xref: /openbmc/linux/include/linux/compiler.h (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_COMPILER_H
3 #define __LINUX_COMPILER_H
4 
5 #include <linux/compiler_types.h>
6 
7 #ifndef __ASSEMBLY__
8 
9 #ifdef __KERNEL__
10 
11 /*
12  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13  * to disable branch tracing on a per file basis.
14  */
15 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
16     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
17 void ftrace_likely_update(struct ftrace_likely_data *f, int val,
18 			  int expect, int is_constant);
19 
20 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
21 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
22 
23 #define __branch_check__(x, expect, is_constant) ({			\
24 			long ______r;					\
25 			static struct ftrace_likely_data		\
26 				__attribute__((__aligned__(4)))		\
27 				__attribute__((section("_ftrace_annotated_branch"))) \
28 				______f = {				\
29 				.data.func = __func__,			\
30 				.data.file = __FILE__,			\
31 				.data.line = __LINE__,			\
32 			};						\
33 			______r = __builtin_expect(!!(x), expect);	\
34 			ftrace_likely_update(&______f, ______r,		\
35 					     expect, is_constant);	\
36 			______r;					\
37 		})
38 
39 /*
40  * Using __builtin_constant_p(x) to ignore cases where the return
41  * value is always the same.  This idea is taken from a similar patch
42  * written by Daniel Walker.
43  */
44 # ifndef likely
45 #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
46 # endif
47 # ifndef unlikely
48 #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
49 # endif
50 
51 #ifdef CONFIG_PROFILE_ALL_BRANCHES
52 /*
53  * "Define 'is'", Bill Clinton
54  * "Define 'if'", Steven Rostedt
55  */
56 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
57 #define __trace_if(cond) \
58 	if (__builtin_constant_p(!!(cond)) ? !!(cond) :			\
59 	({								\
60 		int ______r;						\
61 		static struct ftrace_branch_data			\
62 			__attribute__((__aligned__(4)))			\
63 			__attribute__((section("_ftrace_branch")))	\
64 			______f = {					\
65 				.func = __func__,			\
66 				.file = __FILE__,			\
67 				.line = __LINE__,			\
68 			};						\
69 		______r = !!(cond);					\
70 		______f.miss_hit[______r]++;					\
71 		______r;						\
72 	}))
73 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
74 
75 #else
76 # define likely(x)	__builtin_expect(!!(x), 1)
77 # define unlikely(x)	__builtin_expect(!!(x), 0)
78 #endif
79 
80 /* Optimization barrier */
81 #ifndef barrier
82 # define barrier() __memory_barrier()
83 #endif
84 
85 #ifndef barrier_data
86 # define barrier_data(ptr) barrier()
87 #endif
88 
89 /* workaround for GCC PR82365 if needed */
90 #ifndef barrier_before_unreachable
91 # define barrier_before_unreachable() do { } while (0)
92 #endif
93 
94 /* Unreachable code */
95 #ifdef CONFIG_STACK_VALIDATION
96 /*
97  * These macros help objtool understand GCC code flow for unreachable code.
98  * The __COUNTER__ based labels are a hack to make each instance of the macros
99  * unique, to convince GCC not to merge duplicate inline asm statements.
100  */
101 #define annotate_reachable() ({						\
102 	asm volatile("%c0:\n\t"						\
103 		     ".pushsection .discard.reachable\n\t"		\
104 		     ".long %c0b - .\n\t"				\
105 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
106 })
107 #define annotate_unreachable() ({					\
108 	asm volatile("%c0:\n\t"						\
109 		     ".pushsection .discard.unreachable\n\t"		\
110 		     ".long %c0b - .\n\t"				\
111 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
112 })
113 #define ASM_UNREACHABLE							\
114 	"999:\n\t"							\
115 	".pushsection .discard.unreachable\n\t"				\
116 	".long 999b - .\n\t"						\
117 	".popsection\n\t"
118 #else
119 #define annotate_reachable()
120 #define annotate_unreachable()
121 #endif
122 
123 #ifndef ASM_UNREACHABLE
124 # define ASM_UNREACHABLE
125 #endif
126 #ifndef unreachable
127 # define unreachable() do { annotate_reachable(); do { } while (1); } while (0)
128 #endif
129 
130 /*
131  * KENTRY - kernel entry point
132  * This can be used to annotate symbols (functions or data) that are used
133  * without their linker symbol being referenced explicitly. For example,
134  * interrupt vector handlers, or functions in the kernel image that are found
135  * programatically.
136  *
137  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
138  * are handled in their own way (with KEEP() in linker scripts).
139  *
140  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
141  * linker script. For example an architecture could KEEP() its entire
142  * boot/exception vector code rather than annotate each function and data.
143  */
144 #ifndef KENTRY
145 # define KENTRY(sym)						\
146 	extern typeof(sym) sym;					\
147 	static const unsigned long __kentry_##sym		\
148 	__used							\
149 	__attribute__((section("___kentry" "+" #sym ), used))	\
150 	= (unsigned long)&sym;
151 #endif
152 
153 #ifndef RELOC_HIDE
154 # define RELOC_HIDE(ptr, off)					\
155   ({ unsigned long __ptr;					\
156      __ptr = (unsigned long) (ptr);				\
157     (typeof(ptr)) (__ptr + (off)); })
158 #endif
159 
160 #ifndef OPTIMIZER_HIDE_VAR
161 #define OPTIMIZER_HIDE_VAR(var) barrier()
162 #endif
163 
164 /* Not-quite-unique ID. */
165 #ifndef __UNIQUE_ID
166 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
167 #endif
168 
169 #include <uapi/linux/types.h>
170 
171 #define __READ_ONCE_SIZE						\
172 ({									\
173 	switch (size) {							\
174 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\
175 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\
176 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\
177 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\
178 	default:							\
179 		barrier();						\
180 		__builtin_memcpy((void *)res, (const void *)p, size);	\
181 		barrier();						\
182 	}								\
183 })
184 
185 static __always_inline
186 void __read_once_size(const volatile void *p, void *res, int size)
187 {
188 	__READ_ONCE_SIZE;
189 }
190 
191 #ifdef CONFIG_KASAN
192 /*
193  * We can't declare function 'inline' because __no_sanitize_address confilcts
194  * with inlining. Attempt to inline it may cause a build failure.
195  * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
196  * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
197  */
198 # define __no_kasan_or_inline __no_sanitize_address __maybe_unused
199 #else
200 # define __no_kasan_or_inline __always_inline
201 #endif
202 
203 static __no_kasan_or_inline
204 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
205 {
206 	__READ_ONCE_SIZE;
207 }
208 
209 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
210 {
211 	switch (size) {
212 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
213 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
214 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
215 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
216 	default:
217 		barrier();
218 		__builtin_memcpy((void *)p, (const void *)res, size);
219 		barrier();
220 	}
221 }
222 
223 /*
224  * Prevent the compiler from merging or refetching reads or writes. The
225  * compiler is also forbidden from reordering successive instances of
226  * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
227  * particular ordering. One way to make the compiler aware of ordering is to
228  * put the two invocations of READ_ONCE or WRITE_ONCE in different C
229  * statements.
230  *
231  * These two macros will also work on aggregate data types like structs or
232  * unions. If the size of the accessed data type exceeds the word size of
233  * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will
234  * fall back to memcpy(). There's at least two memcpy()s: one for the
235  * __builtin_memcpy() and then one for the macro doing the copy of variable
236  * - '__u' allocated on the stack.
237  *
238  * Their two major use cases are: (1) Mediating communication between
239  * process-level code and irq/NMI handlers, all running on the same CPU,
240  * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
241  * mutilate accesses that either do not require ordering or that interact
242  * with an explicit memory barrier or atomic instruction that provides the
243  * required ordering.
244  */
245 #include <asm/barrier.h>
246 #include <linux/kasan-checks.h>
247 
248 #define __READ_ONCE(x, check)						\
249 ({									\
250 	union { typeof(x) __val; char __c[1]; } __u;			\
251 	if (check)							\
252 		__read_once_size(&(x), __u.__c, sizeof(x));		\
253 	else								\
254 		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\
255 	smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
256 	__u.__val;							\
257 })
258 #define READ_ONCE(x) __READ_ONCE(x, 1)
259 
260 /*
261  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
262  * to hide memory access from KASAN.
263  */
264 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
265 
266 static __no_kasan_or_inline
267 unsigned long read_word_at_a_time(const void *addr)
268 {
269 	kasan_check_read(addr, 1);
270 	return *(unsigned long *)addr;
271 }
272 
273 #define WRITE_ONCE(x, val) \
274 ({							\
275 	union { typeof(x) __val; char __c[1]; } __u =	\
276 		{ .__val = (__force typeof(x)) (val) }; \
277 	__write_once_size(&(x), __u.__c, sizeof(x));	\
278 	__u.__val;					\
279 })
280 
281 #endif /* __KERNEL__ */
282 
283 #endif /* __ASSEMBLY__ */
284 
285 #ifndef __optimize
286 # define __optimize(level)
287 #endif
288 
289 /* Compile time object size, -1 for unknown */
290 #ifndef __compiletime_object_size
291 # define __compiletime_object_size(obj) -1
292 #endif
293 #ifndef __compiletime_warning
294 # define __compiletime_warning(message)
295 #endif
296 #ifndef __compiletime_error
297 # define __compiletime_error(message)
298 /*
299  * Sparse complains of variable sized arrays due to the temporary variable in
300  * __compiletime_assert. Unfortunately we can't just expand it out to make
301  * sparse see a constant array size without breaking compiletime_assert on old
302  * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
303  */
304 # ifndef __CHECKER__
305 #  define __compiletime_error_fallback(condition) \
306 	do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
307 # endif
308 #endif
309 #ifndef __compiletime_error_fallback
310 # define __compiletime_error_fallback(condition) do { } while (0)
311 #endif
312 
313 #ifdef __OPTIMIZE__
314 # define __compiletime_assert(condition, msg, prefix, suffix)		\
315 	do {								\
316 		bool __cond = !(condition);				\
317 		extern void prefix ## suffix(void) __compiletime_error(msg); \
318 		if (__cond)						\
319 			prefix ## suffix();				\
320 		__compiletime_error_fallback(__cond);			\
321 	} while (0)
322 #else
323 # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
324 #endif
325 
326 #define _compiletime_assert(condition, msg, prefix, suffix) \
327 	__compiletime_assert(condition, msg, prefix, suffix)
328 
329 /**
330  * compiletime_assert - break build and emit msg if condition is false
331  * @condition: a compile-time constant condition to check
332  * @msg:       a message to emit if condition is false
333  *
334  * In tradition of POSIX assert, this macro will break the build if the
335  * supplied condition is *false*, emitting the supplied error message if the
336  * compiler has support to do so.
337  */
338 #define compiletime_assert(condition, msg) \
339 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
340 
341 #define compiletime_assert_atomic_type(t)				\
342 	compiletime_assert(__native_word(t),				\
343 		"Need native word sized stores/loads for atomicity.")
344 
345 #endif /* __LINUX_COMPILER_H */
346