xref: /openbmc/linux/include/linux/compiler.h (revision f5005f78)
1 #ifndef __LINUX_COMPILER_H
2 #define __LINUX_COMPILER_H
3 
4 #ifndef __ASSEMBLY__
5 
6 #ifdef __CHECKER__
7 # define __user		__attribute__((noderef, address_space(1)))
8 # define __kernel	__attribute__((address_space(0)))
9 # define __safe		__attribute__((safe))
10 # define __force	__attribute__((force))
11 # define __nocast	__attribute__((nocast))
12 # define __iomem	__attribute__((noderef, address_space(2)))
13 # define __must_hold(x)	__attribute__((context(x,1,1)))
14 # define __acquires(x)	__attribute__((context(x,0,1)))
15 # define __releases(x)	__attribute__((context(x,1,0)))
16 # define __acquire(x)	__context__(x,1)
17 # define __release(x)	__context__(x,-1)
18 # define __cond_lock(x,c)	((c) ? ({ __acquire(x); 1; }) : 0)
19 # define __percpu	__attribute__((noderef, address_space(3)))
20 # define __pmem		__attribute__((noderef, address_space(5)))
21 #ifdef CONFIG_SPARSE_RCU_POINTER
22 # define __rcu		__attribute__((noderef, address_space(4)))
23 #else
24 # define __rcu
25 #endif
26 extern void __chk_user_ptr(const volatile void __user *);
27 extern void __chk_io_ptr(const volatile void __iomem *);
28 #else
29 # define __user
30 # define __kernel
31 # define __safe
32 # define __force
33 # define __nocast
34 # define __iomem
35 # define __chk_user_ptr(x) (void)0
36 # define __chk_io_ptr(x) (void)0
37 # define __builtin_warning(x, y...) (1)
38 # define __must_hold(x)
39 # define __acquires(x)
40 # define __releases(x)
41 # define __acquire(x) (void)0
42 # define __release(x) (void)0
43 # define __cond_lock(x,c) (c)
44 # define __percpu
45 # define __rcu
46 # define __pmem
47 #endif
48 
49 /* Indirect macros required for expanded argument pasting, eg. __LINE__. */
50 #define ___PASTE(a,b) a##b
51 #define __PASTE(a,b) ___PASTE(a,b)
52 
53 #ifdef __KERNEL__
54 
55 #ifdef __GNUC__
56 #include <linux/compiler-gcc.h>
57 #endif
58 
59 #ifdef CC_USING_HOTPATCH
60 #define notrace __attribute__((hotpatch(0,0)))
61 #else
62 #define notrace __attribute__((no_instrument_function))
63 #endif
64 
65 /* Intel compiler defines __GNUC__. So we will overwrite implementations
66  * coming from above header files here
67  */
68 #ifdef __INTEL_COMPILER
69 # include <linux/compiler-intel.h>
70 #endif
71 
72 /* Clang compiler defines __GNUC__. So we will overwrite implementations
73  * coming from above header files here
74  */
75 #ifdef __clang__
76 #include <linux/compiler-clang.h>
77 #endif
78 
79 /*
80  * Generic compiler-dependent macros required for kernel
81  * build go below this comment. Actual compiler/compiler version
82  * specific implementations come from the above header files
83  */
84 
85 struct ftrace_branch_data {
86 	const char *func;
87 	const char *file;
88 	unsigned line;
89 	union {
90 		struct {
91 			unsigned long correct;
92 			unsigned long incorrect;
93 		};
94 		struct {
95 			unsigned long miss;
96 			unsigned long hit;
97 		};
98 		unsigned long miss_hit[2];
99 	};
100 };
101 
102 /*
103  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
104  * to disable branch tracing on a per file basis.
105  */
106 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
107     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
108 void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect);
109 
110 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
111 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
112 
113 #define __branch_check__(x, expect) ({					\
114 			int ______r;					\
115 			static struct ftrace_branch_data		\
116 				__attribute__((__aligned__(4)))		\
117 				__attribute__((section("_ftrace_annotated_branch"))) \
118 				______f = {				\
119 				.func = __func__,			\
120 				.file = __FILE__,			\
121 				.line = __LINE__,			\
122 			};						\
123 			______r = likely_notrace(x);			\
124 			ftrace_likely_update(&______f, ______r, expect); \
125 			______r;					\
126 		})
127 
128 /*
129  * Using __builtin_constant_p(x) to ignore cases where the return
130  * value is always the same.  This idea is taken from a similar patch
131  * written by Daniel Walker.
132  */
133 # ifndef likely
134 #  define likely(x)	(__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 1))
135 # endif
136 # ifndef unlikely
137 #  define unlikely(x)	(__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 0))
138 # endif
139 
140 #ifdef CONFIG_PROFILE_ALL_BRANCHES
141 /*
142  * "Define 'is'", Bill Clinton
143  * "Define 'if'", Steven Rostedt
144  */
145 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
146 #define __trace_if(cond) \
147 	if (__builtin_constant_p((cond)) ? !!(cond) :			\
148 	({								\
149 		int ______r;						\
150 		static struct ftrace_branch_data			\
151 			__attribute__((__aligned__(4)))			\
152 			__attribute__((section("_ftrace_branch")))	\
153 			______f = {					\
154 				.func = __func__,			\
155 				.file = __FILE__,			\
156 				.line = __LINE__,			\
157 			};						\
158 		______r = !!(cond);					\
159 		______f.miss_hit[______r]++;					\
160 		______r;						\
161 	}))
162 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
163 
164 #else
165 # define likely(x)	__builtin_expect(!!(x), 1)
166 # define unlikely(x)	__builtin_expect(!!(x), 0)
167 #endif
168 
169 /* Optimization barrier */
170 #ifndef barrier
171 # define barrier() __memory_barrier()
172 #endif
173 
174 #ifndef barrier_data
175 # define barrier_data(ptr) barrier()
176 #endif
177 
178 /* Unreachable code */
179 #ifndef unreachable
180 # define unreachable() do { } while (1)
181 #endif
182 
183 #ifndef RELOC_HIDE
184 # define RELOC_HIDE(ptr, off)					\
185   ({ unsigned long __ptr;					\
186      __ptr = (unsigned long) (ptr);				\
187     (typeof(ptr)) (__ptr + (off)); })
188 #endif
189 
190 #ifndef OPTIMIZER_HIDE_VAR
191 #define OPTIMIZER_HIDE_VAR(var) barrier()
192 #endif
193 
194 /* Not-quite-unique ID. */
195 #ifndef __UNIQUE_ID
196 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
197 #endif
198 
199 #include <uapi/linux/types.h>
200 
201 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
202 {
203 	switch (size) {
204 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;
205 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;
206 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;
207 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;
208 	default:
209 		barrier();
210 		__builtin_memcpy((void *)res, (const void *)p, size);
211 		barrier();
212 	}
213 }
214 
215 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
216 {
217 	switch (size) {
218 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
219 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
220 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
221 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
222 	default:
223 		barrier();
224 		__builtin_memcpy((void *)p, (const void *)res, size);
225 		barrier();
226 	}
227 }
228 
229 /*
230  * Prevent the compiler from merging or refetching reads or writes. The
231  * compiler is also forbidden from reordering successive instances of
232  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
233  * compiler is aware of some particular ordering.  One way to make the
234  * compiler aware of ordering is to put the two invocations of READ_ONCE,
235  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
236  *
237  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
238  * data types like structs or unions. If the size of the accessed data
239  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
240  * READ_ONCE() and WRITE_ONCE()  will fall back to memcpy and print a
241  * compile-time warning.
242  *
243  * Their two major use cases are: (1) Mediating communication between
244  * process-level code and irq/NMI handlers, all running on the same CPU,
245  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
246  * mutilate accesses that either do not require ordering or that interact
247  * with an explicit memory barrier or atomic instruction that provides the
248  * required ordering.
249  */
250 
251 #define READ_ONCE(x) \
252 	({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
253 
254 #define WRITE_ONCE(x, val) \
255 	({ union { typeof(x) __val; char __c[1]; } __u = { .__val = (val) }; __write_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
256 
257 /**
258  * READ_ONCE_CTRL - Read a value heading a control dependency
259  * @x: The value to be read, heading the control dependency
260  *
261  * Control dependencies are tricky.  See Documentation/memory-barriers.txt
262  * for important information on how to use them.  Note that in many cases,
263  * use of smp_load_acquire() will be much simpler.  Control dependencies
264  * should be avoided except on the hottest of hotpaths.
265  */
266 #define READ_ONCE_CTRL(x) \
267 ({ \
268 	typeof(x) __val = READ_ONCE(x); \
269 	smp_read_barrier_depends(); /* Enforce control dependency. */ \
270 	__val; \
271 })
272 
273 #endif /* __KERNEL__ */
274 
275 #endif /* __ASSEMBLY__ */
276 
277 #ifdef __KERNEL__
278 /*
279  * Allow us to mark functions as 'deprecated' and have gcc emit a nice
280  * warning for each use, in hopes of speeding the functions removal.
281  * Usage is:
282  * 		int __deprecated foo(void)
283  */
284 #ifndef __deprecated
285 # define __deprecated		/* unimplemented */
286 #endif
287 
288 #ifdef MODULE
289 #define __deprecated_for_modules __deprecated
290 #else
291 #define __deprecated_for_modules
292 #endif
293 
294 #ifndef __must_check
295 #define __must_check
296 #endif
297 
298 #ifndef CONFIG_ENABLE_MUST_CHECK
299 #undef __must_check
300 #define __must_check
301 #endif
302 #ifndef CONFIG_ENABLE_WARN_DEPRECATED
303 #undef __deprecated
304 #undef __deprecated_for_modules
305 #define __deprecated
306 #define __deprecated_for_modules
307 #endif
308 
309 /*
310  * Allow us to avoid 'defined but not used' warnings on functions and data,
311  * as well as force them to be emitted to the assembly file.
312  *
313  * As of gcc 3.4, static functions that are not marked with attribute((used))
314  * may be elided from the assembly file.  As of gcc 3.4, static data not so
315  * marked will not be elided, but this may change in a future gcc version.
316  *
317  * NOTE: Because distributions shipped with a backported unit-at-a-time
318  * compiler in gcc 3.3, we must define __used to be __attribute__((used))
319  * for gcc >=3.3 instead of 3.4.
320  *
321  * In prior versions of gcc, such functions and data would be emitted, but
322  * would be warned about except with attribute((unused)).
323  *
324  * Mark functions that are referenced only in inline assembly as __used so
325  * the code is emitted even though it appears to be unreferenced.
326  */
327 #ifndef __used
328 # define __used			/* unimplemented */
329 #endif
330 
331 #ifndef __maybe_unused
332 # define __maybe_unused		/* unimplemented */
333 #endif
334 
335 #ifndef __always_unused
336 # define __always_unused	/* unimplemented */
337 #endif
338 
339 #ifndef noinline
340 #define noinline
341 #endif
342 
343 /*
344  * Rather then using noinline to prevent stack consumption, use
345  * noinline_for_stack instead.  For documentation reasons.
346  */
347 #define noinline_for_stack noinline
348 
349 #ifndef __always_inline
350 #define __always_inline inline
351 #endif
352 
353 #endif /* __KERNEL__ */
354 
355 /*
356  * From the GCC manual:
357  *
358  * Many functions do not examine any values except their arguments,
359  * and have no effects except the return value.  Basically this is
360  * just slightly more strict class than the `pure' attribute above,
361  * since function is not allowed to read global memory.
362  *
363  * Note that a function that has pointer arguments and examines the
364  * data pointed to must _not_ be declared `const'.  Likewise, a
365  * function that calls a non-`const' function usually must not be
366  * `const'.  It does not make sense for a `const' function to return
367  * `void'.
368  */
369 #ifndef __attribute_const__
370 # define __attribute_const__	/* unimplemented */
371 #endif
372 
373 /*
374  * Tell gcc if a function is cold. The compiler will assume any path
375  * directly leading to the call is unlikely.
376  */
377 
378 #ifndef __cold
379 #define __cold
380 #endif
381 
382 /* Simple shorthand for a section definition */
383 #ifndef __section
384 # define __section(S) __attribute__ ((__section__(#S)))
385 #endif
386 
387 #ifndef __visible
388 #define __visible
389 #endif
390 
391 /* Are two types/vars the same type (ignoring qualifiers)? */
392 #ifndef __same_type
393 # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
394 #endif
395 
396 /* Is this type a native word size -- useful for atomic operations */
397 #ifndef __native_word
398 # define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long))
399 #endif
400 
401 /* Compile time object size, -1 for unknown */
402 #ifndef __compiletime_object_size
403 # define __compiletime_object_size(obj) -1
404 #endif
405 #ifndef __compiletime_warning
406 # define __compiletime_warning(message)
407 #endif
408 #ifndef __compiletime_error
409 # define __compiletime_error(message)
410 /*
411  * Sparse complains of variable sized arrays due to the temporary variable in
412  * __compiletime_assert. Unfortunately we can't just expand it out to make
413  * sparse see a constant array size without breaking compiletime_assert on old
414  * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
415  */
416 # ifndef __CHECKER__
417 #  define __compiletime_error_fallback(condition) \
418 	do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
419 # endif
420 #endif
421 #ifndef __compiletime_error_fallback
422 # define __compiletime_error_fallback(condition) do { } while (0)
423 #endif
424 
425 #define __compiletime_assert(condition, msg, prefix, suffix)		\
426 	do {								\
427 		bool __cond = !(condition);				\
428 		extern void prefix ## suffix(void) __compiletime_error(msg); \
429 		if (__cond)						\
430 			prefix ## suffix();				\
431 		__compiletime_error_fallback(__cond);			\
432 	} while (0)
433 
434 #define _compiletime_assert(condition, msg, prefix, suffix) \
435 	__compiletime_assert(condition, msg, prefix, suffix)
436 
437 /**
438  * compiletime_assert - break build and emit msg if condition is false
439  * @condition: a compile-time constant condition to check
440  * @msg:       a message to emit if condition is false
441  *
442  * In tradition of POSIX assert, this macro will break the build if the
443  * supplied condition is *false*, emitting the supplied error message if the
444  * compiler has support to do so.
445  */
446 #define compiletime_assert(condition, msg) \
447 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
448 
449 #define compiletime_assert_atomic_type(t)				\
450 	compiletime_assert(__native_word(t),				\
451 		"Need native word sized stores/loads for atomicity.")
452 
453 /*
454  * Prevent the compiler from merging or refetching accesses.  The compiler
455  * is also forbidden from reordering successive instances of ACCESS_ONCE(),
456  * but only when the compiler is aware of some particular ordering.  One way
457  * to make the compiler aware of ordering is to put the two invocations of
458  * ACCESS_ONCE() in different C statements.
459  *
460  * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
461  * on a union member will work as long as the size of the member matches the
462  * size of the union and the size is smaller than word size.
463  *
464  * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
465  * between process-level code and irq/NMI handlers, all running on the same CPU,
466  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
467  * mutilate accesses that either do not require ordering or that interact
468  * with an explicit memory barrier or atomic instruction that provides the
469  * required ordering.
470  *
471  * If possible use READ_ONCE()/WRITE_ONCE() instead.
472  */
473 #define __ACCESS_ONCE(x) ({ \
474 	 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
475 	(volatile typeof(x) *)&(x); })
476 #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
477 
478 /**
479  * lockless_dereference() - safely load a pointer for later dereference
480  * @p: The pointer to load
481  *
482  * Similar to rcu_dereference(), but for situations where the pointed-to
483  * object's lifetime is managed by something other than RCU.  That
484  * "something other" might be reference counting or simple immortality.
485  */
486 #define lockless_dereference(p) \
487 ({ \
488 	typeof(p) _________p1 = READ_ONCE(p); \
489 	smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
490 	(_________p1); \
491 })
492 
493 /* Ignore/forbid kprobes attach on very low level functions marked by this attribute: */
494 #ifdef CONFIG_KPROBES
495 # define __kprobes	__attribute__((__section__(".kprobes.text")))
496 # define nokprobe_inline	__always_inline
497 #else
498 # define __kprobes
499 # define nokprobe_inline	inline
500 #endif
501 #endif /* __LINUX_COMPILER_H */
502