xref: /openbmc/linux/include/linux/damon.h (revision 97e6ea6d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * DAMON api
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #ifndef _DAMON_H_
9 #define _DAMON_H_
10 
11 #include <linux/mutex.h>
12 #include <linux/time64.h>
13 #include <linux/types.h>
14 
15 /* Minimal region size.  Every damon_region is aligned by this. */
16 #define DAMON_MIN_REGION	PAGE_SIZE
17 
18 /**
19  * struct damon_addr_range - Represents an address region of [@start, @end).
20  * @start:	Start address of the region (inclusive).
21  * @end:	End address of the region (exclusive).
22  */
23 struct damon_addr_range {
24 	unsigned long start;
25 	unsigned long end;
26 };
27 
28 /**
29  * struct damon_region - Represents a monitoring target region.
30  * @ar:			The address range of the region.
31  * @sampling_addr:	Address of the sample for the next access check.
32  * @nr_accesses:	Access frequency of this region.
33  * @list:		List head for siblings.
34  */
35 struct damon_region {
36 	struct damon_addr_range ar;
37 	unsigned long sampling_addr;
38 	unsigned int nr_accesses;
39 	struct list_head list;
40 };
41 
42 /**
43  * struct damon_target - Represents a monitoring target.
44  * @id:			Unique identifier for this target.
45  * @nr_regions:		Number of monitoring target regions of this target.
46  * @regions_list:	Head of the monitoring target regions of this target.
47  * @list:		List head for siblings.
48  *
49  * Each monitoring context could have multiple targets.  For example, a context
50  * for virtual memory address spaces could have multiple target processes.  The
51  * @id of each target should be unique among the targets of the context.  For
52  * example, in the virtual address monitoring context, it could be a pidfd or
53  * an address of an mm_struct.
54  */
55 struct damon_target {
56 	unsigned long id;
57 	unsigned int nr_regions;
58 	struct list_head regions_list;
59 	struct list_head list;
60 };
61 
62 struct damon_ctx;
63 
64 /**
65  * struct damon_primitive	Monitoring primitives for given use cases.
66  *
67  * @init:			Initialize primitive-internal data structures.
68  * @update:			Update primitive-internal data structures.
69  * @prepare_access_checks:	Prepare next access check of target regions.
70  * @check_accesses:		Check the accesses to target regions.
71  * @reset_aggregated:		Reset aggregated accesses monitoring results.
72  * @target_valid:		Determine if the target is valid.
73  * @cleanup:			Clean up the context.
74  *
75  * DAMON can be extended for various address spaces and usages.  For this,
76  * users should register the low level primitives for their target address
77  * space and usecase via the &damon_ctx.primitive.  Then, the monitoring thread
78  * (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting
79  * the monitoring, @update after each &damon_ctx.primitive_update_interval, and
80  * @check_accesses, @target_valid and @prepare_access_checks after each
81  * &damon_ctx.sample_interval.  Finally, @reset_aggregated is called after each
82  * &damon_ctx.aggr_interval.
83  *
84  * @init should initialize primitive-internal data structures.  For example,
85  * this could be used to construct proper monitoring target regions and link
86  * those to @damon_ctx.adaptive_targets.
87  * @update should update the primitive-internal data structures.  For example,
88  * this could be used to update monitoring target regions for current status.
89  * @prepare_access_checks should manipulate the monitoring regions to be
90  * prepared for the next access check.
91  * @check_accesses should check the accesses to each region that made after the
92  * last preparation and update the number of observed accesses of each region.
93  * It should also return max number of observed accesses that made as a result
94  * of its update.  The value will be used for regions adjustment threshold.
95  * @reset_aggregated should reset the access monitoring results that aggregated
96  * by @check_accesses.
97  * @target_valid should check whether the target is still valid for the
98  * monitoring.
99  * @cleanup is called from @kdamond just before its termination.
100  */
101 struct damon_primitive {
102 	void (*init)(struct damon_ctx *context);
103 	void (*update)(struct damon_ctx *context);
104 	void (*prepare_access_checks)(struct damon_ctx *context);
105 	unsigned int (*check_accesses)(struct damon_ctx *context);
106 	void (*reset_aggregated)(struct damon_ctx *context);
107 	bool (*target_valid)(void *target);
108 	void (*cleanup)(struct damon_ctx *context);
109 };
110 
111 /*
112  * struct damon_callback	Monitoring events notification callbacks.
113  *
114  * @before_start:	Called before starting the monitoring.
115  * @after_sampling:	Called after each sampling.
116  * @after_aggregation:	Called after each aggregation.
117  * @before_terminate:	Called before terminating the monitoring.
118  * @private:		User private data.
119  *
120  * The monitoring thread (&damon_ctx.kdamond) calls @before_start and
121  * @before_terminate just before starting and finishing the monitoring,
122  * respectively.  Therefore, those are good places for installing and cleaning
123  * @private.
124  *
125  * The monitoring thread calls @after_sampling and @after_aggregation for each
126  * of the sampling intervals and aggregation intervals, respectively.
127  * Therefore, users can safely access the monitoring results without additional
128  * protection.  For the reason, users are recommended to use these callback for
129  * the accesses to the results.
130  *
131  * If any callback returns non-zero, monitoring stops.
132  */
133 struct damon_callback {
134 	void *private;
135 
136 	int (*before_start)(struct damon_ctx *context);
137 	int (*after_sampling)(struct damon_ctx *context);
138 	int (*after_aggregation)(struct damon_ctx *context);
139 	int (*before_terminate)(struct damon_ctx *context);
140 };
141 
142 /**
143  * struct damon_ctx - Represents a context for each monitoring.  This is the
144  * main interface that allows users to set the attributes and get the results
145  * of the monitoring.
146  *
147  * @sample_interval:		The time between access samplings.
148  * @aggr_interval:		The time between monitor results aggregations.
149  * @primitive_update_interval:	The time between monitoring primitive updates.
150  *
151  * For each @sample_interval, DAMON checks whether each region is accessed or
152  * not.  It aggregates and keeps the access information (number of accesses to
153  * each region) for @aggr_interval time.  DAMON also checks whether the target
154  * memory regions need update (e.g., by ``mmap()`` calls from the application,
155  * in case of virtual memory monitoring) and applies the changes for each
156  * @primitive_update_interval.  All time intervals are in micro-seconds.
157  * Please refer to &struct damon_primitive and &struct damon_callback for more
158  * detail.
159  *
160  * @kdamond:		Kernel thread who does the monitoring.
161  * @kdamond_stop:	Notifies whether kdamond should stop.
162  * @kdamond_lock:	Mutex for the synchronizations with @kdamond.
163  *
164  * For each monitoring context, one kernel thread for the monitoring is
165  * created.  The pointer to the thread is stored in @kdamond.
166  *
167  * Once started, the monitoring thread runs until explicitly required to be
168  * terminated or every monitoring target is invalid.  The validity of the
169  * targets is checked via the &damon_primitive.target_valid of @primitive.  The
170  * termination can also be explicitly requested by writing non-zero to
171  * @kdamond_stop.  The thread sets @kdamond to NULL when it terminates.
172  * Therefore, users can know whether the monitoring is ongoing or terminated by
173  * reading @kdamond.  Reads and writes to @kdamond and @kdamond_stop from
174  * outside of the monitoring thread must be protected by @kdamond_lock.
175  *
176  * Note that the monitoring thread protects only @kdamond and @kdamond_stop via
177  * @kdamond_lock.  Accesses to other fields must be protected by themselves.
178  *
179  * @primitive:	Set of monitoring primitives for given use cases.
180  * @callback:	Set of callbacks for monitoring events notifications.
181  *
182  * @min_nr_regions:	The minimum number of adaptive monitoring regions.
183  * @max_nr_regions:	The maximum number of adaptive monitoring regions.
184  * @adaptive_targets:	Head of monitoring targets (&damon_target) list.
185  */
186 struct damon_ctx {
187 	unsigned long sample_interval;
188 	unsigned long aggr_interval;
189 	unsigned long primitive_update_interval;
190 
191 /* private: internal use only */
192 	struct timespec64 last_aggregation;
193 	struct timespec64 last_primitive_update;
194 
195 /* public: */
196 	struct task_struct *kdamond;
197 	bool kdamond_stop;
198 	struct mutex kdamond_lock;
199 
200 	struct damon_primitive primitive;
201 	struct damon_callback callback;
202 
203 	unsigned long min_nr_regions;
204 	unsigned long max_nr_regions;
205 	struct list_head adaptive_targets;
206 };
207 
208 #define damon_next_region(r) \
209 	(container_of(r->list.next, struct damon_region, list))
210 
211 #define damon_prev_region(r) \
212 	(container_of(r->list.prev, struct damon_region, list))
213 
214 #define damon_for_each_region(r, t) \
215 	list_for_each_entry(r, &t->regions_list, list)
216 
217 #define damon_for_each_region_safe(r, next, t) \
218 	list_for_each_entry_safe(r, next, &t->regions_list, list)
219 
220 #define damon_for_each_target(t, ctx) \
221 	list_for_each_entry(t, &(ctx)->adaptive_targets, list)
222 
223 #define damon_for_each_target_safe(t, next, ctx)	\
224 	list_for_each_entry_safe(t, next, &(ctx)->adaptive_targets, list)
225 
226 #ifdef CONFIG_DAMON
227 
228 struct damon_region *damon_new_region(unsigned long start, unsigned long end);
229 inline void damon_insert_region(struct damon_region *r,
230 		struct damon_region *prev, struct damon_region *next,
231 		struct damon_target *t);
232 void damon_add_region(struct damon_region *r, struct damon_target *t);
233 void damon_destroy_region(struct damon_region *r, struct damon_target *t);
234 
235 struct damon_target *damon_new_target(unsigned long id);
236 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t);
237 void damon_free_target(struct damon_target *t);
238 void damon_destroy_target(struct damon_target *t);
239 unsigned int damon_nr_regions(struct damon_target *t);
240 
241 struct damon_ctx *damon_new_ctx(void);
242 void damon_destroy_ctx(struct damon_ctx *ctx);
243 int damon_set_targets(struct damon_ctx *ctx,
244 		unsigned long *ids, ssize_t nr_ids);
245 int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
246 		unsigned long aggr_int, unsigned long primitive_upd_int,
247 		unsigned long min_nr_reg, unsigned long max_nr_reg);
248 int damon_nr_running_ctxs(void);
249 
250 int damon_start(struct damon_ctx **ctxs, int nr_ctxs);
251 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs);
252 
253 #endif	/* CONFIG_DAMON */
254 
255 #ifdef CONFIG_DAMON_VADDR
256 
257 /* Monitoring primitives for virtual memory address spaces */
258 void damon_va_init(struct damon_ctx *ctx);
259 void damon_va_update(struct damon_ctx *ctx);
260 void damon_va_prepare_access_checks(struct damon_ctx *ctx);
261 unsigned int damon_va_check_accesses(struct damon_ctx *ctx);
262 bool damon_va_target_valid(void *t);
263 void damon_va_cleanup(struct damon_ctx *ctx);
264 void damon_va_set_primitives(struct damon_ctx *ctx);
265 
266 #endif	/* CONFIG_DAMON_VADDR */
267 
268 #endif	/* _DAMON_H */
269