xref: /openbmc/linux/include/linux/compiler.h (revision b9221f71)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_COMPILER_H
3 #define __LINUX_COMPILER_H
4 
5 #include <linux/compiler_types.h>
6 
7 #ifndef __ASSEMBLY__
8 
9 #ifdef __KERNEL__
10 
11 /*
12  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13  * to disable branch tracing on a per file basis.
14  */
15 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
16     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
17 void ftrace_likely_update(struct ftrace_likely_data *f, int val,
18 			  int expect, int is_constant);
19 
20 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
21 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
22 
23 #define __branch_check__(x, expect, is_constant) ({			\
24 			long ______r;					\
25 			static struct ftrace_likely_data		\
26 				__aligned(4)				\
27 				__section("_ftrace_annotated_branch")	\
28 				______f = {				\
29 				.data.func = __func__,			\
30 				.data.file = __FILE__,			\
31 				.data.line = __LINE__,			\
32 			};						\
33 			______r = __builtin_expect(!!(x), expect);	\
34 			ftrace_likely_update(&______f, ______r,		\
35 					     expect, is_constant);	\
36 			______r;					\
37 		})
38 
39 /*
40  * Using __builtin_constant_p(x) to ignore cases where the return
41  * value is always the same.  This idea is taken from a similar patch
42  * written by Daniel Walker.
43  */
44 # ifndef likely
45 #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
46 # endif
47 # ifndef unlikely
48 #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
49 # endif
50 
51 #ifdef CONFIG_PROFILE_ALL_BRANCHES
52 /*
53  * "Define 'is'", Bill Clinton
54  * "Define 'if'", Steven Rostedt
55  */
56 #define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) )
57 
58 #define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond))
59 
60 #define __trace_if_value(cond) ({			\
61 	static struct ftrace_branch_data		\
62 		__aligned(4)				\
63 		__section("_ftrace_branch")		\
64 		__if_trace = {				\
65 			.func = __func__,		\
66 			.file = __FILE__,		\
67 			.line = __LINE__,		\
68 		};					\
69 	(cond) ?					\
70 		(__if_trace.miss_hit[1]++,1) :		\
71 		(__if_trace.miss_hit[0]++,0);		\
72 })
73 
74 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
75 
76 #else
77 # define likely(x)	__builtin_expect(!!(x), 1)
78 # define unlikely(x)	__builtin_expect(!!(x), 0)
79 # define likely_notrace(x)	likely(x)
80 # define unlikely_notrace(x)	unlikely(x)
81 #endif
82 
83 /* Optimization barrier */
84 #ifndef barrier
85 /* The "volatile" is due to gcc bugs */
86 # define barrier() __asm__ __volatile__("": : :"memory")
87 #endif
88 
89 #ifndef barrier_data
90 /*
91  * This version is i.e. to prevent dead stores elimination on @ptr
92  * where gcc and llvm may behave differently when otherwise using
93  * normal barrier(): while gcc behavior gets along with a normal
94  * barrier(), llvm needs an explicit input variable to be assumed
95  * clobbered. The issue is as follows: while the inline asm might
96  * access any memory it wants, the compiler could have fit all of
97  * @ptr into memory registers instead, and since @ptr never escaped
98  * from that, it proved that the inline asm wasn't touching any of
99  * it. This version works well with both compilers, i.e. we're telling
100  * the compiler that the inline asm absolutely may see the contents
101  * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495
102  */
103 # define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory")
104 #endif
105 
106 /* workaround for GCC PR82365 if needed */
107 #ifndef barrier_before_unreachable
108 # define barrier_before_unreachable() do { } while (0)
109 #endif
110 
111 /* Unreachable code */
112 #ifdef CONFIG_STACK_VALIDATION
113 /*
114  * These macros help objtool understand GCC code flow for unreachable code.
115  * The __COUNTER__ based labels are a hack to make each instance of the macros
116  * unique, to convince GCC not to merge duplicate inline asm statements.
117  */
118 #define __stringify_label(n) #n
119 
120 #define __annotate_reachable(c) ({					\
121 	asm volatile(__stringify_label(c) ":\n\t"			\
122 		     ".pushsection .discard.reachable\n\t"		\
123 		     ".long " __stringify_label(c) "b - .\n\t"		\
124 		     ".popsection\n\t");				\
125 })
126 #define annotate_reachable() __annotate_reachable(__COUNTER__)
127 
128 #define __annotate_unreachable(c) ({					\
129 	asm volatile(__stringify_label(c) ":\n\t"			\
130 		     ".pushsection .discard.unreachable\n\t"		\
131 		     ".long " __stringify_label(c) "b - .\n\t"		\
132 		     ".popsection\n\t");				\
133 })
134 #define annotate_unreachable() __annotate_unreachable(__COUNTER__)
135 
136 #define ASM_UNREACHABLE							\
137 	"999:\n\t"							\
138 	".pushsection .discard.unreachable\n\t"				\
139 	".long 999b - .\n\t"						\
140 	".popsection\n\t"
141 
142 /* Annotate a C jump table to allow objtool to follow the code flow */
143 #define __annotate_jump_table __section(".rodata..c_jump_table")
144 
145 #else
146 #define annotate_reachable()
147 #define annotate_unreachable()
148 #define __annotate_jump_table
149 #endif
150 
151 #ifndef ASM_UNREACHABLE
152 # define ASM_UNREACHABLE
153 #endif
154 #ifndef unreachable
155 # define unreachable() do {		\
156 	annotate_unreachable();		\
157 	__builtin_unreachable();	\
158 } while (0)
159 #endif
160 
161 /*
162  * KENTRY - kernel entry point
163  * This can be used to annotate symbols (functions or data) that are used
164  * without their linker symbol being referenced explicitly. For example,
165  * interrupt vector handlers, or functions in the kernel image that are found
166  * programatically.
167  *
168  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
169  * are handled in their own way (with KEEP() in linker scripts).
170  *
171  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
172  * linker script. For example an architecture could KEEP() its entire
173  * boot/exception vector code rather than annotate each function and data.
174  */
175 #ifndef KENTRY
176 # define KENTRY(sym)						\
177 	extern typeof(sym) sym;					\
178 	static const unsigned long __kentry_##sym		\
179 	__used							\
180 	__attribute__((__section__("___kentry+" #sym)))		\
181 	= (unsigned long)&sym;
182 #endif
183 
184 #ifndef RELOC_HIDE
185 # define RELOC_HIDE(ptr, off)					\
186   ({ unsigned long __ptr;					\
187      __ptr = (unsigned long) (ptr);				\
188     (typeof(ptr)) (__ptr + (off)); })
189 #endif
190 
191 #define absolute_pointer(val)	RELOC_HIDE((void *)(val), 0)
192 
193 #ifndef OPTIMIZER_HIDE_VAR
194 /* Make the optimizer believe the variable can be manipulated arbitrarily. */
195 #define OPTIMIZER_HIDE_VAR(var)						\
196 	__asm__ ("" : "=r" (var) : "0" (var))
197 #endif
198 
199 /* Not-quite-unique ID. */
200 #ifndef __UNIQUE_ID
201 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
202 #endif
203 
204 /**
205  * data_race - mark an expression as containing intentional data races
206  *
207  * This data_race() macro is useful for situations in which data races
208  * should be forgiven.  One example is diagnostic code that accesses
209  * shared variables but is not a part of the core synchronization design.
210  *
211  * This macro *does not* affect normal code generation, but is a hint
212  * to tooling that data races here are to be ignored.
213  */
214 #define data_race(expr)							\
215 ({									\
216 	__unqual_scalar_typeof(({ expr; })) __v = ({			\
217 		__kcsan_disable_current();				\
218 		expr;							\
219 	});								\
220 	__kcsan_enable_current();					\
221 	__v;								\
222 })
223 
224 /*
225  * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
226  * instrumented C code with jump table addresses. Architectures that
227  * support CFI can define this macro to return the actual function address
228  * when needed.
229  */
230 #ifndef function_nocfi
231 #define function_nocfi(x) (x)
232 #endif
233 
234 #endif /* __KERNEL__ */
235 
236 /*
237  * Force the compiler to emit 'sym' as a symbol, so that we can reference
238  * it from inline assembler. Necessary in case 'sym' could be inlined
239  * otherwise, or eliminated entirely due to lack of references that are
240  * visible to the compiler.
241  */
242 #define __ADDRESSABLE(sym) \
243 	static void * __section(".discard.addressable") __used \
244 		__UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)&sym;
245 
246 /**
247  * offset_to_ptr - convert a relative memory offset to an absolute pointer
248  * @off:	the address of the 32-bit offset value
249  */
250 static inline void *offset_to_ptr(const int *off)
251 {
252 	return (void *)((unsigned long)off + *off);
253 }
254 
255 #endif /* __ASSEMBLY__ */
256 
257 /* &a[0] degrades to a pointer: a different type from an array */
258 #define __must_be_array(a)	BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
259 
260 /*
261  * This is needed in functions which generate the stack canary, see
262  * arch/x86/kernel/smpboot.c::start_secondary() for an example.
263  */
264 #define prevent_tail_call_optimization()	mb()
265 
266 #include <asm/rwonce.h>
267 
268 #endif /* __LINUX_COMPILER_H */
269