xref: /openbmc/linux/include/linux/compiler.h (revision b2441318)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_COMPILER_H
3 #define __LINUX_COMPILER_H
4 
5 #ifndef __ASSEMBLY__
6 
7 #ifdef __CHECKER__
8 # define __user		__attribute__((noderef, address_space(1)))
9 # define __kernel	__attribute__((address_space(0)))
10 # define __safe		__attribute__((safe))
11 # define __force	__attribute__((force))
12 # define __nocast	__attribute__((nocast))
13 # define __iomem	__attribute__((noderef, address_space(2)))
14 # define __must_hold(x)	__attribute__((context(x,1,1)))
15 # define __acquires(x)	__attribute__((context(x,0,1)))
16 # define __releases(x)	__attribute__((context(x,1,0)))
17 # define __acquire(x)	__context__(x,1)
18 # define __release(x)	__context__(x,-1)
19 # define __cond_lock(x,c)	((c) ? ({ __acquire(x); 1; }) : 0)
20 # define __percpu	__attribute__((noderef, address_space(3)))
21 # define __rcu		__attribute__((noderef, address_space(4)))
22 # define __private	__attribute__((noderef))
23 extern void __chk_user_ptr(const volatile void __user *);
24 extern void __chk_io_ptr(const volatile void __iomem *);
25 # define ACCESS_PRIVATE(p, member) (*((typeof((p)->member) __force *) &(p)->member))
26 #else /* __CHECKER__ */
27 # ifdef STRUCTLEAK_PLUGIN
28 #  define __user __attribute__((user))
29 # else
30 #  define __user
31 # endif
32 # define __kernel
33 # define __safe
34 # define __force
35 # define __nocast
36 # define __iomem
37 # define __chk_user_ptr(x) (void)0
38 # define __chk_io_ptr(x) (void)0
39 # define __builtin_warning(x, y...) (1)
40 # define __must_hold(x)
41 # define __acquires(x)
42 # define __releases(x)
43 # define __acquire(x) (void)0
44 # define __release(x) (void)0
45 # define __cond_lock(x,c) (c)
46 # define __percpu
47 # define __rcu
48 # define __private
49 # define ACCESS_PRIVATE(p, member) ((p)->member)
50 #endif /* __CHECKER__ */
51 
52 /* Indirect macros required for expanded argument pasting, eg. __LINE__. */
53 #define ___PASTE(a,b) a##b
54 #define __PASTE(a,b) ___PASTE(a,b)
55 
56 #ifdef __KERNEL__
57 
58 #ifdef __GNUC__
59 #include <linux/compiler-gcc.h>
60 #endif
61 
62 #if defined(CC_USING_HOTPATCH) && !defined(__CHECKER__)
63 #define notrace __attribute__((hotpatch(0,0)))
64 #else
65 #define notrace __attribute__((no_instrument_function))
66 #endif
67 
68 /* Intel compiler defines __GNUC__. So we will overwrite implementations
69  * coming from above header files here
70  */
71 #ifdef __INTEL_COMPILER
72 # include <linux/compiler-intel.h>
73 #endif
74 
75 /* Clang compiler defines __GNUC__. So we will overwrite implementations
76  * coming from above header files here
77  */
78 #ifdef __clang__
79 #include <linux/compiler-clang.h>
80 #endif
81 
82 /*
83  * Generic compiler-dependent macros required for kernel
84  * build go below this comment. Actual compiler/compiler version
85  * specific implementations come from the above header files
86  */
87 
88 struct ftrace_branch_data {
89 	const char *func;
90 	const char *file;
91 	unsigned line;
92 	union {
93 		struct {
94 			unsigned long correct;
95 			unsigned long incorrect;
96 		};
97 		struct {
98 			unsigned long miss;
99 			unsigned long hit;
100 		};
101 		unsigned long miss_hit[2];
102 	};
103 };
104 
105 struct ftrace_likely_data {
106 	struct ftrace_branch_data	data;
107 	unsigned long			constant;
108 };
109 
110 /*
111  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
112  * to disable branch tracing on a per file basis.
113  */
114 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
115     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
116 void ftrace_likely_update(struct ftrace_likely_data *f, int val,
117 			  int expect, int is_constant);
118 
119 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
120 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
121 
122 #define __branch_check__(x, expect, is_constant) ({			\
123 			int ______r;					\
124 			static struct ftrace_likely_data		\
125 				__attribute__((__aligned__(4)))		\
126 				__attribute__((section("_ftrace_annotated_branch"))) \
127 				______f = {				\
128 				.data.func = __func__,			\
129 				.data.file = __FILE__,			\
130 				.data.line = __LINE__,			\
131 			};						\
132 			______r = __builtin_expect(!!(x), expect);	\
133 			ftrace_likely_update(&______f, ______r,		\
134 					     expect, is_constant);	\
135 			______r;					\
136 		})
137 
138 /*
139  * Using __builtin_constant_p(x) to ignore cases where the return
140  * value is always the same.  This idea is taken from a similar patch
141  * written by Daniel Walker.
142  */
143 # ifndef likely
144 #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
145 # endif
146 # ifndef unlikely
147 #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
148 # endif
149 
150 #ifdef CONFIG_PROFILE_ALL_BRANCHES
151 /*
152  * "Define 'is'", Bill Clinton
153  * "Define 'if'", Steven Rostedt
154  */
155 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
156 #define __trace_if(cond) \
157 	if (__builtin_constant_p(!!(cond)) ? !!(cond) :			\
158 	({								\
159 		int ______r;						\
160 		static struct ftrace_branch_data			\
161 			__attribute__((__aligned__(4)))			\
162 			__attribute__((section("_ftrace_branch")))	\
163 			______f = {					\
164 				.func = __func__,			\
165 				.file = __FILE__,			\
166 				.line = __LINE__,			\
167 			};						\
168 		______r = !!(cond);					\
169 		______f.miss_hit[______r]++;					\
170 		______r;						\
171 	}))
172 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
173 
174 #else
175 # define likely(x)	__builtin_expect(!!(x), 1)
176 # define unlikely(x)	__builtin_expect(!!(x), 0)
177 #endif
178 
179 /* Optimization barrier */
180 #ifndef barrier
181 # define barrier() __memory_barrier()
182 #endif
183 
184 #ifndef barrier_data
185 # define barrier_data(ptr) barrier()
186 #endif
187 
188 /* Unreachable code */
189 #ifdef CONFIG_STACK_VALIDATION
190 #define annotate_reachable() ({						\
191 	asm("%c0:\n\t"							\
192 	    ".pushsection .discard.reachable\n\t"			\
193 	    ".long %c0b - .\n\t"					\
194 	    ".popsection\n\t" : : "i" (__LINE__));			\
195 })
196 #define annotate_unreachable() ({					\
197 	asm("%c0:\n\t"							\
198 	    ".pushsection .discard.unreachable\n\t"			\
199 	    ".long %c0b - .\n\t"					\
200 	    ".popsection\n\t" : : "i" (__LINE__));			\
201 })
202 #define ASM_UNREACHABLE							\
203 	"999:\n\t"							\
204 	".pushsection .discard.unreachable\n\t"				\
205 	".long 999b - .\n\t"						\
206 	".popsection\n\t"
207 #else
208 #define annotate_reachable()
209 #define annotate_unreachable()
210 #endif
211 
212 #ifndef ASM_UNREACHABLE
213 # define ASM_UNREACHABLE
214 #endif
215 #ifndef unreachable
216 # define unreachable() do { annotate_reachable(); do { } while (1); } while (0)
217 #endif
218 
219 /*
220  * KENTRY - kernel entry point
221  * This can be used to annotate symbols (functions or data) that are used
222  * without their linker symbol being referenced explicitly. For example,
223  * interrupt vector handlers, or functions in the kernel image that are found
224  * programatically.
225  *
226  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
227  * are handled in their own way (with KEEP() in linker scripts).
228  *
229  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
230  * linker script. For example an architecture could KEEP() its entire
231  * boot/exception vector code rather than annotate each function and data.
232  */
233 #ifndef KENTRY
234 # define KENTRY(sym)						\
235 	extern typeof(sym) sym;					\
236 	static const unsigned long __kentry_##sym		\
237 	__used							\
238 	__attribute__((section("___kentry" "+" #sym ), used))	\
239 	= (unsigned long)&sym;
240 #endif
241 
242 #ifndef RELOC_HIDE
243 # define RELOC_HIDE(ptr, off)					\
244   ({ unsigned long __ptr;					\
245      __ptr = (unsigned long) (ptr);				\
246     (typeof(ptr)) (__ptr + (off)); })
247 #endif
248 
249 #ifndef OPTIMIZER_HIDE_VAR
250 #define OPTIMIZER_HIDE_VAR(var) barrier()
251 #endif
252 
253 /* Not-quite-unique ID. */
254 #ifndef __UNIQUE_ID
255 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
256 #endif
257 
258 #include <uapi/linux/types.h>
259 
260 #define __READ_ONCE_SIZE						\
261 ({									\
262 	switch (size) {							\
263 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\
264 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\
265 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\
266 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\
267 	default:							\
268 		barrier();						\
269 		__builtin_memcpy((void *)res, (const void *)p, size);	\
270 		barrier();						\
271 	}								\
272 })
273 
274 static __always_inline
275 void __read_once_size(const volatile void *p, void *res, int size)
276 {
277 	__READ_ONCE_SIZE;
278 }
279 
280 #ifdef CONFIG_KASAN
281 /*
282  * This function is not 'inline' because __no_sanitize_address confilcts
283  * with inlining. Attempt to inline it may cause a build failure.
284  * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
285  * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
286  */
287 static __no_sanitize_address __maybe_unused
288 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
289 {
290 	__READ_ONCE_SIZE;
291 }
292 #else
293 static __always_inline
294 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
295 {
296 	__READ_ONCE_SIZE;
297 }
298 #endif
299 
300 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
301 {
302 	switch (size) {
303 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
304 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
305 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
306 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
307 	default:
308 		barrier();
309 		__builtin_memcpy((void *)p, (const void *)res, size);
310 		barrier();
311 	}
312 }
313 
314 /*
315  * Prevent the compiler from merging or refetching reads or writes. The
316  * compiler is also forbidden from reordering successive instances of
317  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
318  * compiler is aware of some particular ordering.  One way to make the
319  * compiler aware of ordering is to put the two invocations of READ_ONCE,
320  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
321  *
322  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
323  * data types like structs or unions. If the size of the accessed data
324  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
325  * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at
326  * least two memcpy()s: one for the __builtin_memcpy() and then one for
327  * the macro doing the copy of variable - '__u' allocated on the stack.
328  *
329  * Their two major use cases are: (1) Mediating communication between
330  * process-level code and irq/NMI handlers, all running on the same CPU,
331  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
332  * mutilate accesses that either do not require ordering or that interact
333  * with an explicit memory barrier or atomic instruction that provides the
334  * required ordering.
335  */
336 
337 #define __READ_ONCE(x, check)						\
338 ({									\
339 	union { typeof(x) __val; char __c[1]; } __u;			\
340 	if (check)							\
341 		__read_once_size(&(x), __u.__c, sizeof(x));		\
342 	else								\
343 		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\
344 	__u.__val;							\
345 })
346 #define READ_ONCE(x) __READ_ONCE(x, 1)
347 
348 /*
349  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
350  * to hide memory access from KASAN.
351  */
352 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
353 
354 #define WRITE_ONCE(x, val) \
355 ({							\
356 	union { typeof(x) __val; char __c[1]; } __u =	\
357 		{ .__val = (__force typeof(x)) (val) }; \
358 	__write_once_size(&(x), __u.__c, sizeof(x));	\
359 	__u.__val;					\
360 })
361 
362 #endif /* __KERNEL__ */
363 
364 #endif /* __ASSEMBLY__ */
365 
366 #ifdef __KERNEL__
367 /*
368  * Allow us to mark functions as 'deprecated' and have gcc emit a nice
369  * warning for each use, in hopes of speeding the functions removal.
370  * Usage is:
371  * 		int __deprecated foo(void)
372  */
373 #ifndef __deprecated
374 # define __deprecated		/* unimplemented */
375 #endif
376 
377 #ifdef MODULE
378 #define __deprecated_for_modules __deprecated
379 #else
380 #define __deprecated_for_modules
381 #endif
382 
383 #ifndef __must_check
384 #define __must_check
385 #endif
386 
387 #ifndef CONFIG_ENABLE_MUST_CHECK
388 #undef __must_check
389 #define __must_check
390 #endif
391 #ifndef CONFIG_ENABLE_WARN_DEPRECATED
392 #undef __deprecated
393 #undef __deprecated_for_modules
394 #define __deprecated
395 #define __deprecated_for_modules
396 #endif
397 
398 #ifndef __malloc
399 #define __malloc
400 #endif
401 
402 /*
403  * Allow us to avoid 'defined but not used' warnings on functions and data,
404  * as well as force them to be emitted to the assembly file.
405  *
406  * As of gcc 3.4, static functions that are not marked with attribute((used))
407  * may be elided from the assembly file.  As of gcc 3.4, static data not so
408  * marked will not be elided, but this may change in a future gcc version.
409  *
410  * NOTE: Because distributions shipped with a backported unit-at-a-time
411  * compiler in gcc 3.3, we must define __used to be __attribute__((used))
412  * for gcc >=3.3 instead of 3.4.
413  *
414  * In prior versions of gcc, such functions and data would be emitted, but
415  * would be warned about except with attribute((unused)).
416  *
417  * Mark functions that are referenced only in inline assembly as __used so
418  * the code is emitted even though it appears to be unreferenced.
419  */
420 #ifndef __used
421 # define __used			/* unimplemented */
422 #endif
423 
424 #ifndef __maybe_unused
425 # define __maybe_unused		/* unimplemented */
426 #endif
427 
428 #ifndef __always_unused
429 # define __always_unused	/* unimplemented */
430 #endif
431 
432 #ifndef noinline
433 #define noinline
434 #endif
435 
436 /*
437  * Rather then using noinline to prevent stack consumption, use
438  * noinline_for_stack instead.  For documentation reasons.
439  */
440 #define noinline_for_stack noinline
441 
442 #ifndef __always_inline
443 #define __always_inline inline
444 #endif
445 
446 #endif /* __KERNEL__ */
447 
448 /*
449  * From the GCC manual:
450  *
451  * Many functions do not examine any values except their arguments,
452  * and have no effects except the return value.  Basically this is
453  * just slightly more strict class than the `pure' attribute above,
454  * since function is not allowed to read global memory.
455  *
456  * Note that a function that has pointer arguments and examines the
457  * data pointed to must _not_ be declared `const'.  Likewise, a
458  * function that calls a non-`const' function usually must not be
459  * `const'.  It does not make sense for a `const' function to return
460  * `void'.
461  */
462 #ifndef __attribute_const__
463 # define __attribute_const__	/* unimplemented */
464 #endif
465 
466 #ifndef __designated_init
467 # define __designated_init
468 #endif
469 
470 #ifndef __latent_entropy
471 # define __latent_entropy
472 #endif
473 
474 #ifndef __randomize_layout
475 # define __randomize_layout __designated_init
476 #endif
477 
478 #ifndef __no_randomize_layout
479 # define __no_randomize_layout
480 #endif
481 
482 #ifndef randomized_struct_fields_start
483 # define randomized_struct_fields_start
484 # define randomized_struct_fields_end
485 #endif
486 
487 /*
488  * Tell gcc if a function is cold. The compiler will assume any path
489  * directly leading to the call is unlikely.
490  */
491 
492 #ifndef __cold
493 #define __cold
494 #endif
495 
496 /* Simple shorthand for a section definition */
497 #ifndef __section
498 # define __section(S) __attribute__ ((__section__(#S)))
499 #endif
500 
501 #ifndef __visible
502 #define __visible
503 #endif
504 
505 #ifndef __nostackprotector
506 # define __nostackprotector
507 #endif
508 
509 /*
510  * Assume alignment of return value.
511  */
512 #ifndef __assume_aligned
513 #define __assume_aligned(a, ...)
514 #endif
515 
516 
517 /* Are two types/vars the same type (ignoring qualifiers)? */
518 #ifndef __same_type
519 # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
520 #endif
521 
522 /* Is this type a native word size -- useful for atomic operations */
523 #ifndef __native_word
524 # define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long))
525 #endif
526 
527 /* Compile time object size, -1 for unknown */
528 #ifndef __compiletime_object_size
529 # define __compiletime_object_size(obj) -1
530 #endif
531 #ifndef __compiletime_warning
532 # define __compiletime_warning(message)
533 #endif
534 #ifndef __compiletime_error
535 # define __compiletime_error(message)
536 /*
537  * Sparse complains of variable sized arrays due to the temporary variable in
538  * __compiletime_assert. Unfortunately we can't just expand it out to make
539  * sparse see a constant array size without breaking compiletime_assert on old
540  * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
541  */
542 # ifndef __CHECKER__
543 #  define __compiletime_error_fallback(condition) \
544 	do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
545 # endif
546 #endif
547 #ifndef __compiletime_error_fallback
548 # define __compiletime_error_fallback(condition) do { } while (0)
549 #endif
550 
551 #ifdef __OPTIMIZE__
552 # define __compiletime_assert(condition, msg, prefix, suffix)		\
553 	do {								\
554 		bool __cond = !(condition);				\
555 		extern void prefix ## suffix(void) __compiletime_error(msg); \
556 		if (__cond)						\
557 			prefix ## suffix();				\
558 		__compiletime_error_fallback(__cond);			\
559 	} while (0)
560 #else
561 # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
562 #endif
563 
564 #define _compiletime_assert(condition, msg, prefix, suffix) \
565 	__compiletime_assert(condition, msg, prefix, suffix)
566 
567 /**
568  * compiletime_assert - break build and emit msg if condition is false
569  * @condition: a compile-time constant condition to check
570  * @msg:       a message to emit if condition is false
571  *
572  * In tradition of POSIX assert, this macro will break the build if the
573  * supplied condition is *false*, emitting the supplied error message if the
574  * compiler has support to do so.
575  */
576 #define compiletime_assert(condition, msg) \
577 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
578 
579 #define compiletime_assert_atomic_type(t)				\
580 	compiletime_assert(__native_word(t),				\
581 		"Need native word sized stores/loads for atomicity.")
582 
583 /*
584  * Prevent the compiler from merging or refetching accesses.  The compiler
585  * is also forbidden from reordering successive instances of ACCESS_ONCE(),
586  * but only when the compiler is aware of some particular ordering.  One way
587  * to make the compiler aware of ordering is to put the two invocations of
588  * ACCESS_ONCE() in different C statements.
589  *
590  * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
591  * on a union member will work as long as the size of the member matches the
592  * size of the union and the size is smaller than word size.
593  *
594  * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
595  * between process-level code and irq/NMI handlers, all running on the same CPU,
596  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
597  * mutilate accesses that either do not require ordering or that interact
598  * with an explicit memory barrier or atomic instruction that provides the
599  * required ordering.
600  *
601  * If possible use READ_ONCE()/WRITE_ONCE() instead.
602  */
603 #define __ACCESS_ONCE(x) ({ \
604 	 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
605 	(volatile typeof(x) *)&(x); })
606 #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
607 
608 /**
609  * lockless_dereference() - safely load a pointer for later dereference
610  * @p: The pointer to load
611  *
612  * Similar to rcu_dereference(), but for situations where the pointed-to
613  * object's lifetime is managed by something other than RCU.  That
614  * "something other" might be reference counting or simple immortality.
615  *
616  * The seemingly unused variable ___typecheck_p validates that @p is
617  * indeed a pointer type by using a pointer to typeof(*p) as the type.
618  * Taking a pointer to typeof(*p) again is needed in case p is void *.
619  */
620 #define lockless_dereference(p) \
621 ({ \
622 	typeof(p) _________p1 = READ_ONCE(p); \
623 	typeof(*(p)) *___typecheck_p __maybe_unused; \
624 	smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
625 	(_________p1); \
626 })
627 
628 #endif /* __LINUX_COMPILER_H */
629