/*
586 	 * Remaps memory pages: controller pages to physical pages.
587 	 * For most MC's, this will be NULL.
588 	 */
589 	/* FIXME - why not send the phys page to begin with? */
590 	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
591 					   unsigned long page);
592 	int mc_idx;
593 	struct csrow_info **csrows;
594 	unsigned nr_csrows, num_cschannel;
595 
596 	/*
597 	 * Memory Controller hierarchy
598 	 *
599 	 * There are basically two types of memory controller: the ones that
600 	 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
601 	 * All old memory controllers enumerate memories per rank, but most
602 	 * of the recent drivers enumerate memories per DIMM, instead.
603 	 * When the memory controller is per rank, csbased is true.
604 	 */
605 	unsigned n_layers;
606 	struct edac_mc_layer *layers;
607 	bool csbased;
608 
609 	/*
610 	 * DIMM info. Will eventually remove the entire csrows_info some day
611 	 */
612 	unsigned tot_dimms;
613 	struct dimm_info **dimms;
614 
615 	/*
616 	 * FIXME - what about controllers on other busses? - IDs must be
617 	 * unique.  dev pointer should be sufficiently unique, but
618 	 * BUS:SLOT.FUNC numbers may not be unique.
619 	 */
620 	struct device *pdev;
621 	const char *mod_name;
622 	const char *ctl_name;
623 	const char *dev_name;
624 	void *pvt_info;
625 	unsigned long start_time;	/* mci load start time (in jiffies) */
626 
627 	/*
628 	 * drivers shouldn't access those fields directly, as the core
629 	 * already handles that.
630 	 */
631 	u32 ce_noinfo_count, ue_noinfo_count;
632 	u32 ue_mc, ce_mc;
633 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
634 
635 	struct completion complete;
636 
637 	/* Additional top controller level attributes, but specified
638 	 * by the low level driver.
639 	 *
640 	 * Set by the low level driver to provide attributes at the
641 	 * controller level.
642 	 * An array of structures, NULL terminated
643 	 *
644 	 * If attributes are desired, then set to array of attributes
645 	 * If no attributes are desired, leave NULL
646 	 */
647 	const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
648 
649 	/* work struct for this MC */
650 	struct delayed_work work;
651 
652 	/*
653 	 * Used to report an error - by being at the global struct
654 	 * makes the memory allocated by the EDAC core
655 	 */
656 	struct edac_raw_error_desc error_desc;
657 
658 	/* the internal state of this controller instance */
659 	int op_state;
660 
661 	struct dentry *debugfs;
662 	u8 fake_inject_layer[EDAC_MAX_LAYERS];
663 	bool fake_inject_ue;
664 	u16 fake_inject_count;
665 };
666 
667 /*
668  * Maximum number of memory controllers in the coherent fabric.
669  */
670 #define EDAC_MAX_MCS	16
671 
672 #endif
673