xref: /openbmc/linux/include/linux/dma-fence.h (revision f66501dc)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Fence mechanism for dma-buf to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12 
13 #ifndef __LINUX_DMA_FENCE_H
14 #define __LINUX_DMA_FENCE_H
15 
16 #include <linux/err.h>
17 #include <linux/wait.h>
18 #include <linux/list.h>
19 #include <linux/bitops.h>
20 #include <linux/kref.h>
21 #include <linux/sched.h>
22 #include <linux/printk.h>
23 #include <linux/rcupdate.h>
24 
25 struct dma_fence;
26 struct dma_fence_ops;
27 struct dma_fence_cb;
28 
29 /**
30  * struct dma_fence - software synchronization primitive
31  * @refcount: refcount for this fence
32  * @ops: dma_fence_ops associated with this fence
33  * @rcu: used for releasing fence with kfree_rcu
34  * @cb_list: list of all callbacks to call
35  * @lock: spin_lock_irqsave used for locking
36  * @context: execution context this fence belongs to, returned by
37  *           dma_fence_context_alloc()
38  * @seqno: the sequence number of this fence inside the execution context,
39  * can be compared to decide which fence would be signaled later.
40  * @flags: A mask of DMA_FENCE_FLAG_* defined below
41  * @timestamp: Timestamp when the fence was signaled.
42  * @error: Optional, only valid if < 0, must be set before calling
43  * dma_fence_signal, indicates that the fence has completed with an error.
44  *
45  * the flags member must be manipulated and read using the appropriate
46  * atomic ops (bit_*), so taking the spinlock will not be needed most
47  * of the time.
48  *
49  * DMA_FENCE_FLAG_SIGNALED_BIT - fence is already signaled
50  * DMA_FENCE_FLAG_TIMESTAMP_BIT - timestamp recorded for fence signaling
51  * DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT - enable_signaling might have been called
52  * DMA_FENCE_FLAG_USER_BITS - start of the unused bits, can be used by the
53  * implementer of the fence for its own purposes. Can be used in different
54  * ways by different fence implementers, so do not rely on this.
55  *
56  * Since atomic bitops are used, this is not guaranteed to be the case.
57  * Particularly, if the bit was set, but dma_fence_signal was called right
58  * before this bit was set, it would have been able to set the
59  * DMA_FENCE_FLAG_SIGNALED_BIT, before enable_signaling was called.
60  * Adding a check for DMA_FENCE_FLAG_SIGNALED_BIT after setting
61  * DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT closes this race, and makes sure that
62  * after dma_fence_signal was called, any enable_signaling call will have either
63  * been completed, or never called at all.
64  */
65 struct dma_fence {
66 	struct kref refcount;
67 	const struct dma_fence_ops *ops;
68 	struct rcu_head rcu;
69 	struct list_head cb_list;
70 	spinlock_t *lock;
71 	u64 context;
72 	u64 seqno;
73 	unsigned long flags;
74 	ktime_t timestamp;
75 	int error;
76 };
77 
78 enum dma_fence_flag_bits {
79 	DMA_FENCE_FLAG_SIGNALED_BIT,
80 	DMA_FENCE_FLAG_TIMESTAMP_BIT,
81 	DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
82 	DMA_FENCE_FLAG_USER_BITS, /* must always be last member */
83 };
84 
85 typedef void (*dma_fence_func_t)(struct dma_fence *fence,
86 				 struct dma_fence_cb *cb);
87 
88 /**
89  * struct dma_fence_cb - callback for dma_fence_add_callback()
90  * @node: used by dma_fence_add_callback() to append this struct to fence::cb_list
91  * @func: dma_fence_func_t to call
92  *
93  * This struct will be initialized by dma_fence_add_callback(), additional
94  * data can be passed along by embedding dma_fence_cb in another struct.
95  */
96 struct dma_fence_cb {
97 	struct list_head node;
98 	dma_fence_func_t func;
99 };
100 
101 /**
102  * struct dma_fence_ops - operations implemented for fence
103  *
104  */
105 struct dma_fence_ops {
106 	/**
107 	 * @use_64bit_seqno:
108 	 *
109 	 * True if this dma_fence implementation uses 64bit seqno, false
110 	 * otherwise.
111 	 */
112 	bool use_64bit_seqno;
113 
114 	/**
115 	 * @get_driver_name:
116 	 *
117 	 * Returns the driver name. This is a callback to allow drivers to
118 	 * compute the name at runtime, without having it to store permanently
119 	 * for each fence, or build a cache of some sort.
120 	 *
121 	 * This callback is mandatory.
122 	 */
123 	const char * (*get_driver_name)(struct dma_fence *fence);
124 
125 	/**
126 	 * @get_timeline_name:
127 	 *
128 	 * Return the name of the context this fence belongs to. This is a
129 	 * callback to allow drivers to compute the name at runtime, without
130 	 * having it to store permanently for each fence, or build a cache of
131 	 * some sort.
132 	 *
133 	 * This callback is mandatory.
134 	 */
135 	const char * (*get_timeline_name)(struct dma_fence *fence);
136 
137 	/**
138 	 * @enable_signaling:
139 	 *
140 	 * Enable software signaling of fence.
141 	 *
142 	 * For fence implementations that have the capability for hw->hw
143 	 * signaling, they can implement this op to enable the necessary
144 	 * interrupts, or insert commands into cmdstream, etc, to avoid these
145 	 * costly operations for the common case where only hw->hw
146 	 * synchronization is required.  This is called in the first
147 	 * dma_fence_wait() or dma_fence_add_callback() path to let the fence
148 	 * implementation know that there is another driver waiting on the
149 	 * signal (ie. hw->sw case).
150 	 *
151 	 * This function can be called from atomic context, but not
152 	 * from irq context, so normal spinlocks can be used.
153 	 *
154 	 * A return value of false indicates the fence already passed,
155 	 * or some failure occurred that made it impossible to enable
156 	 * signaling. True indicates successful enabling.
157 	 *
158 	 * &dma_fence.error may be set in enable_signaling, but only when false
159 	 * is returned.
160 	 *
161 	 * Since many implementations can call dma_fence_signal() even when before
162 	 * @enable_signaling has been called there's a race window, where the
163 	 * dma_fence_signal() might result in the final fence reference being
164 	 * released and its memory freed. To avoid this, implementations of this
165 	 * callback should grab their own reference using dma_fence_get(), to be
166 	 * released when the fence is signalled (through e.g. the interrupt
167 	 * handler).
168 	 *
169 	 * This callback is optional. If this callback is not present, then the
170 	 * driver must always have signaling enabled.
171 	 */
172 	bool (*enable_signaling)(struct dma_fence *fence);
173 
174 	/**
175 	 * @signaled:
176 	 *
177 	 * Peek whether the fence is signaled, as a fastpath optimization for
178 	 * e.g. dma_fence_wait() or dma_fence_add_callback(). Note that this
179 	 * callback does not need to make any guarantees beyond that a fence
180 	 * once indicates as signalled must always return true from this
181 	 * callback. This callback may return false even if the fence has
182 	 * completed already, in this case information hasn't propogated throug
183 	 * the system yet. See also dma_fence_is_signaled().
184 	 *
185 	 * May set &dma_fence.error if returning true.
186 	 *
187 	 * This callback is optional.
188 	 */
189 	bool (*signaled)(struct dma_fence *fence);
190 
191 	/**
192 	 * @wait:
193 	 *
194 	 * Custom wait implementation, defaults to dma_fence_default_wait() if
195 	 * not set.
196 	 *
197 	 * The dma_fence_default_wait implementation should work for any fence, as long
198 	 * as @enable_signaling works correctly. This hook allows drivers to
199 	 * have an optimized version for the case where a process context is
200 	 * already available, e.g. if @enable_signaling for the general case
201 	 * needs to set up a worker thread.
202 	 *
203 	 * Must return -ERESTARTSYS if the wait is intr = true and the wait was
204 	 * interrupted, and remaining jiffies if fence has signaled, or 0 if wait
205 	 * timed out. Can also return other error values on custom implementations,
206 	 * which should be treated as if the fence is signaled. For example a hardware
207 	 * lockup could be reported like that.
208 	 *
209 	 * This callback is optional.
210 	 */
211 	signed long (*wait)(struct dma_fence *fence,
212 			    bool intr, signed long timeout);
213 
214 	/**
215 	 * @release:
216 	 *
217 	 * Called on destruction of fence to release additional resources.
218 	 * Can be called from irq context.  This callback is optional. If it is
219 	 * NULL, then dma_fence_free() is instead called as the default
220 	 * implementation.
221 	 */
222 	void (*release)(struct dma_fence *fence);
223 
224 	/**
225 	 * @fence_value_str:
226 	 *
227 	 * Callback to fill in free-form debug info specific to this fence, like
228 	 * the sequence number.
229 	 *
230 	 * This callback is optional.
231 	 */
232 	void (*fence_value_str)(struct dma_fence *fence, char *str, int size);
233 
234 	/**
235 	 * @timeline_value_str:
236 	 *
237 	 * Fills in the current value of the timeline as a string, like the
238 	 * sequence number. Note that the specific fence passed to this function
239 	 * should not matter, drivers should only use it to look up the
240 	 * corresponding timeline structures.
241 	 */
242 	void (*timeline_value_str)(struct dma_fence *fence,
243 				   char *str, int size);
244 };
245 
246 void dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
247 		    spinlock_t *lock, u64 context, u64 seqno);
248 
249 void dma_fence_release(struct kref *kref);
250 void dma_fence_free(struct dma_fence *fence);
251 
252 /**
253  * dma_fence_put - decreases refcount of the fence
254  * @fence: fence to reduce refcount of
255  */
256 static inline void dma_fence_put(struct dma_fence *fence)
257 {
258 	if (fence)
259 		kref_put(&fence->refcount, dma_fence_release);
260 }
261 
262 /**
263  * dma_fence_get - increases refcount of the fence
264  * @fence: fence to increase refcount of
265  *
266  * Returns the same fence, with refcount increased by 1.
267  */
268 static inline struct dma_fence *dma_fence_get(struct dma_fence *fence)
269 {
270 	if (fence)
271 		kref_get(&fence->refcount);
272 	return fence;
273 }
274 
275 /**
276  * dma_fence_get_rcu - get a fence from a reservation_object_list with
277  *                     rcu read lock
278  * @fence: fence to increase refcount of
279  *
280  * Function returns NULL if no refcount could be obtained, or the fence.
281  */
282 static inline struct dma_fence *dma_fence_get_rcu(struct dma_fence *fence)
283 {
284 	if (kref_get_unless_zero(&fence->refcount))
285 		return fence;
286 	else
287 		return NULL;
288 }
289 
290 /**
291  * dma_fence_get_rcu_safe  - acquire a reference to an RCU tracked fence
292  * @fencep: pointer to fence to increase refcount of
293  *
294  * Function returns NULL if no refcount could be obtained, or the fence.
295  * This function handles acquiring a reference to a fence that may be
296  * reallocated within the RCU grace period (such as with SLAB_TYPESAFE_BY_RCU),
297  * so long as the caller is using RCU on the pointer to the fence.
298  *
299  * An alternative mechanism is to employ a seqlock to protect a bunch of
300  * fences, such as used by struct reservation_object. When using a seqlock,
301  * the seqlock must be taken before and checked after a reference to the
302  * fence is acquired (as shown here).
303  *
304  * The caller is required to hold the RCU read lock.
305  */
306 static inline struct dma_fence *
307 dma_fence_get_rcu_safe(struct dma_fence __rcu **fencep)
308 {
309 	do {
310 		struct dma_fence *fence;
311 
312 		fence = rcu_dereference(*fencep);
313 		if (!fence)
314 			return NULL;
315 
316 		if (!dma_fence_get_rcu(fence))
317 			continue;
318 
319 		/* The atomic_inc_not_zero() inside dma_fence_get_rcu()
320 		 * provides a full memory barrier upon success (such as now).
321 		 * This is paired with the write barrier from assigning
322 		 * to the __rcu protected fence pointer so that if that
323 		 * pointer still matches the current fence, we know we
324 		 * have successfully acquire a reference to it. If it no
325 		 * longer matches, we are holding a reference to some other
326 		 * reallocated pointer. This is possible if the allocator
327 		 * is using a freelist like SLAB_TYPESAFE_BY_RCU where the
328 		 * fence remains valid for the RCU grace period, but it
329 		 * may be reallocated. When using such allocators, we are
330 		 * responsible for ensuring the reference we get is to
331 		 * the right fence, as below.
332 		 */
333 		if (fence == rcu_access_pointer(*fencep))
334 			return rcu_pointer_handoff(fence);
335 
336 		dma_fence_put(fence);
337 	} while (1);
338 }
339 
340 int dma_fence_signal(struct dma_fence *fence);
341 int dma_fence_signal_locked(struct dma_fence *fence);
342 signed long dma_fence_default_wait(struct dma_fence *fence,
343 				   bool intr, signed long timeout);
344 int dma_fence_add_callback(struct dma_fence *fence,
345 			   struct dma_fence_cb *cb,
346 			   dma_fence_func_t func);
347 bool dma_fence_remove_callback(struct dma_fence *fence,
348 			       struct dma_fence_cb *cb);
349 void dma_fence_enable_sw_signaling(struct dma_fence *fence);
350 
351 /**
352  * dma_fence_is_signaled_locked - Return an indication if the fence
353  *                                is signaled yet.
354  * @fence: the fence to check
355  *
356  * Returns true if the fence was already signaled, false if not. Since this
357  * function doesn't enable signaling, it is not guaranteed to ever return
358  * true if dma_fence_add_callback(), dma_fence_wait() or
359  * dma_fence_enable_sw_signaling() haven't been called before.
360  *
361  * This function requires &dma_fence.lock to be held.
362  *
363  * See also dma_fence_is_signaled().
364  */
365 static inline bool
366 dma_fence_is_signaled_locked(struct dma_fence *fence)
367 {
368 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
369 		return true;
370 
371 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
372 		dma_fence_signal_locked(fence);
373 		return true;
374 	}
375 
376 	return false;
377 }
378 
379 /**
380  * dma_fence_is_signaled - Return an indication if the fence is signaled yet.
381  * @fence: the fence to check
382  *
383  * Returns true if the fence was already signaled, false if not. Since this
384  * function doesn't enable signaling, it is not guaranteed to ever return
385  * true if dma_fence_add_callback(), dma_fence_wait() or
386  * dma_fence_enable_sw_signaling() haven't been called before.
387  *
388  * It's recommended for seqno fences to call dma_fence_signal when the
389  * operation is complete, it makes it possible to prevent issues from
390  * wraparound between time of issue and time of use by checking the return
391  * value of this function before calling hardware-specific wait instructions.
392  *
393  * See also dma_fence_is_signaled_locked().
394  */
395 static inline bool
396 dma_fence_is_signaled(struct dma_fence *fence)
397 {
398 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
399 		return true;
400 
401 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
402 		dma_fence_signal(fence);
403 		return true;
404 	}
405 
406 	return false;
407 }
408 
409 /**
410  * __dma_fence_is_later - return if f1 is chronologically later than f2
411  * @f1: the first fence's seqno
412  * @f2: the second fence's seqno from the same context
413  * @ops: dma_fence_ops associated with the seqno
414  *
415  * Returns true if f1 is chronologically later than f2. Both fences must be
416  * from the same context, since a seqno is not common across contexts.
417  */
418 static inline bool __dma_fence_is_later(u64 f1, u64 f2,
419 					const struct dma_fence_ops *ops)
420 {
421 	/* This is for backward compatibility with drivers which can only handle
422 	 * 32bit sequence numbers. Use a 64bit compare when the driver says to
423 	 * do so.
424 	 */
425 	if (ops->use_64bit_seqno)
426 		return f1 > f2;
427 
428 	return (int)(lower_32_bits(f1) - lower_32_bits(f2)) > 0;
429 }
430 
431 /**
432  * dma_fence_is_later - return if f1 is chronologically later than f2
433  * @f1: the first fence from the same context
434  * @f2: the second fence from the same context
435  *
436  * Returns true if f1 is chronologically later than f2. Both fences must be
437  * from the same context, since a seqno is not re-used across contexts.
438  */
439 static inline bool dma_fence_is_later(struct dma_fence *f1,
440 				      struct dma_fence *f2)
441 {
442 	if (WARN_ON(f1->context != f2->context))
443 		return false;
444 
445 	return __dma_fence_is_later(f1->seqno, f2->seqno, f1->ops);
446 }
447 
448 /**
449  * dma_fence_later - return the chronologically later fence
450  * @f1:	the first fence from the same context
451  * @f2:	the second fence from the same context
452  *
453  * Returns NULL if both fences are signaled, otherwise the fence that would be
454  * signaled last. Both fences must be from the same context, since a seqno is
455  * not re-used across contexts.
456  */
457 static inline struct dma_fence *dma_fence_later(struct dma_fence *f1,
458 						struct dma_fence *f2)
459 {
460 	if (WARN_ON(f1->context != f2->context))
461 		return NULL;
462 
463 	/*
464 	 * Can't check just DMA_FENCE_FLAG_SIGNALED_BIT here, it may never
465 	 * have been set if enable_signaling wasn't called, and enabling that
466 	 * here is overkill.
467 	 */
468 	if (dma_fence_is_later(f1, f2))
469 		return dma_fence_is_signaled(f1) ? NULL : f1;
470 	else
471 		return dma_fence_is_signaled(f2) ? NULL : f2;
472 }
473 
474 /**
475  * dma_fence_get_status_locked - returns the status upon completion
476  * @fence: the dma_fence to query
477  *
478  * Drivers can supply an optional error status condition before they signal
479  * the fence (to indicate whether the fence was completed due to an error
480  * rather than success). The value of the status condition is only valid
481  * if the fence has been signaled, dma_fence_get_status_locked() first checks
482  * the signal state before reporting the error status.
483  *
484  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
485  * been signaled without an error condition, or a negative error code
486  * if the fence has been completed in err.
487  */
488 static inline int dma_fence_get_status_locked(struct dma_fence *fence)
489 {
490 	if (dma_fence_is_signaled_locked(fence))
491 		return fence->error ?: 1;
492 	else
493 		return 0;
494 }
495 
496 int dma_fence_get_status(struct dma_fence *fence);
497 
498 /**
499  * dma_fence_set_error - flag an error condition on the fence
500  * @fence: the dma_fence
501  * @error: the error to store
502  *
503  * Drivers can supply an optional error status condition before they signal
504  * the fence, to indicate that the fence was completed due to an error
505  * rather than success. This must be set before signaling (so that the value
506  * is visible before any waiters on the signal callback are woken). This
507  * helper exists to help catching erroneous setting of #dma_fence.error.
508  */
509 static inline void dma_fence_set_error(struct dma_fence *fence,
510 				       int error)
511 {
512 	WARN_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
513 	WARN_ON(error >= 0 || error < -MAX_ERRNO);
514 
515 	fence->error = error;
516 }
517 
518 signed long dma_fence_wait_timeout(struct dma_fence *,
519 				   bool intr, signed long timeout);
520 signed long dma_fence_wait_any_timeout(struct dma_fence **fences,
521 				       uint32_t count,
522 				       bool intr, signed long timeout,
523 				       uint32_t *idx);
524 
525 /**
526  * dma_fence_wait - sleep until the fence gets signaled
527  * @fence: the fence to wait on
528  * @intr: if true, do an interruptible wait
529  *
530  * This function will return -ERESTARTSYS if interrupted by a signal,
531  * or 0 if the fence was signaled. Other error values may be
532  * returned on custom implementations.
533  *
534  * Performs a synchronous wait on this fence. It is assumed the caller
535  * directly or indirectly holds a reference to the fence, otherwise the
536  * fence might be freed before return, resulting in undefined behavior.
537  *
538  * See also dma_fence_wait_timeout() and dma_fence_wait_any_timeout().
539  */
540 static inline signed long dma_fence_wait(struct dma_fence *fence, bool intr)
541 {
542 	signed long ret;
543 
544 	/* Since dma_fence_wait_timeout cannot timeout with
545 	 * MAX_SCHEDULE_TIMEOUT, only valid return values are
546 	 * -ERESTARTSYS and MAX_SCHEDULE_TIMEOUT.
547 	 */
548 	ret = dma_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
549 
550 	return ret < 0 ? ret : 0;
551 }
552 
553 struct dma_fence *dma_fence_get_stub(void);
554 u64 dma_fence_context_alloc(unsigned num);
555 
556 #define DMA_FENCE_TRACE(f, fmt, args...) \
557 	do {								\
558 		struct dma_fence *__ff = (f);				\
559 		if (IS_ENABLED(CONFIG_DMA_FENCE_TRACE))			\
560 			pr_info("f %llu#%llu: " fmt,			\
561 				__ff->context, __ff->seqno, ##args);	\
562 	} while (0)
563 
564 #define DMA_FENCE_WARN(f, fmt, args...) \
565 	do {								\
566 		struct dma_fence *__ff = (f);				\
567 		pr_warn("f %llu#%llu: " fmt, __ff->context, __ff->seqno,\
568 			 ##args);					\
569 	} while (0)
570 
571 #define DMA_FENCE_ERR(f, fmt, args...) \
572 	do {								\
573 		struct dma_fence *__ff = (f);				\
574 		pr_err("f %llu#%llu: " fmt, __ff->context, __ff->seqno,	\
575 			##args);					\
576 	} while (0)
577 
578 #endif /* __LINUX_DMA_FENCE_H */
579