xref: /openbmc/linux/include/linux/dma-fence.h (revision fe38b4d6)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Fence mechanism for dma-buf to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12 
13 #ifndef __LINUX_DMA_FENCE_H
14 #define __LINUX_DMA_FENCE_H
15 
16 #include <linux/err.h>
17 #include <linux/wait.h>
18 #include <linux/list.h>
19 #include <linux/bitops.h>
20 #include <linux/kref.h>
21 #include <linux/sched.h>
22 #include <linux/printk.h>
23 #include <linux/rcupdate.h>
24 
25 struct dma_fence;
26 struct dma_fence_ops;
27 struct dma_fence_cb;
28 
29 /**
30  * struct dma_fence - software synchronization primitive
31  * @refcount: refcount for this fence
32  * @ops: dma_fence_ops associated with this fence
33  * @rcu: used for releasing fence with kfree_rcu
34  * @cb_list: list of all callbacks to call
35  * @lock: spin_lock_irqsave used for locking
36  * @context: execution context this fence belongs to, returned by
37  *           dma_fence_context_alloc()
38  * @seqno: the sequence number of this fence inside the execution context,
39  * can be compared to decide which fence would be signaled later.
40  * @flags: A mask of DMA_FENCE_FLAG_* defined below
41  * @timestamp: Timestamp when the fence was signaled.
42  * @error: Optional, only valid if < 0, must be set before calling
43  * dma_fence_signal, indicates that the fence has completed with an error.
44  *
45  * the flags member must be manipulated and read using the appropriate
46  * atomic ops (bit_*), so taking the spinlock will not be needed most
47  * of the time.
48  *
49  * DMA_FENCE_FLAG_SIGNALED_BIT - fence is already signaled
50  * DMA_FENCE_FLAG_TIMESTAMP_BIT - timestamp recorded for fence signaling
51  * DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT - enable_signaling might have been called
52  * DMA_FENCE_FLAG_USER_BITS - start of the unused bits, can be used by the
53  * implementer of the fence for its own purposes. Can be used in different
54  * ways by different fence implementers, so do not rely on this.
55  *
56  * Since atomic bitops are used, this is not guaranteed to be the case.
57  * Particularly, if the bit was set, but dma_fence_signal was called right
58  * before this bit was set, it would have been able to set the
59  * DMA_FENCE_FLAG_SIGNALED_BIT, before enable_signaling was called.
60  * Adding a check for DMA_FENCE_FLAG_SIGNALED_BIT after setting
61  * DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT closes this race, and makes sure that
62  * after dma_fence_signal was called, any enable_signaling call will have either
63  * been completed, or never called at all.
64  */
65 struct dma_fence {
66 	spinlock_t *lock;
67 	const struct dma_fence_ops *ops;
68 	/*
69 	 * We clear the callback list on kref_put so that by the time we
70 	 * release the fence it is unused. No one should be adding to the
71 	 * cb_list that they don't themselves hold a reference for.
72 	 *
73 	 * The lifetime of the timestamp is similarly tied to both the
74 	 * rcu freelist and the cb_list. The timestamp is only set upon
75 	 * signaling while simultaneously notifying the cb_list. Ergo, we
76 	 * only use either the cb_list of timestamp. Upon destruction,
77 	 * neither are accessible, and so we can use the rcu. This means
78 	 * that the cb_list is *only* valid until the signal bit is set,
79 	 * and to read either you *must* hold a reference to the fence,
80 	 * and not just the rcu_read_lock.
81 	 *
82 	 * Listed in chronological order.
83 	 */
84 	union {
85 		struct list_head cb_list;
86 		/* @cb_list replaced by @timestamp on dma_fence_signal() */
87 		ktime_t timestamp;
88 		/* @timestamp replaced by @rcu on dma_fence_release() */
89 		struct rcu_head rcu;
90 	};
91 	u64 context;
92 	u64 seqno;
93 	unsigned long flags;
94 	struct kref refcount;
95 	int error;
96 };
97 
98 enum dma_fence_flag_bits {
99 	DMA_FENCE_FLAG_SIGNALED_BIT,
100 	DMA_FENCE_FLAG_TIMESTAMP_BIT,
101 	DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
102 	DMA_FENCE_FLAG_USER_BITS, /* must always be last member */
103 };
104 
105 typedef void (*dma_fence_func_t)(struct dma_fence *fence,
106 				 struct dma_fence_cb *cb);
107 
108 /**
109  * struct dma_fence_cb - callback for dma_fence_add_callback()
110  * @node: used by dma_fence_add_callback() to append this struct to fence::cb_list
111  * @func: dma_fence_func_t to call
112  *
113  * This struct will be initialized by dma_fence_add_callback(), additional
114  * data can be passed along by embedding dma_fence_cb in another struct.
115  */
116 struct dma_fence_cb {
117 	struct list_head node;
118 	dma_fence_func_t func;
119 };
120 
121 /**
122  * struct dma_fence_ops - operations implemented for fence
123  *
124  */
125 struct dma_fence_ops {
126 	/**
127 	 * @use_64bit_seqno:
128 	 *
129 	 * True if this dma_fence implementation uses 64bit seqno, false
130 	 * otherwise.
131 	 */
132 	bool use_64bit_seqno;
133 
134 	/**
135 	 * @get_driver_name:
136 	 *
137 	 * Returns the driver name. This is a callback to allow drivers to
138 	 * compute the name at runtime, without having it to store permanently
139 	 * for each fence, or build a cache of some sort.
140 	 *
141 	 * This callback is mandatory.
142 	 */
143 	const char * (*get_driver_name)(struct dma_fence *fence);
144 
145 	/**
146 	 * @get_timeline_name:
147 	 *
148 	 * Return the name of the context this fence belongs to. This is a
149 	 * callback to allow drivers to compute the name at runtime, without
150 	 * having it to store permanently for each fence, or build a cache of
151 	 * some sort.
152 	 *
153 	 * This callback is mandatory.
154 	 */
155 	const char * (*get_timeline_name)(struct dma_fence *fence);
156 
157 	/**
158 	 * @enable_signaling:
159 	 *
160 	 * Enable software signaling of fence.
161 	 *
162 	 * For fence implementations that have the capability for hw->hw
163 	 * signaling, they can implement this op to enable the necessary
164 	 * interrupts, or insert commands into cmdstream, etc, to avoid these
165 	 * costly operations for the common case where only hw->hw
166 	 * synchronization is required.  This is called in the first
167 	 * dma_fence_wait() or dma_fence_add_callback() path to let the fence
168 	 * implementation know that there is another driver waiting on the
169 	 * signal (ie. hw->sw case).
170 	 *
171 	 * This function can be called from atomic context, but not
172 	 * from irq context, so normal spinlocks can be used.
173 	 *
174 	 * A return value of false indicates the fence already passed,
175 	 * or some failure occurred that made it impossible to enable
176 	 * signaling. True indicates successful enabling.
177 	 *
178 	 * &dma_fence.error may be set in enable_signaling, but only when false
179 	 * is returned.
180 	 *
181 	 * Since many implementations can call dma_fence_signal() even when before
182 	 * @enable_signaling has been called there's a race window, where the
183 	 * dma_fence_signal() might result in the final fence reference being
184 	 * released and its memory freed. To avoid this, implementations of this
185 	 * callback should grab their own reference using dma_fence_get(), to be
186 	 * released when the fence is signalled (through e.g. the interrupt
187 	 * handler).
188 	 *
189 	 * This callback is optional. If this callback is not present, then the
190 	 * driver must always have signaling enabled.
191 	 */
192 	bool (*enable_signaling)(struct dma_fence *fence);
193 
194 	/**
195 	 * @signaled:
196 	 *
197 	 * Peek whether the fence is signaled, as a fastpath optimization for
198 	 * e.g. dma_fence_wait() or dma_fence_add_callback(). Note that this
199 	 * callback does not need to make any guarantees beyond that a fence
200 	 * once indicates as signalled must always return true from this
201 	 * callback. This callback may return false even if the fence has
202 	 * completed already, in this case information hasn't propogated throug
203 	 * the system yet. See also dma_fence_is_signaled().
204 	 *
205 	 * May set &dma_fence.error if returning true.
206 	 *
207 	 * This callback is optional.
208 	 */
209 	bool (*signaled)(struct dma_fence *fence);
210 
211 	/**
212 	 * @wait:
213 	 *
214 	 * Custom wait implementation, defaults to dma_fence_default_wait() if
215 	 * not set.
216 	 *
217 	 * Deprecated and should not be used by new implementations. Only used
218 	 * by existing implementations which need special handling for their
219 	 * hardware reset procedure.
220 	 *
221 	 * Must return -ERESTARTSYS if the wait is intr = true and the wait was
222 	 * interrupted, and remaining jiffies if fence has signaled, or 0 if wait
223 	 * timed out. Can also return other error values on custom implementations,
224 	 * which should be treated as if the fence is signaled. For example a hardware
225 	 * lockup could be reported like that.
226 	 */
227 	signed long (*wait)(struct dma_fence *fence,
228 			    bool intr, signed long timeout);
229 
230 	/**
231 	 * @release:
232 	 *
233 	 * Called on destruction of fence to release additional resources.
234 	 * Can be called from irq context.  This callback is optional. If it is
235 	 * NULL, then dma_fence_free() is instead called as the default
236 	 * implementation.
237 	 */
238 	void (*release)(struct dma_fence *fence);
239 
240 	/**
241 	 * @fence_value_str:
242 	 *
243 	 * Callback to fill in free-form debug info specific to this fence, like
244 	 * the sequence number.
245 	 *
246 	 * This callback is optional.
247 	 */
248 	void (*fence_value_str)(struct dma_fence *fence, char *str, int size);
249 
250 	/**
251 	 * @timeline_value_str:
252 	 *
253 	 * Fills in the current value of the timeline as a string, like the
254 	 * sequence number. Note that the specific fence passed to this function
255 	 * should not matter, drivers should only use it to look up the
256 	 * corresponding timeline structures.
257 	 */
258 	void (*timeline_value_str)(struct dma_fence *fence,
259 				   char *str, int size);
260 };
261 
262 void dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
263 		    spinlock_t *lock, u64 context, u64 seqno);
264 
265 void dma_fence_release(struct kref *kref);
266 void dma_fence_free(struct dma_fence *fence);
267 
268 /**
269  * dma_fence_put - decreases refcount of the fence
270  * @fence: fence to reduce refcount of
271  */
272 static inline void dma_fence_put(struct dma_fence *fence)
273 {
274 	if (fence)
275 		kref_put(&fence->refcount, dma_fence_release);
276 }
277 
278 /**
279  * dma_fence_get - increases refcount of the fence
280  * @fence: fence to increase refcount of
281  *
282  * Returns the same fence, with refcount increased by 1.
283  */
284 static inline struct dma_fence *dma_fence_get(struct dma_fence *fence)
285 {
286 	if (fence)
287 		kref_get(&fence->refcount);
288 	return fence;
289 }
290 
291 /**
292  * dma_fence_get_rcu - get a fence from a dma_resv_list with
293  *                     rcu read lock
294  * @fence: fence to increase refcount of
295  *
296  * Function returns NULL if no refcount could be obtained, or the fence.
297  */
298 static inline struct dma_fence *dma_fence_get_rcu(struct dma_fence *fence)
299 {
300 	if (kref_get_unless_zero(&fence->refcount))
301 		return fence;
302 	else
303 		return NULL;
304 }
305 
306 /**
307  * dma_fence_get_rcu_safe  - acquire a reference to an RCU tracked fence
308  * @fencep: pointer to fence to increase refcount of
309  *
310  * Function returns NULL if no refcount could be obtained, or the fence.
311  * This function handles acquiring a reference to a fence that may be
312  * reallocated within the RCU grace period (such as with SLAB_TYPESAFE_BY_RCU),
313  * so long as the caller is using RCU on the pointer to the fence.
314  *
315  * An alternative mechanism is to employ a seqlock to protect a bunch of
316  * fences, such as used by struct dma_resv. When using a seqlock,
317  * the seqlock must be taken before and checked after a reference to the
318  * fence is acquired (as shown here).
319  *
320  * The caller is required to hold the RCU read lock.
321  */
322 static inline struct dma_fence *
323 dma_fence_get_rcu_safe(struct dma_fence __rcu **fencep)
324 {
325 	do {
326 		struct dma_fence *fence;
327 
328 		fence = rcu_dereference(*fencep);
329 		if (!fence)
330 			return NULL;
331 
332 		if (!dma_fence_get_rcu(fence))
333 			continue;
334 
335 		/* The atomic_inc_not_zero() inside dma_fence_get_rcu()
336 		 * provides a full memory barrier upon success (such as now).
337 		 * This is paired with the write barrier from assigning
338 		 * to the __rcu protected fence pointer so that if that
339 		 * pointer still matches the current fence, we know we
340 		 * have successfully acquire a reference to it. If it no
341 		 * longer matches, we are holding a reference to some other
342 		 * reallocated pointer. This is possible if the allocator
343 		 * is using a freelist like SLAB_TYPESAFE_BY_RCU where the
344 		 * fence remains valid for the RCU grace period, but it
345 		 * may be reallocated. When using such allocators, we are
346 		 * responsible for ensuring the reference we get is to
347 		 * the right fence, as below.
348 		 */
349 		if (fence == rcu_access_pointer(*fencep))
350 			return rcu_pointer_handoff(fence);
351 
352 		dma_fence_put(fence);
353 	} while (1);
354 }
355 
356 #ifdef CONFIG_LOCKDEP
357 bool dma_fence_begin_signalling(void);
358 void dma_fence_end_signalling(bool cookie);
359 void __dma_fence_might_wait(void);
360 #else
361 static inline bool dma_fence_begin_signalling(void)
362 {
363 	return true;
364 }
365 static inline void dma_fence_end_signalling(bool cookie) {}
366 static inline void __dma_fence_might_wait(void) {}
367 #endif
368 
369 int dma_fence_signal(struct dma_fence *fence);
370 int dma_fence_signal_locked(struct dma_fence *fence);
371 int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp);
372 int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
373 				      ktime_t timestamp);
374 signed long dma_fence_default_wait(struct dma_fence *fence,
375 				   bool intr, signed long timeout);
376 int dma_fence_add_callback(struct dma_fence *fence,
377 			   struct dma_fence_cb *cb,
378 			   dma_fence_func_t func);
379 bool dma_fence_remove_callback(struct dma_fence *fence,
380 			       struct dma_fence_cb *cb);
381 void dma_fence_enable_sw_signaling(struct dma_fence *fence);
382 
383 /**
384  * dma_fence_is_signaled_locked - Return an indication if the fence
385  *                                is signaled yet.
386  * @fence: the fence to check
387  *
388  * Returns true if the fence was already signaled, false if not. Since this
389  * function doesn't enable signaling, it is not guaranteed to ever return
390  * true if dma_fence_add_callback(), dma_fence_wait() or
391  * dma_fence_enable_sw_signaling() haven't been called before.
392  *
393  * This function requires &dma_fence.lock to be held.
394  *
395  * See also dma_fence_is_signaled().
396  */
397 static inline bool
398 dma_fence_is_signaled_locked(struct dma_fence *fence)
399 {
400 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
401 		return true;
402 
403 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
404 		dma_fence_signal_locked(fence);
405 		return true;
406 	}
407 
408 	return false;
409 }
410 
411 /**
412  * dma_fence_is_signaled - Return an indication if the fence is signaled yet.
413  * @fence: the fence to check
414  *
415  * Returns true if the fence was already signaled, false if not. Since this
416  * function doesn't enable signaling, it is not guaranteed to ever return
417  * true if dma_fence_add_callback(), dma_fence_wait() or
418  * dma_fence_enable_sw_signaling() haven't been called before.
419  *
420  * It's recommended for seqno fences to call dma_fence_signal when the
421  * operation is complete, it makes it possible to prevent issues from
422  * wraparound between time of issue and time of use by checking the return
423  * value of this function before calling hardware-specific wait instructions.
424  *
425  * See also dma_fence_is_signaled_locked().
426  */
427 static inline bool
428 dma_fence_is_signaled(struct dma_fence *fence)
429 {
430 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
431 		return true;
432 
433 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
434 		dma_fence_signal(fence);
435 		return true;
436 	}
437 
438 	return false;
439 }
440 
441 /**
442  * __dma_fence_is_later - return if f1 is chronologically later than f2
443  * @f1: the first fence's seqno
444  * @f2: the second fence's seqno from the same context
445  * @ops: dma_fence_ops associated with the seqno
446  *
447  * Returns true if f1 is chronologically later than f2. Both fences must be
448  * from the same context, since a seqno is not common across contexts.
449  */
450 static inline bool __dma_fence_is_later(u64 f1, u64 f2,
451 					const struct dma_fence_ops *ops)
452 {
453 	/* This is for backward compatibility with drivers which can only handle
454 	 * 32bit sequence numbers. Use a 64bit compare when the driver says to
455 	 * do so.
456 	 */
457 	if (ops->use_64bit_seqno)
458 		return f1 > f2;
459 
460 	return (int)(lower_32_bits(f1) - lower_32_bits(f2)) > 0;
461 }
462 
463 /**
464  * dma_fence_is_later - return if f1 is chronologically later than f2
465  * @f1: the first fence from the same context
466  * @f2: the second fence from the same context
467  *
468  * Returns true if f1 is chronologically later than f2. Both fences must be
469  * from the same context, since a seqno is not re-used across contexts.
470  */
471 static inline bool dma_fence_is_later(struct dma_fence *f1,
472 				      struct dma_fence *f2)
473 {
474 	if (WARN_ON(f1->context != f2->context))
475 		return false;
476 
477 	return __dma_fence_is_later(f1->seqno, f2->seqno, f1->ops);
478 }
479 
480 /**
481  * dma_fence_later - return the chronologically later fence
482  * @f1:	the first fence from the same context
483  * @f2:	the second fence from the same context
484  *
485  * Returns NULL if both fences are signaled, otherwise the fence that would be
486  * signaled last. Both fences must be from the same context, since a seqno is
487  * not re-used across contexts.
488  */
489 static inline struct dma_fence *dma_fence_later(struct dma_fence *f1,
490 						struct dma_fence *f2)
491 {
492 	if (WARN_ON(f1->context != f2->context))
493 		return NULL;
494 
495 	/*
496 	 * Can't check just DMA_FENCE_FLAG_SIGNALED_BIT here, it may never
497 	 * have been set if enable_signaling wasn't called, and enabling that
498 	 * here is overkill.
499 	 */
500 	if (dma_fence_is_later(f1, f2))
501 		return dma_fence_is_signaled(f1) ? NULL : f1;
502 	else
503 		return dma_fence_is_signaled(f2) ? NULL : f2;
504 }
505 
506 /**
507  * dma_fence_get_status_locked - returns the status upon completion
508  * @fence: the dma_fence to query
509  *
510  * Drivers can supply an optional error status condition before they signal
511  * the fence (to indicate whether the fence was completed due to an error
512  * rather than success). The value of the status condition is only valid
513  * if the fence has been signaled, dma_fence_get_status_locked() first checks
514  * the signal state before reporting the error status.
515  *
516  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
517  * been signaled without an error condition, or a negative error code
518  * if the fence has been completed in err.
519  */
520 static inline int dma_fence_get_status_locked(struct dma_fence *fence)
521 {
522 	if (dma_fence_is_signaled_locked(fence))
523 		return fence->error ?: 1;
524 	else
525 		return 0;
526 }
527 
528 int dma_fence_get_status(struct dma_fence *fence);
529 
530 /**
531  * dma_fence_set_error - flag an error condition on the fence
532  * @fence: the dma_fence
533  * @error: the error to store
534  *
535  * Drivers can supply an optional error status condition before they signal
536  * the fence, to indicate that the fence was completed due to an error
537  * rather than success. This must be set before signaling (so that the value
538  * is visible before any waiters on the signal callback are woken). This
539  * helper exists to help catching erroneous setting of #dma_fence.error.
540  */
541 static inline void dma_fence_set_error(struct dma_fence *fence,
542 				       int error)
543 {
544 	WARN_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
545 	WARN_ON(error >= 0 || error < -MAX_ERRNO);
546 
547 	fence->error = error;
548 }
549 
550 signed long dma_fence_wait_timeout(struct dma_fence *,
551 				   bool intr, signed long timeout);
552 signed long dma_fence_wait_any_timeout(struct dma_fence **fences,
553 				       uint32_t count,
554 				       bool intr, signed long timeout,
555 				       uint32_t *idx);
556 
557 /**
558  * dma_fence_wait - sleep until the fence gets signaled
559  * @fence: the fence to wait on
560  * @intr: if true, do an interruptible wait
561  *
562  * This function will return -ERESTARTSYS if interrupted by a signal,
563  * or 0 if the fence was signaled. Other error values may be
564  * returned on custom implementations.
565  *
566  * Performs a synchronous wait on this fence. It is assumed the caller
567  * directly or indirectly holds a reference to the fence, otherwise the
568  * fence might be freed before return, resulting in undefined behavior.
569  *
570  * See also dma_fence_wait_timeout() and dma_fence_wait_any_timeout().
571  */
572 static inline signed long dma_fence_wait(struct dma_fence *fence, bool intr)
573 {
574 	signed long ret;
575 
576 	/* Since dma_fence_wait_timeout cannot timeout with
577 	 * MAX_SCHEDULE_TIMEOUT, only valid return values are
578 	 * -ERESTARTSYS and MAX_SCHEDULE_TIMEOUT.
579 	 */
580 	ret = dma_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
581 
582 	return ret < 0 ? ret : 0;
583 }
584 
585 struct dma_fence *dma_fence_get_stub(void);
586 struct dma_fence *dma_fence_allocate_private_stub(void);
587 u64 dma_fence_context_alloc(unsigned num);
588 
589 #endif /* __LINUX_DMA_FENCE_H */
590