xref: /openbmc/linux/include/linux/dma-buf.h (revision 0c94efab)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Header file for dma buffer sharing framework.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 #ifndef __DMA_BUF_H__
14 #define __DMA_BUF_H__
15 
16 #include <linux/file.h>
17 #include <linux/err.h>
18 #include <linux/scatterlist.h>
19 #include <linux/list.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/fs.h>
22 #include <linux/dma-fence.h>
23 #include <linux/wait.h>
24 
25 struct device;
26 struct dma_buf;
27 struct dma_buf_attachment;
28 
29 /**
30  * struct dma_buf_ops - operations possible on struct dma_buf
31  * @map_atomic: [optional] maps a page from the buffer into kernel address
32  *		space, users may not block until the subsequent unmap call.
33  *		This callback must not sleep.
34  * @unmap_atomic: [optional] unmaps a atomically mapped page from the buffer.
35  *		  This Callback must not sleep.
36  * @map: [optional] maps a page from the buffer into kernel address space.
37  * @unmap: [optional] unmaps a page from the buffer.
38  * @vmap: [optional] creates a virtual mapping for the buffer into kernel
39  *	  address space. Same restrictions as for vmap and friends apply.
40  * @vunmap: [optional] unmaps a vmap from the buffer
41  */
42 struct dma_buf_ops {
43 	/**
44 	 * @attach:
45 	 *
46 	 * This is called from dma_buf_attach() to make sure that a given
47 	 * &dma_buf_attachment.dev can access the provided &dma_buf. Exporters
48 	 * which support buffer objects in special locations like VRAM or
49 	 * device-specific carveout areas should check whether the buffer could
50 	 * be move to system memory (or directly accessed by the provided
51 	 * device), and otherwise need to fail the attach operation.
52 	 *
53 	 * The exporter should also in general check whether the current
54 	 * allocation fullfills the DMA constraints of the new device. If this
55 	 * is not the case, and the allocation cannot be moved, it should also
56 	 * fail the attach operation.
57 	 *
58 	 * Any exporter-private housekeeping data can be stored in the
59 	 * &dma_buf_attachment.priv pointer.
60 	 *
61 	 * This callback is optional.
62 	 *
63 	 * Returns:
64 	 *
65 	 * 0 on success, negative error code on failure. It might return -EBUSY
66 	 * to signal that backing storage is already allocated and incompatible
67 	 * with the requirements of requesting device.
68 	 */
69 	int (*attach)(struct dma_buf *, struct dma_buf_attachment *);
70 
71 	/**
72 	 * @detach:
73 	 *
74 	 * This is called by dma_buf_detach() to release a &dma_buf_attachment.
75 	 * Provided so that exporters can clean up any housekeeping for an
76 	 * &dma_buf_attachment.
77 	 *
78 	 * This callback is optional.
79 	 */
80 	void (*detach)(struct dma_buf *, struct dma_buf_attachment *);
81 
82 	/**
83 	 * @map_dma_buf:
84 	 *
85 	 * This is called by dma_buf_map_attachment() and is used to map a
86 	 * shared &dma_buf into device address space, and it is mandatory. It
87 	 * can only be called if @attach has been called successfully. This
88 	 * essentially pins the DMA buffer into place, and it cannot be moved
89 	 * any more
90 	 *
91 	 * This call may sleep, e.g. when the backing storage first needs to be
92 	 * allocated, or moved to a location suitable for all currently attached
93 	 * devices.
94 	 *
95 	 * Note that any specific buffer attributes required for this function
96 	 * should get added to device_dma_parameters accessible via
97 	 * &device.dma_params from the &dma_buf_attachment. The @attach callback
98 	 * should also check these constraints.
99 	 *
100 	 * If this is being called for the first time, the exporter can now
101 	 * choose to scan through the list of attachments for this buffer,
102 	 * collate the requirements of the attached devices, and choose an
103 	 * appropriate backing storage for the buffer.
104 	 *
105 	 * Based on enum dma_data_direction, it might be possible to have
106 	 * multiple users accessing at the same time (for reading, maybe), or
107 	 * any other kind of sharing that the exporter might wish to make
108 	 * available to buffer-users.
109 	 *
110 	 * Returns:
111 	 *
112 	 * A &sg_table scatter list of or the backing storage of the DMA buffer,
113 	 * already mapped into the device address space of the &device attached
114 	 * with the provided &dma_buf_attachment.
115 	 *
116 	 * On failure, returns a negative error value wrapped into a pointer.
117 	 * May also return -EINTR when a signal was received while being
118 	 * blocked.
119 	 */
120 	struct sg_table * (*map_dma_buf)(struct dma_buf_attachment *,
121 					 enum dma_data_direction);
122 	/**
123 	 * @unmap_dma_buf:
124 	 *
125 	 * This is called by dma_buf_unmap_attachment() and should unmap and
126 	 * release the &sg_table allocated in @map_dma_buf, and it is mandatory.
127 	 * It should also unpin the backing storage if this is the last mapping
128 	 * of the DMA buffer, it the exporter supports backing storage
129 	 * migration.
130 	 */
131 	void (*unmap_dma_buf)(struct dma_buf_attachment *,
132 			      struct sg_table *,
133 			      enum dma_data_direction);
134 
135 	/* TODO: Add try_map_dma_buf version, to return immed with -EBUSY
136 	 * if the call would block.
137 	 */
138 
139 	/**
140 	 * @release:
141 	 *
142 	 * Called after the last dma_buf_put to release the &dma_buf, and
143 	 * mandatory.
144 	 */
145 	void (*release)(struct dma_buf *);
146 
147 	/**
148 	 * @begin_cpu_access:
149 	 *
150 	 * This is called from dma_buf_begin_cpu_access() and allows the
151 	 * exporter to ensure that the memory is actually available for cpu
152 	 * access - the exporter might need to allocate or swap-in and pin the
153 	 * backing storage. The exporter also needs to ensure that cpu access is
154 	 * coherent for the access direction. The direction can be used by the
155 	 * exporter to optimize the cache flushing, i.e. access with a different
156 	 * direction (read instead of write) might return stale or even bogus
157 	 * data (e.g. when the exporter needs to copy the data to temporary
158 	 * storage).
159 	 *
160 	 * This callback is optional.
161 	 *
162 	 * FIXME: This is both called through the DMA_BUF_IOCTL_SYNC command
163 	 * from userspace (where storage shouldn't be pinned to avoid handing
164 	 * de-factor mlock rights to userspace) and for the kernel-internal
165 	 * users of the various kmap interfaces, where the backing storage must
166 	 * be pinned to guarantee that the atomic kmap calls can succeed. Since
167 	 * there's no in-kernel users of the kmap interfaces yet this isn't a
168 	 * real problem.
169 	 *
170 	 * Returns:
171 	 *
172 	 * 0 on success or a negative error code on failure. This can for
173 	 * example fail when the backing storage can't be allocated. Can also
174 	 * return -ERESTARTSYS or -EINTR when the call has been interrupted and
175 	 * needs to be restarted.
176 	 */
177 	int (*begin_cpu_access)(struct dma_buf *, enum dma_data_direction);
178 
179 	/**
180 	 * @end_cpu_access:
181 	 *
182 	 * This is called from dma_buf_end_cpu_access() when the importer is
183 	 * done accessing the CPU. The exporter can use this to flush caches and
184 	 * unpin any resources pinned in @begin_cpu_access.
185 	 * The result of any dma_buf kmap calls after end_cpu_access is
186 	 * undefined.
187 	 *
188 	 * This callback is optional.
189 	 *
190 	 * Returns:
191 	 *
192 	 * 0 on success or a negative error code on failure. Can return
193 	 * -ERESTARTSYS or -EINTR when the call has been interrupted and needs
194 	 * to be restarted.
195 	 */
196 	int (*end_cpu_access)(struct dma_buf *, enum dma_data_direction);
197 	void *(*map)(struct dma_buf *, unsigned long);
198 	void (*unmap)(struct dma_buf *, unsigned long, void *);
199 
200 	/**
201 	 * @mmap:
202 	 *
203 	 * This callback is used by the dma_buf_mmap() function
204 	 *
205 	 * Note that the mapping needs to be incoherent, userspace is expected
206 	 * to braket CPU access using the DMA_BUF_IOCTL_SYNC interface.
207 	 *
208 	 * Because dma-buf buffers have invariant size over their lifetime, the
209 	 * dma-buf core checks whether a vma is too large and rejects such
210 	 * mappings. The exporter hence does not need to duplicate this check.
211 	 * Drivers do not need to check this themselves.
212 	 *
213 	 * If an exporter needs to manually flush caches and hence needs to fake
214 	 * coherency for mmap support, it needs to be able to zap all the ptes
215 	 * pointing at the backing storage. Now linux mm needs a struct
216 	 * address_space associated with the struct file stored in vma->vm_file
217 	 * to do that with the function unmap_mapping_range. But the dma_buf
218 	 * framework only backs every dma_buf fd with the anon_file struct file,
219 	 * i.e. all dma_bufs share the same file.
220 	 *
221 	 * Hence exporters need to setup their own file (and address_space)
222 	 * association by setting vma->vm_file and adjusting vma->vm_pgoff in
223 	 * the dma_buf mmap callback. In the specific case of a gem driver the
224 	 * exporter could use the shmem file already provided by gem (and set
225 	 * vm_pgoff = 0). Exporters can then zap ptes by unmapping the
226 	 * corresponding range of the struct address_space associated with their
227 	 * own file.
228 	 *
229 	 * This callback is optional.
230 	 *
231 	 * Returns:
232 	 *
233 	 * 0 on success or a negative error code on failure.
234 	 */
235 	int (*mmap)(struct dma_buf *, struct vm_area_struct *vma);
236 
237 	void *(*vmap)(struct dma_buf *);
238 	void (*vunmap)(struct dma_buf *, void *vaddr);
239 };
240 
241 /**
242  * struct dma_buf - shared buffer object
243  * @size: size of the buffer
244  * @file: file pointer used for sharing buffers across, and for refcounting.
245  * @attachments: list of dma_buf_attachment that denotes all devices attached.
246  * @ops: dma_buf_ops associated with this buffer object.
247  * @lock: used internally to serialize list manipulation, attach/detach and vmap/unmap
248  * @vmapping_counter: used internally to refcnt the vmaps
249  * @vmap_ptr: the current vmap ptr if vmapping_counter > 0
250  * @exp_name: name of the exporter; useful for debugging.
251  * @owner: pointer to exporter module; used for refcounting when exporter is a
252  *         kernel module.
253  * @list_node: node for dma_buf accounting and debugging.
254  * @priv: exporter specific private data for this buffer object.
255  * @resv: reservation object linked to this dma-buf
256  * @poll: for userspace poll support
257  * @cb_excl: for userspace poll support
258  * @cb_shared: for userspace poll support
259  *
260  * This represents a shared buffer, created by calling dma_buf_export(). The
261  * userspace representation is a normal file descriptor, which can be created by
262  * calling dma_buf_fd().
263  *
264  * Shared dma buffers are reference counted using dma_buf_put() and
265  * get_dma_buf().
266  *
267  * Device DMA access is handled by the separate &struct dma_buf_attachment.
268  */
269 struct dma_buf {
270 	size_t size;
271 	struct file *file;
272 	struct list_head attachments;
273 	const struct dma_buf_ops *ops;
274 	struct mutex lock;
275 	unsigned vmapping_counter;
276 	void *vmap_ptr;
277 	const char *exp_name;
278 	struct module *owner;
279 	struct list_head list_node;
280 	void *priv;
281 	struct reservation_object *resv;
282 
283 	/* poll support */
284 	wait_queue_head_t poll;
285 
286 	struct dma_buf_poll_cb_t {
287 		struct dma_fence_cb cb;
288 		wait_queue_head_t *poll;
289 
290 		__poll_t active;
291 	} cb_excl, cb_shared;
292 };
293 
294 /**
295  * struct dma_buf_attachment - holds device-buffer attachment data
296  * @dmabuf: buffer for this attachment.
297  * @dev: device attached to the buffer.
298  * @node: list of dma_buf_attachment.
299  * @priv: exporter specific attachment data.
300  *
301  * This structure holds the attachment information between the dma_buf buffer
302  * and its user device(s). The list contains one attachment struct per device
303  * attached to the buffer.
304  *
305  * An attachment is created by calling dma_buf_attach(), and released again by
306  * calling dma_buf_detach(). The DMA mapping itself needed to initiate a
307  * transfer is created by dma_buf_map_attachment() and freed again by calling
308  * dma_buf_unmap_attachment().
309  */
310 struct dma_buf_attachment {
311 	struct dma_buf *dmabuf;
312 	struct device *dev;
313 	struct list_head node;
314 	void *priv;
315 };
316 
317 /**
318  * struct dma_buf_export_info - holds information needed to export a dma_buf
319  * @exp_name:	name of the exporter - useful for debugging.
320  * @owner:	pointer to exporter module - used for refcounting kernel module
321  * @ops:	Attach allocator-defined dma buf ops to the new buffer
322  * @size:	Size of the buffer
323  * @flags:	mode flags for the file
324  * @resv:	reservation-object, NULL to allocate default one
325  * @priv:	Attach private data of allocator to this buffer
326  *
327  * This structure holds the information required to export the buffer. Used
328  * with dma_buf_export() only.
329  */
330 struct dma_buf_export_info {
331 	const char *exp_name;
332 	struct module *owner;
333 	const struct dma_buf_ops *ops;
334 	size_t size;
335 	int flags;
336 	struct reservation_object *resv;
337 	void *priv;
338 };
339 
340 /**
341  * DEFINE_DMA_BUF_EXPORT_INFO - helper macro for exporters
342  * @name: export-info name
343  *
344  * DEFINE_DMA_BUF_EXPORT_INFO macro defines the &struct dma_buf_export_info,
345  * zeroes it out and pre-populates exp_name in it.
346  */
347 #define DEFINE_DMA_BUF_EXPORT_INFO(name)	\
348 	struct dma_buf_export_info name = { .exp_name = KBUILD_MODNAME, \
349 					 .owner = THIS_MODULE }
350 
351 /**
352  * get_dma_buf - convenience wrapper for get_file.
353  * @dmabuf:	[in]	pointer to dma_buf
354  *
355  * Increments the reference count on the dma-buf, needed in case of drivers
356  * that either need to create additional references to the dmabuf on the
357  * kernel side.  For example, an exporter that needs to keep a dmabuf ptr
358  * so that subsequent exports don't create a new dmabuf.
359  */
360 static inline void get_dma_buf(struct dma_buf *dmabuf)
361 {
362 	get_file(dmabuf->file);
363 }
364 
365 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
366 							struct device *dev);
367 void dma_buf_detach(struct dma_buf *dmabuf,
368 				struct dma_buf_attachment *dmabuf_attach);
369 
370 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info);
371 
372 int dma_buf_fd(struct dma_buf *dmabuf, int flags);
373 struct dma_buf *dma_buf_get(int fd);
374 void dma_buf_put(struct dma_buf *dmabuf);
375 
376 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *,
377 					enum dma_data_direction);
378 void dma_buf_unmap_attachment(struct dma_buf_attachment *, struct sg_table *,
379 				enum dma_data_direction);
380 int dma_buf_begin_cpu_access(struct dma_buf *dma_buf,
381 			     enum dma_data_direction dir);
382 int dma_buf_end_cpu_access(struct dma_buf *dma_buf,
383 			   enum dma_data_direction dir);
384 void *dma_buf_kmap(struct dma_buf *, unsigned long);
385 void dma_buf_kunmap(struct dma_buf *, unsigned long, void *);
386 
387 int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *,
388 		 unsigned long);
389 void *dma_buf_vmap(struct dma_buf *);
390 void dma_buf_vunmap(struct dma_buf *, void *vaddr);
391 #endif /* __DMA_BUF_H__ */
392