xref: /openbmc/linux/include/linux/damon.h (revision 1f012283)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * DAMON api
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #ifndef _DAMON_H_
9 #define _DAMON_H_
10 
11 #include <linux/mutex.h>
12 #include <linux/time64.h>
13 #include <linux/types.h>
14 
15 /* Minimal region size.  Every damon_region is aligned by this. */
16 #define DAMON_MIN_REGION	PAGE_SIZE
17 /* Max priority score for DAMON-based operation schemes */
18 #define DAMOS_MAX_SCORE		(99)
19 
20 /**
21  * struct damon_addr_range - Represents an address region of [@start, @end).
22  * @start:	Start address of the region (inclusive).
23  * @end:	End address of the region (exclusive).
24  */
25 struct damon_addr_range {
26 	unsigned long start;
27 	unsigned long end;
28 };
29 
30 /**
31  * struct damon_region - Represents a monitoring target region.
32  * @ar:			The address range of the region.
33  * @sampling_addr:	Address of the sample for the next access check.
34  * @nr_accesses:	Access frequency of this region.
35  * @list:		List head for siblings.
36  * @age:		Age of this region.
37  *
38  * @age is initially zero, increased for each aggregation interval, and reset
39  * to zero again if the access frequency is significantly changed.  If two
40  * regions are merged into a new region, both @nr_accesses and @age of the new
41  * region are set as region size-weighted average of those of the two regions.
42  */
43 struct damon_region {
44 	struct damon_addr_range ar;
45 	unsigned long sampling_addr;
46 	unsigned int nr_accesses;
47 	struct list_head list;
48 
49 	unsigned int age;
50 /* private: Internal value for age calculation. */
51 	unsigned int last_nr_accesses;
52 };
53 
54 /**
55  * struct damon_target - Represents a monitoring target.
56  * @id:			Unique identifier for this target.
57  * @nr_regions:		Number of monitoring target regions of this target.
58  * @regions_list:	Head of the monitoring target regions of this target.
59  * @list:		List head for siblings.
60  *
61  * Each monitoring context could have multiple targets.  For example, a context
62  * for virtual memory address spaces could have multiple target processes.  The
63  * @id of each target should be unique among the targets of the context.  For
64  * example, in the virtual address monitoring context, it could be a pidfd or
65  * an address of an mm_struct.
66  */
67 struct damon_target {
68 	unsigned long id;
69 	unsigned int nr_regions;
70 	struct list_head regions_list;
71 	struct list_head list;
72 };
73 
74 /**
75  * enum damos_action - Represents an action of a Data Access Monitoring-based
76  * Operation Scheme.
77  *
78  * @DAMOS_WILLNEED:	Call ``madvise()`` for the region with MADV_WILLNEED.
79  * @DAMOS_COLD:		Call ``madvise()`` for the region with MADV_COLD.
80  * @DAMOS_PAGEOUT:	Call ``madvise()`` for the region with MADV_PAGEOUT.
81  * @DAMOS_HUGEPAGE:	Call ``madvise()`` for the region with MADV_HUGEPAGE.
82  * @DAMOS_NOHUGEPAGE:	Call ``madvise()`` for the region with MADV_NOHUGEPAGE.
83  * @DAMOS_STAT:		Do nothing but count the stat.
84  */
85 enum damos_action {
86 	DAMOS_WILLNEED,
87 	DAMOS_COLD,
88 	DAMOS_PAGEOUT,
89 	DAMOS_HUGEPAGE,
90 	DAMOS_NOHUGEPAGE,
91 	DAMOS_STAT,		/* Do nothing but only record the stat */
92 };
93 
94 /**
95  * struct damos_quota - Controls the aggressiveness of the given scheme.
96  * @ms:			Maximum milliseconds that the scheme can use.
97  * @sz:			Maximum bytes of memory that the action can be applied.
98  * @reset_interval:	Charge reset interval in milliseconds.
99  *
100  * @weight_sz:		Weight of the region's size for prioritization.
101  * @weight_nr_accesses:	Weight of the region's nr_accesses for prioritization.
102  * @weight_age:		Weight of the region's age for prioritization.
103  *
104  * To avoid consuming too much CPU time or IO resources for applying the
105  * &struct damos->action to large memory, DAMON allows users to set time and/or
106  * size quotas.  The quotas can be set by writing non-zero values to &ms and
107  * &sz, respectively.  If the time quota is set, DAMON tries to use only up to
108  * &ms milliseconds within &reset_interval for applying the action.  If the
109  * size quota is set, DAMON tries to apply the action only up to &sz bytes
110  * within &reset_interval.
111  *
112  * Internally, the time quota is transformed to a size quota using estimated
113  * throughput of the scheme's action.  DAMON then compares it against &sz and
114  * uses smaller one as the effective quota.
115  *
116  * For selecting regions within the quota, DAMON prioritizes current scheme's
117  * target memory regions using the &struct damon_primitive->get_scheme_score.
118  * You could customize the prioritization logic by setting &weight_sz,
119  * &weight_nr_accesses, and &weight_age, because monitoring primitives are
120  * encouraged to respect those.
121  */
122 struct damos_quota {
123 	unsigned long ms;
124 	unsigned long sz;
125 	unsigned long reset_interval;
126 
127 	unsigned int weight_sz;
128 	unsigned int weight_nr_accesses;
129 	unsigned int weight_age;
130 
131 /* private: */
132 	/* For throughput estimation */
133 	unsigned long total_charged_sz;
134 	unsigned long total_charged_ns;
135 
136 	unsigned long esz;	/* Effective size quota in bytes */
137 
138 	/* For charging the quota */
139 	unsigned long charged_sz;
140 	unsigned long charged_from;
141 	struct damon_target *charge_target_from;
142 	unsigned long charge_addr_from;
143 
144 	/* For prioritization */
145 	unsigned long histogram[DAMOS_MAX_SCORE + 1];
146 	unsigned int min_score;
147 };
148 
149 /**
150  * enum damos_wmark_metric - Represents the watermark metric.
151  *
152  * @DAMOS_WMARK_NONE:		Ignore the watermarks of the given scheme.
153  * @DAMOS_WMARK_FREE_MEM_RATE:	Free memory rate of the system in [0,1000].
154  */
155 enum damos_wmark_metric {
156 	DAMOS_WMARK_NONE,
157 	DAMOS_WMARK_FREE_MEM_RATE,
158 };
159 
160 /**
161  * struct damos_watermarks - Controls when a given scheme should be activated.
162  * @metric:	Metric for the watermarks.
163  * @interval:	Watermarks check time interval in microseconds.
164  * @high:	High watermark.
165  * @mid:	Middle watermark.
166  * @low:	Low watermark.
167  *
168  * If &metric is &DAMOS_WMARK_NONE, the scheme is always active.  Being active
169  * means DAMON does monitoring and applying the action of the scheme to
170  * appropriate memory regions.  Else, DAMON checks &metric of the system for at
171  * least every &interval microseconds and works as below.
172  *
173  * If &metric is higher than &high, the scheme is inactivated.  If &metric is
174  * between &mid and &low, the scheme is activated.  If &metric is lower than
175  * &low, the scheme is inactivated.
176  */
177 struct damos_watermarks {
178 	enum damos_wmark_metric metric;
179 	unsigned long interval;
180 	unsigned long high;
181 	unsigned long mid;
182 	unsigned long low;
183 
184 /* private: */
185 	bool activated;
186 };
187 
188 /**
189  * struct damos - Represents a Data Access Monitoring-based Operation Scheme.
190  * @min_sz_region:	Minimum size of target regions.
191  * @max_sz_region:	Maximum size of target regions.
192  * @min_nr_accesses:	Minimum ``->nr_accesses`` of target regions.
193  * @max_nr_accesses:	Maximum ``->nr_accesses`` of target regions.
194  * @min_age_region:	Minimum age of target regions.
195  * @max_age_region:	Maximum age of target regions.
196  * @action:		&damo_action to be applied to the target regions.
197  * @quota:		Control the aggressiveness of this scheme.
198  * @wmarks:		Watermarks for automated (in)activation of this scheme.
199  * @stat_count:		Total number of regions that this scheme is applied.
200  * @stat_sz:		Total size of regions that this scheme is applied.
201  * @list:		List head for siblings.
202  *
203  * For each aggregation interval, DAMON finds regions which fit in the
204  * condition (&min_sz_region, &max_sz_region, &min_nr_accesses,
205  * &max_nr_accesses, &min_age_region, &max_age_region) and applies &action to
206  * those.  To avoid consuming too much CPU time or IO resources for the
207  * &action, &quota is used.
208  *
209  * To do the work only when needed, schemes can be activated for specific
210  * system situations using &wmarks.  If all schemes that registered to the
211  * monitoring context are inactive, DAMON stops monitoring either, and just
212  * repeatedly checks the watermarks.
213  *
214  * If all schemes that registered to a &struct damon_ctx are inactive, DAMON
215  * stops monitoring and just repeatedly checks the watermarks.
216  *
217  * After applying the &action to each region, &stat_count and &stat_sz is
218  * updated to reflect the number of regions and total size of regions that the
219  * &action is applied.
220  */
221 struct damos {
222 	unsigned long min_sz_region;
223 	unsigned long max_sz_region;
224 	unsigned int min_nr_accesses;
225 	unsigned int max_nr_accesses;
226 	unsigned int min_age_region;
227 	unsigned int max_age_region;
228 	enum damos_action action;
229 	struct damos_quota quota;
230 	struct damos_watermarks wmarks;
231 	unsigned long stat_count;
232 	unsigned long stat_sz;
233 	struct list_head list;
234 };
235 
236 struct damon_ctx;
237 
238 /**
239  * struct damon_primitive - Monitoring primitives for given use cases.
240  *
241  * @init:			Initialize primitive-internal data structures.
242  * @update:			Update primitive-internal data structures.
243  * @prepare_access_checks:	Prepare next access check of target regions.
244  * @check_accesses:		Check the accesses to target regions.
245  * @reset_aggregated:		Reset aggregated accesses monitoring results.
246  * @get_scheme_score:		Get the score of a region for a scheme.
247  * @apply_scheme:		Apply a DAMON-based operation scheme.
248  * @target_valid:		Determine if the target is valid.
249  * @cleanup:			Clean up the context.
250  *
251  * DAMON can be extended for various address spaces and usages.  For this,
252  * users should register the low level primitives for their target address
253  * space and usecase via the &damon_ctx.primitive.  Then, the monitoring thread
254  * (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting
255  * the monitoring, @update after each &damon_ctx.primitive_update_interval, and
256  * @check_accesses, @target_valid and @prepare_access_checks after each
257  * &damon_ctx.sample_interval.  Finally, @reset_aggregated is called after each
258  * &damon_ctx.aggr_interval.
259  *
260  * @init should initialize primitive-internal data structures.  For example,
261  * this could be used to construct proper monitoring target regions and link
262  * those to @damon_ctx.adaptive_targets.
263  * @update should update the primitive-internal data structures.  For example,
264  * this could be used to update monitoring target regions for current status.
265  * @prepare_access_checks should manipulate the monitoring regions to be
266  * prepared for the next access check.
267  * @check_accesses should check the accesses to each region that made after the
268  * last preparation and update the number of observed accesses of each region.
269  * It should also return max number of observed accesses that made as a result
270  * of its update.  The value will be used for regions adjustment threshold.
271  * @reset_aggregated should reset the access monitoring results that aggregated
272  * by @check_accesses.
273  * @get_scheme_score should return the priority score of a region for a scheme
274  * as an integer in [0, &DAMOS_MAX_SCORE].
275  * @apply_scheme is called from @kdamond when a region for user provided
276  * DAMON-based operation scheme is found.  It should apply the scheme's action
277  * to the region.  This is not used for &DAMON_ARBITRARY_TARGET case.
278  * @target_valid should check whether the target is still valid for the
279  * monitoring.
280  * @cleanup is called from @kdamond just before its termination.
281  */
282 struct damon_primitive {
283 	void (*init)(struct damon_ctx *context);
284 	void (*update)(struct damon_ctx *context);
285 	void (*prepare_access_checks)(struct damon_ctx *context);
286 	unsigned int (*check_accesses)(struct damon_ctx *context);
287 	void (*reset_aggregated)(struct damon_ctx *context);
288 	int (*get_scheme_score)(struct damon_ctx *context,
289 			struct damon_target *t, struct damon_region *r,
290 			struct damos *scheme);
291 	int (*apply_scheme)(struct damon_ctx *context, struct damon_target *t,
292 			struct damon_region *r, struct damos *scheme);
293 	bool (*target_valid)(void *target);
294 	void (*cleanup)(struct damon_ctx *context);
295 };
296 
297 /**
298  * struct damon_callback - Monitoring events notification callbacks.
299  *
300  * @before_start:	Called before starting the monitoring.
301  * @after_sampling:	Called after each sampling.
302  * @after_aggregation:	Called after each aggregation.
303  * @before_terminate:	Called before terminating the monitoring.
304  * @private:		User private data.
305  *
306  * The monitoring thread (&damon_ctx.kdamond) calls @before_start and
307  * @before_terminate just before starting and finishing the monitoring,
308  * respectively.  Therefore, those are good places for installing and cleaning
309  * @private.
310  *
311  * The monitoring thread calls @after_sampling and @after_aggregation for each
312  * of the sampling intervals and aggregation intervals, respectively.
313  * Therefore, users can safely access the monitoring results without additional
314  * protection.  For the reason, users are recommended to use these callback for
315  * the accesses to the results.
316  *
317  * If any callback returns non-zero, monitoring stops.
318  */
319 struct damon_callback {
320 	void *private;
321 
322 	int (*before_start)(struct damon_ctx *context);
323 	int (*after_sampling)(struct damon_ctx *context);
324 	int (*after_aggregation)(struct damon_ctx *context);
325 	void (*before_terminate)(struct damon_ctx *context);
326 };
327 
328 /**
329  * struct damon_ctx - Represents a context for each monitoring.  This is the
330  * main interface that allows users to set the attributes and get the results
331  * of the monitoring.
332  *
333  * @sample_interval:		The time between access samplings.
334  * @aggr_interval:		The time between monitor results aggregations.
335  * @primitive_update_interval:	The time between monitoring primitive updates.
336  *
337  * For each @sample_interval, DAMON checks whether each region is accessed or
338  * not.  It aggregates and keeps the access information (number of accesses to
339  * each region) for @aggr_interval time.  DAMON also checks whether the target
340  * memory regions need update (e.g., by ``mmap()`` calls from the application,
341  * in case of virtual memory monitoring) and applies the changes for each
342  * @primitive_update_interval.  All time intervals are in micro-seconds.
343  * Please refer to &struct damon_primitive and &struct damon_callback for more
344  * detail.
345  *
346  * @kdamond:		Kernel thread who does the monitoring.
347  * @kdamond_stop:	Notifies whether kdamond should stop.
348  * @kdamond_lock:	Mutex for the synchronizations with @kdamond.
349  *
350  * For each monitoring context, one kernel thread for the monitoring is
351  * created.  The pointer to the thread is stored in @kdamond.
352  *
353  * Once started, the monitoring thread runs until explicitly required to be
354  * terminated or every monitoring target is invalid.  The validity of the
355  * targets is checked via the &damon_primitive.target_valid of @primitive.  The
356  * termination can also be explicitly requested by writing non-zero to
357  * @kdamond_stop.  The thread sets @kdamond to NULL when it terminates.
358  * Therefore, users can know whether the monitoring is ongoing or terminated by
359  * reading @kdamond.  Reads and writes to @kdamond and @kdamond_stop from
360  * outside of the monitoring thread must be protected by @kdamond_lock.
361  *
362  * Note that the monitoring thread protects only @kdamond and @kdamond_stop via
363  * @kdamond_lock.  Accesses to other fields must be protected by themselves.
364  *
365  * @primitive:	Set of monitoring primitives for given use cases.
366  * @callback:	Set of callbacks for monitoring events notifications.
367  *
368  * @min_nr_regions:	The minimum number of adaptive monitoring regions.
369  * @max_nr_regions:	The maximum number of adaptive monitoring regions.
370  * @adaptive_targets:	Head of monitoring targets (&damon_target) list.
371  * @schemes:		Head of schemes (&damos) list.
372  */
373 struct damon_ctx {
374 	unsigned long sample_interval;
375 	unsigned long aggr_interval;
376 	unsigned long primitive_update_interval;
377 
378 /* private: internal use only */
379 	struct timespec64 last_aggregation;
380 	struct timespec64 last_primitive_update;
381 
382 /* public: */
383 	struct task_struct *kdamond;
384 	struct mutex kdamond_lock;
385 
386 	struct damon_primitive primitive;
387 	struct damon_callback callback;
388 
389 	unsigned long min_nr_regions;
390 	unsigned long max_nr_regions;
391 	struct list_head adaptive_targets;
392 	struct list_head schemes;
393 };
394 
395 #define damon_next_region(r) \
396 	(container_of(r->list.next, struct damon_region, list))
397 
398 #define damon_prev_region(r) \
399 	(container_of(r->list.prev, struct damon_region, list))
400 
401 #define damon_last_region(t) \
402 	(list_last_entry(&t->regions_list, struct damon_region, list))
403 
404 #define damon_for_each_region(r, t) \
405 	list_for_each_entry(r, &t->regions_list, list)
406 
407 #define damon_for_each_region_safe(r, next, t) \
408 	list_for_each_entry_safe(r, next, &t->regions_list, list)
409 
410 #define damon_for_each_target(t, ctx) \
411 	list_for_each_entry(t, &(ctx)->adaptive_targets, list)
412 
413 #define damon_for_each_target_safe(t, next, ctx)	\
414 	list_for_each_entry_safe(t, next, &(ctx)->adaptive_targets, list)
415 
416 #define damon_for_each_scheme(s, ctx) \
417 	list_for_each_entry(s, &(ctx)->schemes, list)
418 
419 #define damon_for_each_scheme_safe(s, next, ctx) \
420 	list_for_each_entry_safe(s, next, &(ctx)->schemes, list)
421 
422 #ifdef CONFIG_DAMON
423 
424 struct damon_region *damon_new_region(unsigned long start, unsigned long end);
425 inline void damon_insert_region(struct damon_region *r,
426 		struct damon_region *prev, struct damon_region *next,
427 		struct damon_target *t);
428 void damon_add_region(struct damon_region *r, struct damon_target *t);
429 void damon_destroy_region(struct damon_region *r, struct damon_target *t);
430 
431 struct damos *damon_new_scheme(
432 		unsigned long min_sz_region, unsigned long max_sz_region,
433 		unsigned int min_nr_accesses, unsigned int max_nr_accesses,
434 		unsigned int min_age_region, unsigned int max_age_region,
435 		enum damos_action action, struct damos_quota *quota,
436 		struct damos_watermarks *wmarks);
437 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s);
438 void damon_destroy_scheme(struct damos *s);
439 
440 struct damon_target *damon_new_target(unsigned long id);
441 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t);
442 bool damon_targets_empty(struct damon_ctx *ctx);
443 void damon_free_target(struct damon_target *t);
444 void damon_destroy_target(struct damon_target *t);
445 unsigned int damon_nr_regions(struct damon_target *t);
446 
447 struct damon_ctx *damon_new_ctx(void);
448 void damon_destroy_ctx(struct damon_ctx *ctx);
449 int damon_set_targets(struct damon_ctx *ctx,
450 		unsigned long *ids, ssize_t nr_ids);
451 int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
452 		unsigned long aggr_int, unsigned long primitive_upd_int,
453 		unsigned long min_nr_reg, unsigned long max_nr_reg);
454 int damon_set_schemes(struct damon_ctx *ctx,
455 			struct damos **schemes, ssize_t nr_schemes);
456 int damon_nr_running_ctxs(void);
457 
458 int damon_start(struct damon_ctx **ctxs, int nr_ctxs);
459 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs);
460 
461 #endif	/* CONFIG_DAMON */
462 
463 #ifdef CONFIG_DAMON_VADDR
464 
465 /* Monitoring primitives for virtual memory address spaces */
466 void damon_va_init(struct damon_ctx *ctx);
467 void damon_va_update(struct damon_ctx *ctx);
468 void damon_va_prepare_access_checks(struct damon_ctx *ctx);
469 unsigned int damon_va_check_accesses(struct damon_ctx *ctx);
470 bool damon_va_target_valid(void *t);
471 void damon_va_cleanup(struct damon_ctx *ctx);
472 int damon_va_apply_scheme(struct damon_ctx *context, struct damon_target *t,
473 		struct damon_region *r, struct damos *scheme);
474 int damon_va_scheme_score(struct damon_ctx *context, struct damon_target *t,
475 		struct damon_region *r, struct damos *scheme);
476 void damon_va_set_primitives(struct damon_ctx *ctx);
477 
478 #endif	/* CONFIG_DAMON_VADDR */
479 
480 #ifdef CONFIG_DAMON_PADDR
481 
482 /* Monitoring primitives for the physical memory address space */
483 void damon_pa_prepare_access_checks(struct damon_ctx *ctx);
484 unsigned int damon_pa_check_accesses(struct damon_ctx *ctx);
485 bool damon_pa_target_valid(void *t);
486 int damon_pa_apply_scheme(struct damon_ctx *context, struct damon_target *t,
487 		struct damon_region *r, struct damos *scheme);
488 int damon_pa_scheme_score(struct damon_ctx *context, struct damon_target *t,
489 		struct damon_region *r, struct damos *scheme);
490 void damon_pa_set_primitives(struct damon_ctx *ctx);
491 
492 #endif	/* CONFIG_DAMON_PADDR */
493 
494 #endif	/* _DAMON_H */
495