xref: /openbmc/linux/include/linux/compiler.h (revision cff11abeca78aa782378401ca2800bd2194aa14e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_COMPILER_H
3 #define __LINUX_COMPILER_H
4 
5 #include <linux/compiler_types.h>
6 
7 #ifndef __ASSEMBLY__
8 
9 #ifdef __KERNEL__
10 
11 /*
12  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13  * to disable branch tracing on a per file basis.
14  */
15 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
16     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
17 void ftrace_likely_update(struct ftrace_likely_data *f, int val,
18 			  int expect, int is_constant);
19 
20 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
21 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
22 
23 #define __branch_check__(x, expect, is_constant) ({			\
24 			long ______r;					\
25 			static struct ftrace_likely_data		\
26 				__aligned(4)				\
27 				__section(_ftrace_annotated_branch)	\
28 				______f = {				\
29 				.data.func = __func__,			\
30 				.data.file = __FILE__,			\
31 				.data.line = __LINE__,			\
32 			};						\
33 			______r = __builtin_expect(!!(x), expect);	\
34 			ftrace_likely_update(&______f, ______r,		\
35 					     expect, is_constant);	\
36 			______r;					\
37 		})
38 
39 /*
40  * Using __builtin_constant_p(x) to ignore cases where the return
41  * value is always the same.  This idea is taken from a similar patch
42  * written by Daniel Walker.
43  */
44 # ifndef likely
45 #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
46 # endif
47 # ifndef unlikely
48 #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
49 # endif
50 
51 #ifdef CONFIG_PROFILE_ALL_BRANCHES
52 /*
53  * "Define 'is'", Bill Clinton
54  * "Define 'if'", Steven Rostedt
55  */
56 #define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) )
57 
58 #define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond))
59 
60 #define __trace_if_value(cond) ({			\
61 	static struct ftrace_branch_data		\
62 		__aligned(4)				\
63 		__section(_ftrace_branch)		\
64 		__if_trace = {				\
65 			.func = __func__,		\
66 			.file = __FILE__,		\
67 			.line = __LINE__,		\
68 		};					\
69 	(cond) ?					\
70 		(__if_trace.miss_hit[1]++,1) :		\
71 		(__if_trace.miss_hit[0]++,0);		\
72 })
73 
74 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
75 
76 #else
77 # define likely(x)	__builtin_expect(!!(x), 1)
78 # define unlikely(x)	__builtin_expect(!!(x), 0)
79 #endif
80 
81 /* Optimization barrier */
82 #ifndef barrier
83 # define barrier() __memory_barrier()
84 #endif
85 
86 #ifndef barrier_data
87 # define barrier_data(ptr) barrier()
88 #endif
89 
90 /* workaround for GCC PR82365 if needed */
91 #ifndef barrier_before_unreachable
92 # define barrier_before_unreachable() do { } while (0)
93 #endif
94 
95 /* Unreachable code */
96 #ifdef CONFIG_STACK_VALIDATION
97 /*
98  * These macros help objtool understand GCC code flow for unreachable code.
99  * The __COUNTER__ based labels are a hack to make each instance of the macros
100  * unique, to convince GCC not to merge duplicate inline asm statements.
101  */
102 #define annotate_reachable() ({						\
103 	asm volatile("%c0:\n\t"						\
104 		     ".pushsection .discard.reachable\n\t"		\
105 		     ".long %c0b - .\n\t"				\
106 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
107 })
108 #define annotate_unreachable() ({					\
109 	asm volatile("%c0:\n\t"						\
110 		     ".pushsection .discard.unreachable\n\t"		\
111 		     ".long %c0b - .\n\t"				\
112 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
113 })
114 #define ASM_UNREACHABLE							\
115 	"999:\n\t"							\
116 	".pushsection .discard.unreachable\n\t"				\
117 	".long 999b - .\n\t"						\
118 	".popsection\n\t"
119 
120 /* Annotate a C jump table to allow objtool to follow the code flow */
121 #define __annotate_jump_table __section(.rodata..c_jump_table)
122 
123 #ifdef CONFIG_DEBUG_ENTRY
124 /* Begin/end of an instrumentation safe region */
125 #define instrumentation_begin() ({					\
126 	asm volatile("%c0:\n\t"						\
127 		     ".pushsection .discard.instr_begin\n\t"		\
128 		     ".long %c0b - .\n\t"				\
129 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
130 })
131 
132 /*
133  * Because instrumentation_{begin,end}() can nest, objtool validation considers
134  * _begin() a +1 and _end() a -1 and computes a sum over the instructions.
135  * When the value is greater than 0, we consider instrumentation allowed.
136  *
137  * There is a problem with code like:
138  *
139  * noinstr void foo()
140  * {
141  *	instrumentation_begin();
142  *	...
143  *	if (cond) {
144  *		instrumentation_begin();
145  *		...
146  *		instrumentation_end();
147  *	}
148  *	bar();
149  *	instrumentation_end();
150  * }
151  *
152  * If instrumentation_end() would be an empty label, like all the other
153  * annotations, the inner _end(), which is at the end of a conditional block,
154  * would land on the instruction after the block.
155  *
156  * If we then consider the sum of the !cond path, we'll see that the call to
157  * bar() is with a 0-value, even though, we meant it to happen with a positive
158  * value.
159  *
160  * To avoid this, have _end() be a NOP instruction, this ensures it will be
161  * part of the condition block and does not escape.
162  */
163 #define instrumentation_end() ({					\
164 	asm volatile("%c0: nop\n\t"					\
165 		     ".pushsection .discard.instr_end\n\t"		\
166 		     ".long %c0b - .\n\t"				\
167 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
168 })
169 #endif /* CONFIG_DEBUG_ENTRY */
170 
171 #else
172 #define annotate_reachable()
173 #define annotate_unreachable()
174 #define __annotate_jump_table
175 #endif
176 
177 #ifndef instrumentation_begin
178 #define instrumentation_begin()		do { } while(0)
179 #define instrumentation_end()		do { } while(0)
180 #endif
181 
182 #ifndef ASM_UNREACHABLE
183 # define ASM_UNREACHABLE
184 #endif
185 #ifndef unreachable
186 # define unreachable() do {		\
187 	annotate_unreachable();		\
188 	__builtin_unreachable();	\
189 } while (0)
190 #endif
191 
192 /*
193  * KENTRY - kernel entry point
194  * This can be used to annotate symbols (functions or data) that are used
195  * without their linker symbol being referenced explicitly. For example,
196  * interrupt vector handlers, or functions in the kernel image that are found
197  * programatically.
198  *
199  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
200  * are handled in their own way (with KEEP() in linker scripts).
201  *
202  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
203  * linker script. For example an architecture could KEEP() its entire
204  * boot/exception vector code rather than annotate each function and data.
205  */
206 #ifndef KENTRY
207 # define KENTRY(sym)						\
208 	extern typeof(sym) sym;					\
209 	static const unsigned long __kentry_##sym		\
210 	__used							\
211 	__section("___kentry" "+" #sym )			\
212 	= (unsigned long)&sym;
213 #endif
214 
215 #ifndef RELOC_HIDE
216 # define RELOC_HIDE(ptr, off)					\
217   ({ unsigned long __ptr;					\
218      __ptr = (unsigned long) (ptr);				\
219     (typeof(ptr)) (__ptr + (off)); })
220 #endif
221 
222 #ifndef OPTIMIZER_HIDE_VAR
223 /* Make the optimizer believe the variable can be manipulated arbitrarily. */
224 #define OPTIMIZER_HIDE_VAR(var)						\
225 	__asm__ ("" : "=r" (var) : "0" (var))
226 #endif
227 
228 /* Not-quite-unique ID. */
229 #ifndef __UNIQUE_ID
230 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
231 #endif
232 
233 #include <uapi/linux/types.h>
234 
235 #define __READ_ONCE_SIZE						\
236 ({									\
237 	switch (size) {							\
238 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\
239 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\
240 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\
241 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\
242 	default:							\
243 		barrier();						\
244 		__builtin_memcpy((void *)res, (const void *)p, size);	\
245 		barrier();						\
246 	}								\
247 })
248 
249 static __always_inline
250 void __read_once_size(const volatile void *p, void *res, int size)
251 {
252 	__READ_ONCE_SIZE;
253 }
254 
255 #ifdef CONFIG_KASAN
256 /*
257  * We can't declare function 'inline' because __no_sanitize_address confilcts
258  * with inlining. Attempt to inline it may cause a build failure.
259  * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
260  * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
261  */
262 # define __no_kasan_or_inline __no_sanitize_address notrace __maybe_unused
263 #else
264 # define __no_kasan_or_inline __always_inline
265 #endif
266 
267 static __no_kasan_or_inline
268 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
269 {
270 	__READ_ONCE_SIZE;
271 }
272 
273 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
274 {
275 	switch (size) {
276 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
277 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
278 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
279 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
280 	default:
281 		barrier();
282 		__builtin_memcpy((void *)p, (const void *)res, size);
283 		barrier();
284 	}
285 }
286 
287 /*
288  * Prevent the compiler from merging or refetching reads or writes. The
289  * compiler is also forbidden from reordering successive instances of
290  * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
291  * particular ordering. One way to make the compiler aware of ordering is to
292  * put the two invocations of READ_ONCE or WRITE_ONCE in different C
293  * statements.
294  *
295  * These two macros will also work on aggregate data types like structs or
296  * unions. If the size of the accessed data type exceeds the word size of
297  * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will
298  * fall back to memcpy(). There's at least two memcpy()s: one for the
299  * __builtin_memcpy() and then one for the macro doing the copy of variable
300  * - '__u' allocated on the stack.
301  *
302  * Their two major use cases are: (1) Mediating communication between
303  * process-level code and irq/NMI handlers, all running on the same CPU,
304  * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
305  * mutilate accesses that either do not require ordering or that interact
306  * with an explicit memory barrier or atomic instruction that provides the
307  * required ordering.
308  */
309 #include <asm/barrier.h>
310 #include <linux/kasan-checks.h>
311 
312 #define __READ_ONCE(x, check)						\
313 ({									\
314 	union { typeof(x) __val; char __c[1]; } __u;			\
315 	if (check)							\
316 		__read_once_size(&(x), __u.__c, sizeof(x));		\
317 	else								\
318 		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\
319 	smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
320 	__u.__val;							\
321 })
322 #define READ_ONCE(x) __READ_ONCE(x, 1)
323 
324 /*
325  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
326  * to hide memory access from KASAN.
327  */
328 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
329 
330 static __no_kasan_or_inline
331 unsigned long read_word_at_a_time(const void *addr)
332 {
333 	kasan_check_read(addr, 1);
334 	return *(unsigned long *)addr;
335 }
336 
337 #define WRITE_ONCE(x, val) \
338 ({							\
339 	union { typeof(x) __val; char __c[1]; } __u =	\
340 		{ .__val = (__force typeof(x)) (val) }; \
341 	__write_once_size(&(x), __u.__c, sizeof(x));	\
342 	__u.__val;					\
343 })
344 
345 #endif /* __KERNEL__ */
346 
347 /*
348  * Force the compiler to emit 'sym' as a symbol, so that we can reference
349  * it from inline assembler. Necessary in case 'sym' could be inlined
350  * otherwise, or eliminated entirely due to lack of references that are
351  * visible to the compiler.
352  */
353 #define __ADDRESSABLE(sym) \
354 	static void * __section(.discard.addressable) __used \
355 		__PASTE(__addressable_##sym, __LINE__) = (void *)&sym;
356 
357 /**
358  * offset_to_ptr - convert a relative memory offset to an absolute pointer
359  * @off:	the address of the 32-bit offset value
360  */
361 static inline void *offset_to_ptr(const int *off)
362 {
363 	return (void *)((unsigned long)off + *off);
364 }
365 
366 #endif /* __ASSEMBLY__ */
367 
368 /* Compile time object size, -1 for unknown */
369 #ifndef __compiletime_object_size
370 # define __compiletime_object_size(obj) -1
371 #endif
372 #ifndef __compiletime_warning
373 # define __compiletime_warning(message)
374 #endif
375 #ifndef __compiletime_error
376 # define __compiletime_error(message)
377 #endif
378 
379 #ifdef __OPTIMIZE__
380 # define __compiletime_assert(condition, msg, prefix, suffix)		\
381 	do {								\
382 		extern void prefix ## suffix(void) __compiletime_error(msg); \
383 		if (!(condition))					\
384 			prefix ## suffix();				\
385 	} while (0)
386 #else
387 # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
388 #endif
389 
390 #define _compiletime_assert(condition, msg, prefix, suffix) \
391 	__compiletime_assert(condition, msg, prefix, suffix)
392 
393 /**
394  * compiletime_assert - break build and emit msg if condition is false
395  * @condition: a compile-time constant condition to check
396  * @msg:       a message to emit if condition is false
397  *
398  * In tradition of POSIX assert, this macro will break the build if the
399  * supplied condition is *false*, emitting the supplied error message if the
400  * compiler has support to do so.
401  */
402 #define compiletime_assert(condition, msg) \
403 	_compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
404 
405 #define compiletime_assert_atomic_type(t)				\
406 	compiletime_assert(__native_word(t),				\
407 		"Need native word sized stores/loads for atomicity.")
408 
409 /* &a[0] degrades to a pointer: a different type from an array */
410 #define __must_be_array(a)	BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
411 
412 /*
413  * This is needed in functions which generate the stack canary, see
414  * arch/x86/kernel/smpboot.c::start_secondary() for an example.
415  */
416 #define prevent_tail_call_optimization()	mb()
417 
418 #endif /* __LINUX_COMPILER_H */
419