xref: /openbmc/linux/include/linux/compiler.h (revision d7a3d85e)
1 #ifndef __LINUX_COMPILER_H
2 #define __LINUX_COMPILER_H
3 
4 #ifndef __ASSEMBLY__
5 
6 #ifdef __CHECKER__
7 # define __user		__attribute__((noderef, address_space(1)))
8 # define __kernel	__attribute__((address_space(0)))
9 # define __safe		__attribute__((safe))
10 # define __force	__attribute__((force))
11 # define __nocast	__attribute__((nocast))
12 # define __iomem	__attribute__((noderef, address_space(2)))
13 # define __must_hold(x)	__attribute__((context(x,1,1)))
14 # define __acquires(x)	__attribute__((context(x,0,1)))
15 # define __releases(x)	__attribute__((context(x,1,0)))
16 # define __acquire(x)	__context__(x,1)
17 # define __release(x)	__context__(x,-1)
18 # define __cond_lock(x,c)	((c) ? ({ __acquire(x); 1; }) : 0)
19 # define __percpu	__attribute__((noderef, address_space(3)))
20 #ifdef CONFIG_SPARSE_RCU_POINTER
21 # define __rcu		__attribute__((noderef, address_space(4)))
22 #else
23 # define __rcu
24 #endif
25 extern void __chk_user_ptr(const volatile void __user *);
26 extern void __chk_io_ptr(const volatile void __iomem *);
27 #else
28 # define __user
29 # define __kernel
30 # define __safe
31 # define __force
32 # define __nocast
33 # define __iomem
34 # define __chk_user_ptr(x) (void)0
35 # define __chk_io_ptr(x) (void)0
36 # define __builtin_warning(x, y...) (1)
37 # define __must_hold(x)
38 # define __acquires(x)
39 # define __releases(x)
40 # define __acquire(x) (void)0
41 # define __release(x) (void)0
42 # define __cond_lock(x,c) (c)
43 # define __percpu
44 # define __rcu
45 #endif
46 
47 /* Indirect macros required for expanded argument pasting, eg. __LINE__. */
48 #define ___PASTE(a,b) a##b
49 #define __PASTE(a,b) ___PASTE(a,b)
50 
51 #ifdef __KERNEL__
52 
53 #ifdef __GNUC__
54 #include <linux/compiler-gcc.h>
55 #endif
56 
57 #ifdef CC_USING_HOTPATCH
58 #define notrace __attribute__((hotpatch(0,0)))
59 #else
60 #define notrace __attribute__((no_instrument_function))
61 #endif
62 
63 /* Intel compiler defines __GNUC__. So we will overwrite implementations
64  * coming from above header files here
65  */
66 #ifdef __INTEL_COMPILER
67 # include <linux/compiler-intel.h>
68 #endif
69 
70 /* Clang compiler defines __GNUC__. So we will overwrite implementations
71  * coming from above header files here
72  */
73 #ifdef __clang__
74 #include <linux/compiler-clang.h>
75 #endif
76 
77 /*
78  * Generic compiler-dependent macros required for kernel
79  * build go below this comment. Actual compiler/compiler version
80  * specific implementations come from the above header files
81  */
82 
83 struct ftrace_branch_data {
84 	const char *func;
85 	const char *file;
86 	unsigned line;
87 	union {
88 		struct {
89 			unsigned long correct;
90 			unsigned long incorrect;
91 		};
92 		struct {
93 			unsigned long miss;
94 			unsigned long hit;
95 		};
96 		unsigned long miss_hit[2];
97 	};
98 };
99 
100 /*
101  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
102  * to disable branch tracing on a per file basis.
103  */
104 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
105     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
106 void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect);
107 
108 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
109 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
110 
111 #define __branch_check__(x, expect) ({					\
112 			int ______r;					\
113 			static struct ftrace_branch_data		\
114 				__attribute__((__aligned__(4)))		\
115 				__attribute__((section("_ftrace_annotated_branch"))) \
116 				______f = {				\
117 				.func = __func__,			\
118 				.file = __FILE__,			\
119 				.line = __LINE__,			\
120 			};						\
121 			______r = likely_notrace(x);			\
122 			ftrace_likely_update(&______f, ______r, expect); \
123 			______r;					\
124 		})
125 
126 /*
127  * Using __builtin_constant_p(x) to ignore cases where the return
128  * value is always the same.  This idea is taken from a similar patch
129  * written by Daniel Walker.
130  */
131 # ifndef likely
132 #  define likely(x)	(__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 1))
133 # endif
134 # ifndef unlikely
135 #  define unlikely(x)	(__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 0))
136 # endif
137 
138 #ifdef CONFIG_PROFILE_ALL_BRANCHES
139 /*
140  * "Define 'is'", Bill Clinton
141  * "Define 'if'", Steven Rostedt
142  */
143 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
144 #define __trace_if(cond) \
145 	if (__builtin_constant_p((cond)) ? !!(cond) :			\
146 	({								\
147 		int ______r;						\
148 		static struct ftrace_branch_data			\
149 			__attribute__((__aligned__(4)))			\
150 			__attribute__((section("_ftrace_branch")))	\
151 			______f = {					\
152 				.func = __func__,			\
153 				.file = __FILE__,			\
154 				.line = __LINE__,			\
155 			};						\
156 		______r = !!(cond);					\
157 		______f.miss_hit[______r]++;					\
158 		______r;						\
159 	}))
160 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
161 
162 #else
163 # define likely(x)	__builtin_expect(!!(x), 1)
164 # define unlikely(x)	__builtin_expect(!!(x), 0)
165 #endif
166 
167 /* Optimization barrier */
168 #ifndef barrier
169 # define barrier() __memory_barrier()
170 #endif
171 
172 #ifndef barrier_data
173 # define barrier_data(ptr) barrier()
174 #endif
175 
176 /* Unreachable code */
177 #ifndef unreachable
178 # define unreachable() do { } while (1)
179 #endif
180 
181 #ifndef RELOC_HIDE
182 # define RELOC_HIDE(ptr, off)					\
183   ({ unsigned long __ptr;					\
184      __ptr = (unsigned long) (ptr);				\
185     (typeof(ptr)) (__ptr + (off)); })
186 #endif
187 
188 #ifndef OPTIMIZER_HIDE_VAR
189 #define OPTIMIZER_HIDE_VAR(var) barrier()
190 #endif
191 
192 /* Not-quite-unique ID. */
193 #ifndef __UNIQUE_ID
194 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
195 #endif
196 
197 #include <uapi/linux/types.h>
198 
199 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
200 {
201 	switch (size) {
202 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;
203 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;
204 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;
205 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;
206 	default:
207 		barrier();
208 		__builtin_memcpy((void *)res, (const void *)p, size);
209 		barrier();
210 	}
211 }
212 
213 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
214 {
215 	switch (size) {
216 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
217 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
218 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
219 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
220 	default:
221 		barrier();
222 		__builtin_memcpy((void *)p, (const void *)res, size);
223 		barrier();
224 	}
225 }
226 
227 /*
228  * Prevent the compiler from merging or refetching reads or writes. The
229  * compiler is also forbidden from reordering successive instances of
230  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
231  * compiler is aware of some particular ordering.  One way to make the
232  * compiler aware of ordering is to put the two invocations of READ_ONCE,
233  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
234  *
235  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
236  * data types like structs or unions. If the size of the accessed data
237  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
238  * READ_ONCE() and WRITE_ONCE()  will fall back to memcpy and print a
239  * compile-time warning.
240  *
241  * Their two major use cases are: (1) Mediating communication between
242  * process-level code and irq/NMI handlers, all running on the same CPU,
243  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
244  * mutilate accesses that either do not require ordering or that interact
245  * with an explicit memory barrier or atomic instruction that provides the
246  * required ordering.
247  */
248 
249 #define READ_ONCE(x) \
250 	({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
251 
252 #define WRITE_ONCE(x, val) \
253 	({ typeof(x) __val = (val); __write_once_size(&(x), &__val, sizeof(__val)); __val; })
254 
255 #endif /* __KERNEL__ */
256 
257 #endif /* __ASSEMBLY__ */
258 
259 #ifdef __KERNEL__
260 /*
261  * Allow us to mark functions as 'deprecated' and have gcc emit a nice
262  * warning for each use, in hopes of speeding the functions removal.
263  * Usage is:
264  * 		int __deprecated foo(void)
265  */
266 #ifndef __deprecated
267 # define __deprecated		/* unimplemented */
268 #endif
269 
270 #ifdef MODULE
271 #define __deprecated_for_modules __deprecated
272 #else
273 #define __deprecated_for_modules
274 #endif
275 
276 #ifndef __must_check
277 #define __must_check
278 #endif
279 
280 #ifndef CONFIG_ENABLE_MUST_CHECK
281 #undef __must_check
282 #define __must_check
283 #endif
284 #ifndef CONFIG_ENABLE_WARN_DEPRECATED
285 #undef __deprecated
286 #undef __deprecated_for_modules
287 #define __deprecated
288 #define __deprecated_for_modules
289 #endif
290 
291 /*
292  * Allow us to avoid 'defined but not used' warnings on functions and data,
293  * as well as force them to be emitted to the assembly file.
294  *
295  * As of gcc 3.4, static functions that are not marked with attribute((used))
296  * may be elided from the assembly file.  As of gcc 3.4, static data not so
297  * marked will not be elided, but this may change in a future gcc version.
298  *
299  * NOTE: Because distributions shipped with a backported unit-at-a-time
300  * compiler in gcc 3.3, we must define __used to be __attribute__((used))
301  * for gcc >=3.3 instead of 3.4.
302  *
303  * In prior versions of gcc, such functions and data would be emitted, but
304  * would be warned about except with attribute((unused)).
305  *
306  * Mark functions that are referenced only in inline assembly as __used so
307  * the code is emitted even though it appears to be unreferenced.
308  */
309 #ifndef __used
310 # define __used			/* unimplemented */
311 #endif
312 
313 #ifndef __maybe_unused
314 # define __maybe_unused		/* unimplemented */
315 #endif
316 
317 #ifndef __always_unused
318 # define __always_unused	/* unimplemented */
319 #endif
320 
321 #ifndef noinline
322 #define noinline
323 #endif
324 
325 /*
326  * Rather then using noinline to prevent stack consumption, use
327  * noinline_for_stack instead.  For documentation reasons.
328  */
329 #define noinline_for_stack noinline
330 
331 #ifndef __always_inline
332 #define __always_inline inline
333 #endif
334 
335 #endif /* __KERNEL__ */
336 
337 /*
338  * From the GCC manual:
339  *
340  * Many functions do not examine any values except their arguments,
341  * and have no effects except the return value.  Basically this is
342  * just slightly more strict class than the `pure' attribute above,
343  * since function is not allowed to read global memory.
344  *
345  * Note that a function that has pointer arguments and examines the
346  * data pointed to must _not_ be declared `const'.  Likewise, a
347  * function that calls a non-`const' function usually must not be
348  * `const'.  It does not make sense for a `const' function to return
349  * `void'.
350  */
351 #ifndef __attribute_const__
352 # define __attribute_const__	/* unimplemented */
353 #endif
354 
355 /*
356  * Tell gcc if a function is cold. The compiler will assume any path
357  * directly leading to the call is unlikely.
358  */
359 
360 #ifndef __cold
361 #define __cold
362 #endif
363 
364 /* Simple shorthand for a section definition */
365 #ifndef __section
366 # define __section(S) __attribute__ ((__section__(#S)))
367 #endif
368 
369 #ifndef __visible
370 #define __visible
371 #endif
372 
373 /* Are two types/vars the same type (ignoring qualifiers)? */
374 #ifndef __same_type
375 # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
376 #endif
377 
378 /* Is this type a native word size -- useful for atomic operations */
379 #ifndef __native_word
380 # define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long))
381 #endif
382 
383 /* Compile time object size, -1 for unknown */
384 #ifndef __compiletime_object_size
385 # define __compiletime_object_size(obj) -1
386 #endif
387 #ifndef __compiletime_warning
388 # define __compiletime_warning(message)
389 #endif
390 #ifndef __compiletime_error
391 # define __compiletime_error(message)
392 /*
393  * Sparse complains of variable sized arrays due to the temporary variable in
394  * __compiletime_assert. Unfortunately we can't just expand it out to make
395  * sparse see a constant array size without breaking compiletime_assert on old
396  * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
397  */
398 # ifndef __CHECKER__
399 #  define __compiletime_error_fallback(condition) \
400 	do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
401 # endif
402 #endif
403 #ifndef __compiletime_error_fallback
404 # define __compiletime_error_fallback(condition) do { } while (0)
405 #endif
406 
407 #define __compiletime_assert(condition, msg, prefix, suffix)		\
408 	do {								\
409 		bool __cond = !(condition);				\
410 		extern void prefix ## suffix(void) __compiletime_error(msg); \
411 		if (__cond)						\
412 			prefix ## suffix();				\
413 		__compiletime_error_fallback(__cond);			\
414 	} while (0)
415 
416 #define _compiletime_assert(condition, msg, prefix, suffix) \
417 	__compiletime_assert(condition, msg, prefix, suffix)
418 
419 /**
420  * compiletime_assert - break build and emit msg if condition is false
421  * @condition: a compile-time constant condition to check
422  * @msg:       a message to emit if condition is false
423  *
424  * In tradition of POSIX assert, this macro will break the build if the
425  * supplied condition is *false*, emitting the supplied error message if the
426  * compiler has support to do so.
427  */
428 #define compiletime_assert(condition, msg) \
429 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
430 
431 #define compiletime_assert_atomic_type(t)				\
432 	compiletime_assert(__native_word(t),				\
433 		"Need native word sized stores/loads for atomicity.")
434 
435 /*
436  * Prevent the compiler from merging or refetching accesses.  The compiler
437  * is also forbidden from reordering successive instances of ACCESS_ONCE(),
438  * but only when the compiler is aware of some particular ordering.  One way
439  * to make the compiler aware of ordering is to put the two invocations of
440  * ACCESS_ONCE() in different C statements.
441  *
442  * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
443  * on a union member will work as long as the size of the member matches the
444  * size of the union and the size is smaller than word size.
445  *
446  * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
447  * between process-level code and irq/NMI handlers, all running on the same CPU,
448  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
449  * mutilate accesses that either do not require ordering or that interact
450  * with an explicit memory barrier or atomic instruction that provides the
451  * required ordering.
452  *
453  * If possible use READ_ONCE/ASSIGN_ONCE instead.
454  */
455 #define __ACCESS_ONCE(x) ({ \
456 	 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
457 	(volatile typeof(x) *)&(x); })
458 #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
459 
460 /* Ignore/forbid kprobes attach on very low level functions marked by this attribute: */
461 #ifdef CONFIG_KPROBES
462 # define __kprobes	__attribute__((__section__(".kprobes.text")))
463 # define nokprobe_inline	__always_inline
464 #else
465 # define __kprobes
466 # define nokprobe_inline	inline
467 #endif
468 #endif /* __LINUX_COMPILER_H */
469