xref: /openbmc/linux/include/linux/compiler.h (revision 6aa7de05)
1 #ifndef __LINUX_COMPILER_H
2 #define __LINUX_COMPILER_H
3 
4 #include <linux/compiler_types.h>
5 
6 #ifndef __ASSEMBLY__
7 
8 #ifdef __KERNEL__
9 
10 /*
11  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
12  * to disable branch tracing on a per file basis.
13  */
14 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
15     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
16 void ftrace_likely_update(struct ftrace_likely_data *f, int val,
17 			  int expect, int is_constant);
18 
19 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
20 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
21 
22 #define __branch_check__(x, expect, is_constant) ({			\
23 			int ______r;					\
24 			static struct ftrace_likely_data		\
25 				__attribute__((__aligned__(4)))		\
26 				__attribute__((section("_ftrace_annotated_branch"))) \
27 				______f = {				\
28 				.data.func = __func__,			\
29 				.data.file = __FILE__,			\
30 				.data.line = __LINE__,			\
31 			};						\
32 			______r = __builtin_expect(!!(x), expect);	\
33 			ftrace_likely_update(&______f, ______r,		\
34 					     expect, is_constant);	\
35 			______r;					\
36 		})
37 
38 /*
39  * Using __builtin_constant_p(x) to ignore cases where the return
40  * value is always the same.  This idea is taken from a similar patch
41  * written by Daniel Walker.
42  */
43 # ifndef likely
44 #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
45 # endif
46 # ifndef unlikely
47 #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
48 # endif
49 
50 #ifdef CONFIG_PROFILE_ALL_BRANCHES
51 /*
52  * "Define 'is'", Bill Clinton
53  * "Define 'if'", Steven Rostedt
54  */
55 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
56 #define __trace_if(cond) \
57 	if (__builtin_constant_p(!!(cond)) ? !!(cond) :			\
58 	({								\
59 		int ______r;						\
60 		static struct ftrace_branch_data			\
61 			__attribute__((__aligned__(4)))			\
62 			__attribute__((section("_ftrace_branch")))	\
63 			______f = {					\
64 				.func = __func__,			\
65 				.file = __FILE__,			\
66 				.line = __LINE__,			\
67 			};						\
68 		______r = !!(cond);					\
69 		______f.miss_hit[______r]++;					\
70 		______r;						\
71 	}))
72 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
73 
74 #else
75 # define likely(x)	__builtin_expect(!!(x), 1)
76 # define unlikely(x)	__builtin_expect(!!(x), 0)
77 #endif
78 
79 /* Optimization barrier */
80 #ifndef barrier
81 # define barrier() __memory_barrier()
82 #endif
83 
84 #ifndef barrier_data
85 # define barrier_data(ptr) barrier()
86 #endif
87 
88 /* Unreachable code */
89 #ifdef CONFIG_STACK_VALIDATION
90 #define annotate_reachable() ({						\
91 	asm("%c0:\n\t"							\
92 	    ".pushsection .discard.reachable\n\t"			\
93 	    ".long %c0b - .\n\t"					\
94 	    ".popsection\n\t" : : "i" (__LINE__));			\
95 })
96 #define annotate_unreachable() ({					\
97 	asm("%c0:\n\t"							\
98 	    ".pushsection .discard.unreachable\n\t"			\
99 	    ".long %c0b - .\n\t"					\
100 	    ".popsection\n\t" : : "i" (__LINE__));			\
101 })
102 #define ASM_UNREACHABLE							\
103 	"999:\n\t"							\
104 	".pushsection .discard.unreachable\n\t"				\
105 	".long 999b - .\n\t"						\
106 	".popsection\n\t"
107 #else
108 #define annotate_reachable()
109 #define annotate_unreachable()
110 #endif
111 
112 #ifndef ASM_UNREACHABLE
113 # define ASM_UNREACHABLE
114 #endif
115 #ifndef unreachable
116 # define unreachable() do { annotate_reachable(); do { } while (1); } while (0)
117 #endif
118 
119 /*
120  * KENTRY - kernel entry point
121  * This can be used to annotate symbols (functions or data) that are used
122  * without their linker symbol being referenced explicitly. For example,
123  * interrupt vector handlers, or functions in the kernel image that are found
124  * programatically.
125  *
126  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
127  * are handled in their own way (with KEEP() in linker scripts).
128  *
129  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
130  * linker script. For example an architecture could KEEP() its entire
131  * boot/exception vector code rather than annotate each function and data.
132  */
133 #ifndef KENTRY
134 # define KENTRY(sym)						\
135 	extern typeof(sym) sym;					\
136 	static const unsigned long __kentry_##sym		\
137 	__used							\
138 	__attribute__((section("___kentry" "+" #sym ), used))	\
139 	= (unsigned long)&sym;
140 #endif
141 
142 #ifndef RELOC_HIDE
143 # define RELOC_HIDE(ptr, off)					\
144   ({ unsigned long __ptr;					\
145      __ptr = (unsigned long) (ptr);				\
146     (typeof(ptr)) (__ptr + (off)); })
147 #endif
148 
149 #ifndef OPTIMIZER_HIDE_VAR
150 #define OPTIMIZER_HIDE_VAR(var) barrier()
151 #endif
152 
153 /* Not-quite-unique ID. */
154 #ifndef __UNIQUE_ID
155 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
156 #endif
157 
158 #include <uapi/linux/types.h>
159 
160 #define __READ_ONCE_SIZE						\
161 ({									\
162 	switch (size) {							\
163 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\
164 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\
165 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\
166 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\
167 	default:							\
168 		barrier();						\
169 		__builtin_memcpy((void *)res, (const void *)p, size);	\
170 		barrier();						\
171 	}								\
172 })
173 
174 static __always_inline
175 void __read_once_size(const volatile void *p, void *res, int size)
176 {
177 	__READ_ONCE_SIZE;
178 }
179 
180 #ifdef CONFIG_KASAN
181 /*
182  * This function is not 'inline' because __no_sanitize_address confilcts
183  * with inlining. Attempt to inline it may cause a build failure.
184  * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
185  * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
186  */
187 static __no_sanitize_address __maybe_unused
188 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
189 {
190 	__READ_ONCE_SIZE;
191 }
192 #else
193 static __always_inline
194 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
195 {
196 	__READ_ONCE_SIZE;
197 }
198 #endif
199 
200 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
201 {
202 	switch (size) {
203 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
204 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
205 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
206 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
207 	default:
208 		barrier();
209 		__builtin_memcpy((void *)p, (const void *)res, size);
210 		barrier();
211 	}
212 }
213 
214 /*
215  * Prevent the compiler from merging or refetching reads or writes. The
216  * compiler is also forbidden from reordering successive instances of
217  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
218  * compiler is aware of some particular ordering.  One way to make the
219  * compiler aware of ordering is to put the two invocations of READ_ONCE,
220  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
221  *
222  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
223  * data types like structs or unions. If the size of the accessed data
224  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
225  * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at
226  * least two memcpy()s: one for the __builtin_memcpy() and then one for
227  * the macro doing the copy of variable - '__u' allocated on the stack.
228  *
229  * Their two major use cases are: (1) Mediating communication between
230  * process-level code and irq/NMI handlers, all running on the same CPU,
231  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
232  * mutilate accesses that either do not require ordering or that interact
233  * with an explicit memory barrier or atomic instruction that provides the
234  * required ordering.
235  */
236 #include <asm/barrier.h>
237 
238 #define __READ_ONCE(x, check)						\
239 ({									\
240 	union { typeof(x) __val; char __c[1]; } __u;			\
241 	if (check)							\
242 		__read_once_size(&(x), __u.__c, sizeof(x));		\
243 	else								\
244 		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\
245 	smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
246 	__u.__val;							\
247 })
248 #define READ_ONCE(x) __READ_ONCE(x, 1)
249 
250 /*
251  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
252  * to hide memory access from KASAN.
253  */
254 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
255 
256 #define WRITE_ONCE(x, val) \
257 ({							\
258 	union { typeof(x) __val; char __c[1]; } __u =	\
259 		{ .__val = (__force typeof(x)) (val) }; \
260 	__write_once_size(&(x), __u.__c, sizeof(x));	\
261 	__u.__val;					\
262 })
263 
264 #endif /* __KERNEL__ */
265 
266 #endif /* __ASSEMBLY__ */
267 
268 /* Compile time object size, -1 for unknown */
269 #ifndef __compiletime_object_size
270 # define __compiletime_object_size(obj) -1
271 #endif
272 #ifndef __compiletime_warning
273 # define __compiletime_warning(message)
274 #endif
275 #ifndef __compiletime_error
276 # define __compiletime_error(message)
277 /*
278  * Sparse complains of variable sized arrays due to the temporary variable in
279  * __compiletime_assert. Unfortunately we can't just expand it out to make
280  * sparse see a constant array size without breaking compiletime_assert on old
281  * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
282  */
283 # ifndef __CHECKER__
284 #  define __compiletime_error_fallback(condition) \
285 	do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
286 # endif
287 #endif
288 #ifndef __compiletime_error_fallback
289 # define __compiletime_error_fallback(condition) do { } while (0)
290 #endif
291 
292 #ifdef __OPTIMIZE__
293 # define __compiletime_assert(condition, msg, prefix, suffix)		\
294 	do {								\
295 		bool __cond = !(condition);				\
296 		extern void prefix ## suffix(void) __compiletime_error(msg); \
297 		if (__cond)						\
298 			prefix ## suffix();				\
299 		__compiletime_error_fallback(__cond);			\
300 	} while (0)
301 #else
302 # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
303 #endif
304 
305 #define _compiletime_assert(condition, msg, prefix, suffix) \
306 	__compiletime_assert(condition, msg, prefix, suffix)
307 
308 /**
309  * compiletime_assert - break build and emit msg if condition is false
310  * @condition: a compile-time constant condition to check
311  * @msg:       a message to emit if condition is false
312  *
313  * In tradition of POSIX assert, this macro will break the build if the
314  * supplied condition is *false*, emitting the supplied error message if the
315  * compiler has support to do so.
316  */
317 #define compiletime_assert(condition, msg) \
318 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
319 
320 #define compiletime_assert_atomic_type(t)				\
321 	compiletime_assert(__native_word(t),				\
322 		"Need native word sized stores/loads for atomicity.")
323 
324 /*
325  * Prevent the compiler from merging or refetching accesses.  The compiler
326  * is also forbidden from reordering successive instances of ACCESS_ONCE(),
327  * but only when the compiler is aware of some particular ordering.  One way
328  * to make the compiler aware of ordering is to put the two invocations of
329  * ACCESS_ONCE() in different C statements.
330  *
331  * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
332  * on a union member will work as long as the size of the member matches the
333  * size of the union and the size is smaller than word size.
334  *
335  * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
336  * between process-level code and irq/NMI handlers, all running on the same CPU,
337  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
338  * mutilate accesses that either do not require ordering or that interact
339  * with an explicit memory barrier or atomic instruction that provides the
340  * required ordering.
341  *
342  * If possible use READ_ONCE()/WRITE_ONCE() instead.
343  */
344 #define __ACCESS_ONCE(x) ({ \
345 	 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
346 	(volatile typeof(x) *)&(x); })
347 #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
348 
349 #endif /* __LINUX_COMPILER_H */
350