xref: /openbmc/linux/include/linux/damon.h (revision 54a611b6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * DAMON api
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #ifndef _DAMON_H_
9 #define _DAMON_H_
10 
11 #include <linux/mutex.h>
12 #include <linux/time64.h>
13 #include <linux/types.h>
14 #include <linux/random.h>
15 
16 /* Minimal region size.  Every damon_region is aligned by this. */
17 #define DAMON_MIN_REGION	PAGE_SIZE
18 /* Max priority score for DAMON-based operation schemes */
19 #define DAMOS_MAX_SCORE		(99)
20 
21 /* Get a random number in [l, r) */
22 static inline unsigned long damon_rand(unsigned long l, unsigned long r)
23 {
24 	return l + prandom_u32_max(r - l);
25 }
26 
27 /**
28  * struct damon_addr_range - Represents an address region of [@start, @end).
29  * @start:	Start address of the region (inclusive).
30  * @end:	End address of the region (exclusive).
31  */
32 struct damon_addr_range {
33 	unsigned long start;
34 	unsigned long end;
35 };
36 
37 /**
38  * struct damon_region - Represents a monitoring target region.
39  * @ar:			The address range of the region.
40  * @sampling_addr:	Address of the sample for the next access check.
41  * @nr_accesses:	Access frequency of this region.
42  * @list:		List head for siblings.
43  * @age:		Age of this region.
44  *
45  * @age is initially zero, increased for each aggregation interval, and reset
46  * to zero again if the access frequency is significantly changed.  If two
47  * regions are merged into a new region, both @nr_accesses and @age of the new
48  * region are set as region size-weighted average of those of the two regions.
49  */
50 struct damon_region {
51 	struct damon_addr_range ar;
52 	unsigned long sampling_addr;
53 	unsigned int nr_accesses;
54 	struct list_head list;
55 
56 	unsigned int age;
57 /* private: Internal value for age calculation. */
58 	unsigned int last_nr_accesses;
59 };
60 
61 /**
62  * struct damon_target - Represents a monitoring target.
63  * @pid:		The PID of the virtual address space to monitor.
64  * @nr_regions:		Number of monitoring target regions of this target.
65  * @regions_list:	Head of the monitoring target regions of this target.
66  * @list:		List head for siblings.
67  *
68  * Each monitoring context could have multiple targets.  For example, a context
69  * for virtual memory address spaces could have multiple target processes.  The
70  * @pid should be set for appropriate &struct damon_operations including the
71  * virtual address spaces monitoring operations.
72  */
73 struct damon_target {
74 	struct pid *pid;
75 	unsigned int nr_regions;
76 	struct list_head regions_list;
77 	struct list_head list;
78 };
79 
80 /**
81  * enum damos_action - Represents an action of a Data Access Monitoring-based
82  * Operation Scheme.
83  *
84  * @DAMOS_WILLNEED:	Call ``madvise()`` for the region with MADV_WILLNEED.
85  * @DAMOS_COLD:		Call ``madvise()`` for the region with MADV_COLD.
86  * @DAMOS_PAGEOUT:	Call ``madvise()`` for the region with MADV_PAGEOUT.
87  * @DAMOS_HUGEPAGE:	Call ``madvise()`` for the region with MADV_HUGEPAGE.
88  * @DAMOS_NOHUGEPAGE:	Call ``madvise()`` for the region with MADV_NOHUGEPAGE.
89  * @DAMOS_LRU_PRIO:	Prioritize the region on its LRU lists.
90  * @DAMOS_LRU_DEPRIO:	Deprioritize the region on its LRU lists.
91  * @DAMOS_STAT:		Do nothing but count the stat.
92  * @NR_DAMOS_ACTIONS:	Total number of DAMOS actions
93  */
94 enum damos_action {
95 	DAMOS_WILLNEED,
96 	DAMOS_COLD,
97 	DAMOS_PAGEOUT,
98 	DAMOS_HUGEPAGE,
99 	DAMOS_NOHUGEPAGE,
100 	DAMOS_LRU_PRIO,
101 	DAMOS_LRU_DEPRIO,
102 	DAMOS_STAT,		/* Do nothing but only record the stat */
103 	NR_DAMOS_ACTIONS,
104 };
105 
106 /**
107  * struct damos_quota - Controls the aggressiveness of the given scheme.
108  * @ms:			Maximum milliseconds that the scheme can use.
109  * @sz:			Maximum bytes of memory that the action can be applied.
110  * @reset_interval:	Charge reset interval in milliseconds.
111  *
112  * @weight_sz:		Weight of the region's size for prioritization.
113  * @weight_nr_accesses:	Weight of the region's nr_accesses for prioritization.
114  * @weight_age:		Weight of the region's age for prioritization.
115  *
116  * To avoid consuming too much CPU time or IO resources for applying the
117  * &struct damos->action to large memory, DAMON allows users to set time and/or
118  * size quotas.  The quotas can be set by writing non-zero values to &ms and
119  * &sz, respectively.  If the time quota is set, DAMON tries to use only up to
120  * &ms milliseconds within &reset_interval for applying the action.  If the
121  * size quota is set, DAMON tries to apply the action only up to &sz bytes
122  * within &reset_interval.
123  *
124  * Internally, the time quota is transformed to a size quota using estimated
125  * throughput of the scheme's action.  DAMON then compares it against &sz and
126  * uses smaller one as the effective quota.
127  *
128  * For selecting regions within the quota, DAMON prioritizes current scheme's
129  * target memory regions using the &struct damon_operations->get_scheme_score.
130  * You could customize the prioritization logic by setting &weight_sz,
131  * &weight_nr_accesses, and &weight_age, because monitoring operations are
132  * encouraged to respect those.
133  */
134 struct damos_quota {
135 	unsigned long ms;
136 	unsigned long sz;
137 	unsigned long reset_interval;
138 
139 	unsigned int weight_sz;
140 	unsigned int weight_nr_accesses;
141 	unsigned int weight_age;
142 
143 /* private: */
144 	/* For throughput estimation */
145 	unsigned long total_charged_sz;
146 	unsigned long total_charged_ns;
147 
148 	unsigned long esz;	/* Effective size quota in bytes */
149 
150 	/* For charging the quota */
151 	unsigned long charged_sz;
152 	unsigned long charged_from;
153 	struct damon_target *charge_target_from;
154 	unsigned long charge_addr_from;
155 
156 	/* For prioritization */
157 	unsigned long histogram[DAMOS_MAX_SCORE + 1];
158 	unsigned int min_score;
159 };
160 
161 /**
162  * enum damos_wmark_metric - Represents the watermark metric.
163  *
164  * @DAMOS_WMARK_NONE:		Ignore the watermarks of the given scheme.
165  * @DAMOS_WMARK_FREE_MEM_RATE:	Free memory rate of the system in [0,1000].
166  * @NR_DAMOS_WMARK_METRICS:	Total number of DAMOS watermark metrics
167  */
168 enum damos_wmark_metric {
169 	DAMOS_WMARK_NONE,
170 	DAMOS_WMARK_FREE_MEM_RATE,
171 	NR_DAMOS_WMARK_METRICS,
172 };
173 
174 /**
175  * struct damos_watermarks - Controls when a given scheme should be activated.
176  * @metric:	Metric for the watermarks.
177  * @interval:	Watermarks check time interval in microseconds.
178  * @high:	High watermark.
179  * @mid:	Middle watermark.
180  * @low:	Low watermark.
181  *
182  * If &metric is &DAMOS_WMARK_NONE, the scheme is always active.  Being active
183  * means DAMON does monitoring and applying the action of the scheme to
184  * appropriate memory regions.  Else, DAMON checks &metric of the system for at
185  * least every &interval microseconds and works as below.
186  *
187  * If &metric is higher than &high, the scheme is inactivated.  If &metric is
188  * between &mid and &low, the scheme is activated.  If &metric is lower than
189  * &low, the scheme is inactivated.
190  */
191 struct damos_watermarks {
192 	enum damos_wmark_metric metric;
193 	unsigned long interval;
194 	unsigned long high;
195 	unsigned long mid;
196 	unsigned long low;
197 
198 /* private: */
199 	bool activated;
200 };
201 
202 /**
203  * struct damos_stat - Statistics on a given scheme.
204  * @nr_tried:	Total number of regions that the scheme is tried to be applied.
205  * @sz_tried:	Total size of regions that the scheme is tried to be applied.
206  * @nr_applied:	Total number of regions that the scheme is applied.
207  * @sz_applied:	Total size of regions that the scheme is applied.
208  * @qt_exceeds: Total number of times the quota of the scheme has exceeded.
209  */
210 struct damos_stat {
211 	unsigned long nr_tried;
212 	unsigned long sz_tried;
213 	unsigned long nr_applied;
214 	unsigned long sz_applied;
215 	unsigned long qt_exceeds;
216 };
217 
218 /**
219  * struct damos - Represents a Data Access Monitoring-based Operation Scheme.
220  * @min_sz_region:	Minimum size of target regions.
221  * @max_sz_region:	Maximum size of target regions.
222  * @min_nr_accesses:	Minimum ``->nr_accesses`` of target regions.
223  * @max_nr_accesses:	Maximum ``->nr_accesses`` of target regions.
224  * @min_age_region:	Minimum age of target regions.
225  * @max_age_region:	Maximum age of target regions.
226  * @action:		&damo_action to be applied to the target regions.
227  * @quota:		Control the aggressiveness of this scheme.
228  * @wmarks:		Watermarks for automated (in)activation of this scheme.
229  * @stat:		Statistics of this scheme.
230  * @list:		List head for siblings.
231  *
232  * For each aggregation interval, DAMON finds regions which fit in the
233  * condition (&min_sz_region, &max_sz_region, &min_nr_accesses,
234  * &max_nr_accesses, &min_age_region, &max_age_region) and applies &action to
235  * those.  To avoid consuming too much CPU time or IO resources for the
236  * &action, &quota is used.
237  *
238  * To do the work only when needed, schemes can be activated for specific
239  * system situations using &wmarks.  If all schemes that registered to the
240  * monitoring context are inactive, DAMON stops monitoring either, and just
241  * repeatedly checks the watermarks.
242  *
243  * If all schemes that registered to a &struct damon_ctx are inactive, DAMON
244  * stops monitoring and just repeatedly checks the watermarks.
245  *
246  * After applying the &action to each region, &stat_count and &stat_sz is
247  * updated to reflect the number of regions and total size of regions that the
248  * &action is applied.
249  */
250 struct damos {
251 	unsigned long min_sz_region;
252 	unsigned long max_sz_region;
253 	unsigned int min_nr_accesses;
254 	unsigned int max_nr_accesses;
255 	unsigned int min_age_region;
256 	unsigned int max_age_region;
257 	enum damos_action action;
258 	struct damos_quota quota;
259 	struct damos_watermarks wmarks;
260 	struct damos_stat stat;
261 	struct list_head list;
262 };
263 
264 /**
265  * enum damon_ops_id - Identifier for each monitoring operations implementation
266  *
267  * @DAMON_OPS_VADDR:	Monitoring operations for virtual address spaces
268  * @DAMON_OPS_FVADDR:	Monitoring operations for only fixed ranges of virtual
269  *			address spaces
270  * @DAMON_OPS_PADDR:	Monitoring operations for the physical address space
271  * @NR_DAMON_OPS:	Number of monitoring operations implementations
272  */
273 enum damon_ops_id {
274 	DAMON_OPS_VADDR,
275 	DAMON_OPS_FVADDR,
276 	DAMON_OPS_PADDR,
277 	NR_DAMON_OPS,
278 };
279 
280 struct damon_ctx;
281 
282 /**
283  * struct damon_operations - Monitoring operations for given use cases.
284  *
285  * @id:				Identifier of this operations set.
286  * @init:			Initialize operations-related data structures.
287  * @update:			Update operations-related data structures.
288  * @prepare_access_checks:	Prepare next access check of target regions.
289  * @check_accesses:		Check the accesses to target regions.
290  * @reset_aggregated:		Reset aggregated accesses monitoring results.
291  * @get_scheme_score:		Get the score of a region for a scheme.
292  * @apply_scheme:		Apply a DAMON-based operation scheme.
293  * @target_valid:		Determine if the target is valid.
294  * @cleanup:			Clean up the context.
295  *
296  * DAMON can be extended for various address spaces and usages.  For this,
297  * users should register the low level operations for their target address
298  * space and usecase via the &damon_ctx.ops.  Then, the monitoring thread
299  * (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting
300  * the monitoring, @update after each &damon_ctx.ops_update_interval, and
301  * @check_accesses, @target_valid and @prepare_access_checks after each
302  * &damon_ctx.sample_interval.  Finally, @reset_aggregated is called after each
303  * &damon_ctx.aggr_interval.
304  *
305  * Each &struct damon_operations instance having valid @id can be registered
306  * via damon_register_ops() and selected by damon_select_ops() later.
307  * @init should initialize operations-related data structures.  For example,
308  * this could be used to construct proper monitoring target regions and link
309  * those to @damon_ctx.adaptive_targets.
310  * @update should update the operations-related data structures.  For example,
311  * this could be used to update monitoring target regions for current status.
312  * @prepare_access_checks should manipulate the monitoring regions to be
313  * prepared for the next access check.
314  * @check_accesses should check the accesses to each region that made after the
315  * last preparation and update the number of observed accesses of each region.
316  * It should also return max number of observed accesses that made as a result
317  * of its update.  The value will be used for regions adjustment threshold.
318  * @reset_aggregated should reset the access monitoring results that aggregated
319  * by @check_accesses.
320  * @get_scheme_score should return the priority score of a region for a scheme
321  * as an integer in [0, &DAMOS_MAX_SCORE].
322  * @apply_scheme is called from @kdamond when a region for user provided
323  * DAMON-based operation scheme is found.  It should apply the scheme's action
324  * to the region and return bytes of the region that the action is successfully
325  * applied.
326  * @target_valid should check whether the target is still valid for the
327  * monitoring.
328  * @cleanup is called from @kdamond just before its termination.
329  */
330 struct damon_operations {
331 	enum damon_ops_id id;
332 	void (*init)(struct damon_ctx *context);
333 	void (*update)(struct damon_ctx *context);
334 	void (*prepare_access_checks)(struct damon_ctx *context);
335 	unsigned int (*check_accesses)(struct damon_ctx *context);
336 	void (*reset_aggregated)(struct damon_ctx *context);
337 	int (*get_scheme_score)(struct damon_ctx *context,
338 			struct damon_target *t, struct damon_region *r,
339 			struct damos *scheme);
340 	unsigned long (*apply_scheme)(struct damon_ctx *context,
341 			struct damon_target *t, struct damon_region *r,
342 			struct damos *scheme);
343 	bool (*target_valid)(void *target);
344 	void (*cleanup)(struct damon_ctx *context);
345 };
346 
347 /**
348  * struct damon_callback - Monitoring events notification callbacks.
349  *
350  * @before_start:	Called before starting the monitoring.
351  * @after_wmarks_check:	Called after each schemes' watermarks check.
352  * @after_sampling:	Called after each sampling.
353  * @after_aggregation:	Called after each aggregation.
354  * @before_terminate:	Called before terminating the monitoring.
355  * @private:		User private data.
356  *
357  * The monitoring thread (&damon_ctx.kdamond) calls @before_start and
358  * @before_terminate just before starting and finishing the monitoring,
359  * respectively.  Therefore, those are good places for installing and cleaning
360  * @private.
361  *
362  * The monitoring thread calls @after_wmarks_check after each DAMON-based
363  * operation schemes' watermarks check.  If users need to make changes to the
364  * attributes of the monitoring context while it's deactivated due to the
365  * watermarks, this is the good place to do.
366  *
367  * The monitoring thread calls @after_sampling and @after_aggregation for each
368  * of the sampling intervals and aggregation intervals, respectively.
369  * Therefore, users can safely access the monitoring results without additional
370  * protection.  For the reason, users are recommended to use these callback for
371  * the accesses to the results.
372  *
373  * If any callback returns non-zero, monitoring stops.
374  */
375 struct damon_callback {
376 	void *private;
377 
378 	int (*before_start)(struct damon_ctx *context);
379 	int (*after_wmarks_check)(struct damon_ctx *context);
380 	int (*after_sampling)(struct damon_ctx *context);
381 	int (*after_aggregation)(struct damon_ctx *context);
382 	void (*before_terminate)(struct damon_ctx *context);
383 };
384 
385 /**
386  * struct damon_ctx - Represents a context for each monitoring.  This is the
387  * main interface that allows users to set the attributes and get the results
388  * of the monitoring.
389  *
390  * @sample_interval:		The time between access samplings.
391  * @aggr_interval:		The time between monitor results aggregations.
392  * @ops_update_interval:	The time between monitoring operations updates.
393  *
394  * For each @sample_interval, DAMON checks whether each region is accessed or
395  * not.  It aggregates and keeps the access information (number of accesses to
396  * each region) for @aggr_interval time.  DAMON also checks whether the target
397  * memory regions need update (e.g., by ``mmap()`` calls from the application,
398  * in case of virtual memory monitoring) and applies the changes for each
399  * @ops_update_interval.  All time intervals are in micro-seconds.
400  * Please refer to &struct damon_operations and &struct damon_callback for more
401  * detail.
402  *
403  * @kdamond:		Kernel thread who does the monitoring.
404  * @kdamond_lock:	Mutex for the synchronizations with @kdamond.
405  *
406  * For each monitoring context, one kernel thread for the monitoring is
407  * created.  The pointer to the thread is stored in @kdamond.
408  *
409  * Once started, the monitoring thread runs until explicitly required to be
410  * terminated or every monitoring target is invalid.  The validity of the
411  * targets is checked via the &damon_operations.target_valid of @ops.  The
412  * termination can also be explicitly requested by calling damon_stop().
413  * The thread sets @kdamond to NULL when it terminates. Therefore, users can
414  * know whether the monitoring is ongoing or terminated by reading @kdamond.
415  * Reads and writes to @kdamond from outside of the monitoring thread must
416  * be protected by @kdamond_lock.
417  *
418  * Note that the monitoring thread protects only @kdamond via @kdamond_lock.
419  * Accesses to other fields must be protected by themselves.
420  *
421  * @ops:	Set of monitoring operations for given use cases.
422  * @callback:	Set of callbacks for monitoring events notifications.
423  *
424  * @min_nr_regions:	The minimum number of adaptive monitoring regions.
425  * @max_nr_regions:	The maximum number of adaptive monitoring regions.
426  * @adaptive_targets:	Head of monitoring targets (&damon_target) list.
427  * @schemes:		Head of schemes (&damos) list.
428  */
429 struct damon_ctx {
430 	unsigned long sample_interval;
431 	unsigned long aggr_interval;
432 	unsigned long ops_update_interval;
433 
434 /* private: internal use only */
435 	struct timespec64 last_aggregation;
436 	struct timespec64 last_ops_update;
437 
438 /* public: */
439 	struct task_struct *kdamond;
440 	struct mutex kdamond_lock;
441 
442 	struct damon_operations ops;
443 	struct damon_callback callback;
444 
445 	unsigned long min_nr_regions;
446 	unsigned long max_nr_regions;
447 	struct list_head adaptive_targets;
448 	struct list_head schemes;
449 };
450 
451 static inline struct damon_region *damon_next_region(struct damon_region *r)
452 {
453 	return container_of(r->list.next, struct damon_region, list);
454 }
455 
456 static inline struct damon_region *damon_prev_region(struct damon_region *r)
457 {
458 	return container_of(r->list.prev, struct damon_region, list);
459 }
460 
461 static inline struct damon_region *damon_last_region(struct damon_target *t)
462 {
463 	return list_last_entry(&t->regions_list, struct damon_region, list);
464 }
465 
466 #define damon_for_each_region(r, t) \
467 	list_for_each_entry(r, &t->regions_list, list)
468 
469 #define damon_for_each_region_safe(r, next, t) \
470 	list_for_each_entry_safe(r, next, &t->regions_list, list)
471 
472 #define damon_for_each_target(t, ctx) \
473 	list_for_each_entry(t, &(ctx)->adaptive_targets, list)
474 
475 #define damon_for_each_target_safe(t, next, ctx)	\
476 	list_for_each_entry_safe(t, next, &(ctx)->adaptive_targets, list)
477 
478 #define damon_for_each_scheme(s, ctx) \
479 	list_for_each_entry(s, &(ctx)->schemes, list)
480 
481 #define damon_for_each_scheme_safe(s, next, ctx) \
482 	list_for_each_entry_safe(s, next, &(ctx)->schemes, list)
483 
484 #ifdef CONFIG_DAMON
485 
486 struct damon_region *damon_new_region(unsigned long start, unsigned long end);
487 
488 /*
489  * Add a region between two other regions
490  */
491 static inline void damon_insert_region(struct damon_region *r,
492 		struct damon_region *prev, struct damon_region *next,
493 		struct damon_target *t)
494 {
495 	__list_add(&r->list, &prev->list, &next->list);
496 	t->nr_regions++;
497 }
498 
499 void damon_add_region(struct damon_region *r, struct damon_target *t);
500 void damon_destroy_region(struct damon_region *r, struct damon_target *t);
501 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
502 		unsigned int nr_ranges);
503 
504 struct damos *damon_new_scheme(
505 		unsigned long min_sz_region, unsigned long max_sz_region,
506 		unsigned int min_nr_accesses, unsigned int max_nr_accesses,
507 		unsigned int min_age_region, unsigned int max_age_region,
508 		enum damos_action action, struct damos_quota *quota,
509 		struct damos_watermarks *wmarks);
510 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s);
511 void damon_destroy_scheme(struct damos *s);
512 
513 struct damon_target *damon_new_target(void);
514 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t);
515 bool damon_targets_empty(struct damon_ctx *ctx);
516 void damon_free_target(struct damon_target *t);
517 void damon_destroy_target(struct damon_target *t);
518 unsigned int damon_nr_regions(struct damon_target *t);
519 
520 struct damon_ctx *damon_new_ctx(void);
521 void damon_destroy_ctx(struct damon_ctx *ctx);
522 int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
523 		unsigned long aggr_int, unsigned long ops_upd_int,
524 		unsigned long min_nr_reg, unsigned long max_nr_reg);
525 int damon_set_schemes(struct damon_ctx *ctx,
526 			struct damos **schemes, ssize_t nr_schemes);
527 int damon_nr_running_ctxs(void);
528 bool damon_is_registered_ops(enum damon_ops_id id);
529 int damon_register_ops(struct damon_operations *ops);
530 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id);
531 
532 static inline bool damon_target_has_pid(const struct damon_ctx *ctx)
533 {
534 	return ctx->ops.id == DAMON_OPS_VADDR || ctx->ops.id == DAMON_OPS_FVADDR;
535 }
536 
537 
538 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive);
539 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs);
540 
541 #endif	/* CONFIG_DAMON */
542 
543 #endif	/* _DAMON_H */
544