xref: /openbmc/linux/include/linux/dma-mapping.h (revision c606970d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_DMA_MAPPING_H
3 #define _LINUX_DMA_MAPPING_H
4 
5 #include <linux/sizes.h>
6 #include <linux/string.h>
7 #include <linux/device.h>
8 #include <linux/err.h>
9 #include <linux/dma-direction.h>
10 #include <linux/scatterlist.h>
11 #include <linux/bug.h>
12 #include <linux/mem_encrypt.h>
13 
14 /**
15  * List of possible attributes associated with a DMA mapping. The semantics
16  * of each attribute should be defined in Documentation/core-api/dma-attributes.rst.
17  */
18 
19 /*
20  * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
21  * may be weakly ordered, that is that reads and writes may pass each other.
22  */
23 #define DMA_ATTR_WEAK_ORDERING		(1UL << 1)
24 /*
25  * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
26  * buffered to improve performance.
27  */
28 #define DMA_ATTR_WRITE_COMBINE		(1UL << 2)
29 /*
30  * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
31  * virtual mapping for the allocated buffer.
32  */
33 #define DMA_ATTR_NO_KERNEL_MAPPING	(1UL << 4)
34 /*
35  * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
36  * the CPU cache for the given buffer assuming that it has been already
37  * transferred to 'device' domain.
38  */
39 #define DMA_ATTR_SKIP_CPU_SYNC		(1UL << 5)
40 /*
41  * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
42  * in physical memory.
43  */
44 #define DMA_ATTR_FORCE_CONTIGUOUS	(1UL << 6)
45 /*
46  * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
47  * that it's probably not worth the time to try to allocate memory to in a way
48  * that gives better TLB efficiency.
49  */
50 #define DMA_ATTR_ALLOC_SINGLE_PAGES	(1UL << 7)
51 /*
52  * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
53  * allocation failure reports (similarly to __GFP_NOWARN).
54  */
55 #define DMA_ATTR_NO_WARN	(1UL << 8)
56 
57 /*
58  * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
59  * accessible at an elevated privilege level (and ideally inaccessible or
60  * at least read-only at lesser-privileged levels).
61  */
62 #define DMA_ATTR_PRIVILEGED		(1UL << 9)
63 
64 /*
65  * A dma_addr_t can hold any valid DMA or bus address for the platform.  It can
66  * be given to a device to use as a DMA source or target.  It is specific to a
67  * given device and there may be a translation between the CPU physical address
68  * space and the bus address space.
69  *
70  * DMA_MAPPING_ERROR is the magic error code if a mapping failed.  It should not
71  * be used directly in drivers, but checked for using dma_mapping_error()
72  * instead.
73  */
74 #define DMA_MAPPING_ERROR		(~(dma_addr_t)0)
75 
76 #define DMA_BIT_MASK(n)	(((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
77 
78 #ifdef CONFIG_DMA_API_DEBUG
79 void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr);
80 void debug_dma_map_single(struct device *dev, const void *addr,
81 		unsigned long len);
82 #else
83 static inline void debug_dma_mapping_error(struct device *dev,
84 		dma_addr_t dma_addr)
85 {
86 }
87 static inline void debug_dma_map_single(struct device *dev, const void *addr,
88 		unsigned long len)
89 {
90 }
91 #endif /* CONFIG_DMA_API_DEBUG */
92 
93 #ifdef CONFIG_HAS_DMA
94 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
95 {
96 	debug_dma_mapping_error(dev, dma_addr);
97 
98 	if (dma_addr == DMA_MAPPING_ERROR)
99 		return -ENOMEM;
100 	return 0;
101 }
102 
103 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
104 		size_t offset, size_t size, enum dma_data_direction dir,
105 		unsigned long attrs);
106 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
107 		enum dma_data_direction dir, unsigned long attrs);
108 int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
109 		enum dma_data_direction dir, unsigned long attrs);
110 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
111 				      int nents, enum dma_data_direction dir,
112 				      unsigned long attrs);
113 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
114 		size_t size, enum dma_data_direction dir, unsigned long attrs);
115 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
116 		enum dma_data_direction dir, unsigned long attrs);
117 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
118 		enum dma_data_direction dir);
119 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
120 		size_t size, enum dma_data_direction dir);
121 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
122 		    int nelems, enum dma_data_direction dir);
123 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
124 		       int nelems, enum dma_data_direction dir);
125 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
126 		gfp_t flag, unsigned long attrs);
127 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
128 		dma_addr_t dma_handle, unsigned long attrs);
129 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
130 		gfp_t gfp, unsigned long attrs);
131 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
132 		dma_addr_t dma_handle);
133 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
134 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
135 		unsigned long attrs);
136 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
137 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
138 		unsigned long attrs);
139 bool dma_can_mmap(struct device *dev);
140 int dma_supported(struct device *dev, u64 mask);
141 int dma_set_mask(struct device *dev, u64 mask);
142 int dma_set_coherent_mask(struct device *dev, u64 mask);
143 u64 dma_get_required_mask(struct device *dev);
144 size_t dma_max_mapping_size(struct device *dev);
145 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr);
146 unsigned long dma_get_merge_boundary(struct device *dev);
147 #else /* CONFIG_HAS_DMA */
148 static inline dma_addr_t dma_map_page_attrs(struct device *dev,
149 		struct page *page, size_t offset, size_t size,
150 		enum dma_data_direction dir, unsigned long attrs)
151 {
152 	return DMA_MAPPING_ERROR;
153 }
154 static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr,
155 		size_t size, enum dma_data_direction dir, unsigned long attrs)
156 {
157 }
158 static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
159 		int nents, enum dma_data_direction dir, unsigned long attrs)
160 {
161 	return 0;
162 }
163 static inline void dma_unmap_sg_attrs(struct device *dev,
164 		struct scatterlist *sg, int nents, enum dma_data_direction dir,
165 		unsigned long attrs)
166 {
167 }
168 static inline dma_addr_t dma_map_resource(struct device *dev,
169 		phys_addr_t phys_addr, size_t size, enum dma_data_direction dir,
170 		unsigned long attrs)
171 {
172 	return DMA_MAPPING_ERROR;
173 }
174 static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
175 		size_t size, enum dma_data_direction dir, unsigned long attrs)
176 {
177 }
178 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
179 		size_t size, enum dma_data_direction dir)
180 {
181 }
182 static inline void dma_sync_single_for_device(struct device *dev,
183 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
184 {
185 }
186 static inline void dma_sync_sg_for_cpu(struct device *dev,
187 		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
188 {
189 }
190 static inline void dma_sync_sg_for_device(struct device *dev,
191 		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
192 {
193 }
194 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
195 {
196 	return -ENOMEM;
197 }
198 static inline void *dma_alloc_attrs(struct device *dev, size_t size,
199 		dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
200 {
201 	return NULL;
202 }
203 static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
204 		dma_addr_t dma_handle, unsigned long attrs)
205 {
206 }
207 static inline void *dmam_alloc_attrs(struct device *dev, size_t size,
208 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209 {
210 	return NULL;
211 }
212 static inline void dmam_free_coherent(struct device *dev, size_t size,
213 		void *vaddr, dma_addr_t dma_handle)
214 {
215 }
216 static inline int dma_get_sgtable_attrs(struct device *dev,
217 		struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr,
218 		size_t size, unsigned long attrs)
219 {
220 	return -ENXIO;
221 }
222 static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
223 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
224 		unsigned long attrs)
225 {
226 	return -ENXIO;
227 }
228 static inline bool dma_can_mmap(struct device *dev)
229 {
230 	return false;
231 }
232 static inline int dma_supported(struct device *dev, u64 mask)
233 {
234 	return 0;
235 }
236 static inline int dma_set_mask(struct device *dev, u64 mask)
237 {
238 	return -EIO;
239 }
240 static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
241 {
242 	return -EIO;
243 }
244 static inline u64 dma_get_required_mask(struct device *dev)
245 {
246 	return 0;
247 }
248 static inline size_t dma_max_mapping_size(struct device *dev)
249 {
250 	return 0;
251 }
252 static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
253 {
254 	return false;
255 }
256 static inline unsigned long dma_get_merge_boundary(struct device *dev)
257 {
258 	return 0;
259 }
260 #endif /* CONFIG_HAS_DMA */
261 
262 struct page *dma_alloc_pages(struct device *dev, size_t size,
263 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
264 void dma_free_pages(struct device *dev, size_t size, struct page *page,
265 		dma_addr_t dma_handle, enum dma_data_direction dir);
266 
267 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
268 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
269 {
270 	struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
271 	return page ? page_address(page) : NULL;
272 }
273 
274 static inline void dma_free_noncoherent(struct device *dev, size_t size,
275 		void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir)
276 {
277 	dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
278 }
279 
280 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
281 		size_t size, enum dma_data_direction dir, unsigned long attrs)
282 {
283 	/* DMA must never operate on areas that might be remapped. */
284 	if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr),
285 			  "rejecting DMA map of vmalloc memory\n"))
286 		return DMA_MAPPING_ERROR;
287 	debug_dma_map_single(dev, ptr, size);
288 	return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr),
289 			size, dir, attrs);
290 }
291 
292 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
293 		size_t size, enum dma_data_direction dir, unsigned long attrs)
294 {
295 	return dma_unmap_page_attrs(dev, addr, size, dir, attrs);
296 }
297 
298 static inline void dma_sync_single_range_for_cpu(struct device *dev,
299 		dma_addr_t addr, unsigned long offset, size_t size,
300 		enum dma_data_direction dir)
301 {
302 	return dma_sync_single_for_cpu(dev, addr + offset, size, dir);
303 }
304 
305 static inline void dma_sync_single_range_for_device(struct device *dev,
306 		dma_addr_t addr, unsigned long offset, size_t size,
307 		enum dma_data_direction dir)
308 {
309 	return dma_sync_single_for_device(dev, addr + offset, size, dir);
310 }
311 
312 /**
313  * dma_map_sgtable - Map the given buffer for DMA
314  * @dev:	The device for which to perform the DMA operation
315  * @sgt:	The sg_table object describing the buffer
316  * @dir:	DMA direction
317  * @attrs:	Optional DMA attributes for the map operation
318  *
319  * Maps a buffer described by a scatterlist stored in the given sg_table
320  * object for the @dir DMA operation by the @dev device. After success the
321  * ownership for the buffer is transferred to the DMA domain.  One has to
322  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
323  * ownership of the buffer back to the CPU domain before touching the
324  * buffer by the CPU.
325  *
326  * Returns 0 on success or -EINVAL on error during mapping the buffer.
327  */
328 static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
329 		enum dma_data_direction dir, unsigned long attrs)
330 {
331 	int nents;
332 
333 	nents = dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
334 	if (nents <= 0)
335 		return -EINVAL;
336 	sgt->nents = nents;
337 	return 0;
338 }
339 
340 /**
341  * dma_unmap_sgtable - Unmap the given buffer for DMA
342  * @dev:	The device for which to perform the DMA operation
343  * @sgt:	The sg_table object describing the buffer
344  * @dir:	DMA direction
345  * @attrs:	Optional DMA attributes for the unmap operation
346  *
347  * Unmaps a buffer described by a scatterlist stored in the given sg_table
348  * object for the @dir DMA operation by the @dev device. After this function
349  * the ownership of the buffer is transferred back to the CPU domain.
350  */
351 static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt,
352 		enum dma_data_direction dir, unsigned long attrs)
353 {
354 	dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
355 }
356 
357 /**
358  * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access
359  * @dev:	The device for which to perform the DMA operation
360  * @sgt:	The sg_table object describing the buffer
361  * @dir:	DMA direction
362  *
363  * Performs the needed cache synchronization and moves the ownership of the
364  * buffer back to the CPU domain, so it is safe to perform any access to it
365  * by the CPU. Before doing any further DMA operations, one has to transfer
366  * the ownership of the buffer back to the DMA domain by calling the
367  * dma_sync_sgtable_for_device().
368  */
369 static inline void dma_sync_sgtable_for_cpu(struct device *dev,
370 		struct sg_table *sgt, enum dma_data_direction dir)
371 {
372 	dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir);
373 }
374 
375 /**
376  * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA
377  * @dev:	The device for which to perform the DMA operation
378  * @sgt:	The sg_table object describing the buffer
379  * @dir:	DMA direction
380  *
381  * Performs the needed cache synchronization and moves the ownership of the
382  * buffer back to the DMA domain, so it is safe to perform the DMA operation.
383  * Once finished, one has to call dma_sync_sgtable_for_cpu() or
384  * dma_unmap_sgtable().
385  */
386 static inline void dma_sync_sgtable_for_device(struct device *dev,
387 		struct sg_table *sgt, enum dma_data_direction dir)
388 {
389 	dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir);
390 }
391 
392 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
393 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
394 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
395 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
396 #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
397 #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
398 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
399 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
400 
401 static inline void *dma_alloc_coherent(struct device *dev, size_t size,
402 		dma_addr_t *dma_handle, gfp_t gfp)
403 {
404 
405 	return dma_alloc_attrs(dev, size, dma_handle, gfp,
406 			(gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
407 }
408 
409 static inline void dma_free_coherent(struct device *dev, size_t size,
410 		void *cpu_addr, dma_addr_t dma_handle)
411 {
412 	return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
413 }
414 
415 
416 static inline u64 dma_get_mask(struct device *dev)
417 {
418 	if (dev->dma_mask && *dev->dma_mask)
419 		return *dev->dma_mask;
420 	return DMA_BIT_MASK(32);
421 }
422 
423 /*
424  * Set both the DMA mask and the coherent DMA mask to the same thing.
425  * Note that we don't check the return value from dma_set_coherent_mask()
426  * as the DMA API guarantees that the coherent DMA mask can be set to
427  * the same or smaller than the streaming DMA mask.
428  */
429 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
430 {
431 	int rc = dma_set_mask(dev, mask);
432 	if (rc == 0)
433 		dma_set_coherent_mask(dev, mask);
434 	return rc;
435 }
436 
437 /*
438  * Similar to the above, except it deals with the case where the device
439  * does not have dev->dma_mask appropriately setup.
440  */
441 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
442 {
443 	dev->dma_mask = &dev->coherent_dma_mask;
444 	return dma_set_mask_and_coherent(dev, mask);
445 }
446 
447 /**
448  * dma_addressing_limited - return if the device is addressing limited
449  * @dev:	device to check
450  *
451  * Return %true if the devices DMA mask is too small to address all memory in
452  * the system, else %false.  Lack of addressing bits is the prime reason for
453  * bounce buffering, but might not be the only one.
454  */
455 static inline bool dma_addressing_limited(struct device *dev)
456 {
457 	return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
458 			    dma_get_required_mask(dev);
459 }
460 
461 static inline unsigned int dma_get_max_seg_size(struct device *dev)
462 {
463 	if (dev->dma_parms && dev->dma_parms->max_segment_size)
464 		return dev->dma_parms->max_segment_size;
465 	return SZ_64K;
466 }
467 
468 static inline int dma_set_max_seg_size(struct device *dev, unsigned int size)
469 {
470 	if (dev->dma_parms) {
471 		dev->dma_parms->max_segment_size = size;
472 		return 0;
473 	}
474 	return -EIO;
475 }
476 
477 static inline unsigned long dma_get_seg_boundary(struct device *dev)
478 {
479 	if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
480 		return dev->dma_parms->segment_boundary_mask;
481 	return ULONG_MAX;
482 }
483 
484 /**
485  * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units
486  * @dev: device to guery the boundary for
487  * @page_shift: ilog() of the IOMMU page size
488  *
489  * Return the segment boundary in IOMMU page units (which may be different from
490  * the CPU page size) for the passed in device.
491  *
492  * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for
493  * non-DMA API callers.
494  */
495 static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev,
496 		unsigned int page_shift)
497 {
498 	if (!dev)
499 		return (U32_MAX >> page_shift) + 1;
500 	return (dma_get_seg_boundary(dev) >> page_shift) + 1;
501 }
502 
503 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
504 {
505 	if (dev->dma_parms) {
506 		dev->dma_parms->segment_boundary_mask = mask;
507 		return 0;
508 	}
509 	return -EIO;
510 }
511 
512 static inline unsigned int dma_get_min_align_mask(struct device *dev)
513 {
514 	if (dev->dma_parms)
515 		return dev->dma_parms->min_align_mask;
516 	return 0;
517 }
518 
519 static inline int dma_set_min_align_mask(struct device *dev,
520 		unsigned int min_align_mask)
521 {
522 	if (WARN_ON_ONCE(!dev->dma_parms))
523 		return -EIO;
524 	dev->dma_parms->min_align_mask = min_align_mask;
525 	return 0;
526 }
527 
528 static inline int dma_get_cache_alignment(void)
529 {
530 #ifdef ARCH_DMA_MINALIGN
531 	return ARCH_DMA_MINALIGN;
532 #endif
533 	return 1;
534 }
535 
536 static inline void *dmam_alloc_coherent(struct device *dev, size_t size,
537 		dma_addr_t *dma_handle, gfp_t gfp)
538 {
539 	return dmam_alloc_attrs(dev, size, dma_handle, gfp,
540 			(gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
541 }
542 
543 static inline void *dma_alloc_wc(struct device *dev, size_t size,
544 				 dma_addr_t *dma_addr, gfp_t gfp)
545 {
546 	unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
547 
548 	if (gfp & __GFP_NOWARN)
549 		attrs |= DMA_ATTR_NO_WARN;
550 
551 	return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs);
552 }
553 
554 static inline void dma_free_wc(struct device *dev, size_t size,
555 			       void *cpu_addr, dma_addr_t dma_addr)
556 {
557 	return dma_free_attrs(dev, size, cpu_addr, dma_addr,
558 			      DMA_ATTR_WRITE_COMBINE);
559 }
560 
561 static inline int dma_mmap_wc(struct device *dev,
562 			      struct vm_area_struct *vma,
563 			      void *cpu_addr, dma_addr_t dma_addr,
564 			      size_t size)
565 {
566 	return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
567 			      DMA_ATTR_WRITE_COMBINE);
568 }
569 
570 #ifdef CONFIG_NEED_DMA_MAP_STATE
571 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)        dma_addr_t ADDR_NAME
572 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)          __u32 LEN_NAME
573 #define dma_unmap_addr(PTR, ADDR_NAME)           ((PTR)->ADDR_NAME)
574 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  (((PTR)->ADDR_NAME) = (VAL))
575 #define dma_unmap_len(PTR, LEN_NAME)             ((PTR)->LEN_NAME)
576 #define dma_unmap_len_set(PTR, LEN_NAME, VAL)    (((PTR)->LEN_NAME) = (VAL))
577 #else
578 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
579 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
580 #define dma_unmap_addr(PTR, ADDR_NAME)           (0)
581 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  do { } while (0)
582 #define dma_unmap_len(PTR, LEN_NAME)             (0)
583 #define dma_unmap_len_set(PTR, LEN_NAME, VAL)    do { } while (0)
584 #endif
585 
586 #endif /* _LINUX_DMA_MAPPING_H */
587