xref: /openbmc/linux/include/linux/compiler.h (revision 2f828fb2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_COMPILER_H
3 #define __LINUX_COMPILER_H
4 
5 #include <linux/compiler_types.h>
6 
7 #ifndef __ASSEMBLY__
8 
9 #ifdef __KERNEL__
10 
11 /*
12  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13  * to disable branch tracing on a per file basis.
14  */
15 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
16     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
17 void ftrace_likely_update(struct ftrace_likely_data *f, int val,
18 			  int expect, int is_constant);
19 
20 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
21 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
22 
23 #define __branch_check__(x, expect, is_constant) ({			\
24 			int ______r;					\
25 			static struct ftrace_likely_data		\
26 				__attribute__((__aligned__(4)))		\
27 				__attribute__((section("_ftrace_annotated_branch"))) \
28 				______f = {				\
29 				.data.func = __func__,			\
30 				.data.file = __FILE__,			\
31 				.data.line = __LINE__,			\
32 			};						\
33 			______r = __builtin_expect(!!(x), expect);	\
34 			ftrace_likely_update(&______f, ______r,		\
35 					     expect, is_constant);	\
36 			______r;					\
37 		})
38 
39 /*
40  * Using __builtin_constant_p(x) to ignore cases where the return
41  * value is always the same.  This idea is taken from a similar patch
42  * written by Daniel Walker.
43  */
44 # ifndef likely
45 #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
46 # endif
47 # ifndef unlikely
48 #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
49 # endif
50 
51 #ifdef CONFIG_PROFILE_ALL_BRANCHES
52 /*
53  * "Define 'is'", Bill Clinton
54  * "Define 'if'", Steven Rostedt
55  */
56 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
57 #define __trace_if(cond) \
58 	if (__builtin_constant_p(!!(cond)) ? !!(cond) :			\
59 	({								\
60 		int ______r;						\
61 		static struct ftrace_branch_data			\
62 			__attribute__((__aligned__(4)))			\
63 			__attribute__((section("_ftrace_branch")))	\
64 			______f = {					\
65 				.func = __func__,			\
66 				.file = __FILE__,			\
67 				.line = __LINE__,			\
68 			};						\
69 		______r = !!(cond);					\
70 		______f.miss_hit[______r]++;					\
71 		______r;						\
72 	}))
73 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
74 
75 #else
76 # define likely(x)	__builtin_expect(!!(x), 1)
77 # define unlikely(x)	__builtin_expect(!!(x), 0)
78 #endif
79 
80 /* Optimization barrier */
81 #ifndef barrier
82 # define barrier() __memory_barrier()
83 #endif
84 
85 #ifndef barrier_data
86 # define barrier_data(ptr) barrier()
87 #endif
88 
89 /* Unreachable code */
90 #ifdef CONFIG_STACK_VALIDATION
91 /*
92  * These macros help objtool understand GCC code flow for unreachable code.
93  * The __COUNTER__ based labels are a hack to make each instance of the macros
94  * unique, to convince GCC not to merge duplicate inline asm statements.
95  */
96 #define annotate_reachable() ({						\
97 	asm volatile("%c0:\n\t"						\
98 		     ".pushsection .discard.reachable\n\t"		\
99 		     ".long %c0b - .\n\t"				\
100 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
101 })
102 #define annotate_unreachable() ({					\
103 	asm volatile("%c0:\n\t"						\
104 		     ".pushsection .discard.unreachable\n\t"		\
105 		     ".long %c0b - .\n\t"				\
106 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
107 })
108 #define ASM_UNREACHABLE							\
109 	"999:\n\t"							\
110 	".pushsection .discard.unreachable\n\t"				\
111 	".long 999b - .\n\t"						\
112 	".popsection\n\t"
113 #else
114 #define annotate_reachable()
115 #define annotate_unreachable()
116 #endif
117 
118 #ifndef ASM_UNREACHABLE
119 # define ASM_UNREACHABLE
120 #endif
121 #ifndef unreachable
122 # define unreachable() do { annotate_reachable(); do { } while (1); } while (0)
123 #endif
124 
125 /*
126  * KENTRY - kernel entry point
127  * This can be used to annotate symbols (functions or data) that are used
128  * without their linker symbol being referenced explicitly. For example,
129  * interrupt vector handlers, or functions in the kernel image that are found
130  * programatically.
131  *
132  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
133  * are handled in their own way (with KEEP() in linker scripts).
134  *
135  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
136  * linker script. For example an architecture could KEEP() its entire
137  * boot/exception vector code rather than annotate each function and data.
138  */
139 #ifndef KENTRY
140 # define KENTRY(sym)						\
141 	extern typeof(sym) sym;					\
142 	static const unsigned long __kentry_##sym		\
143 	__used							\
144 	__attribute__((section("___kentry" "+" #sym ), used))	\
145 	= (unsigned long)&sym;
146 #endif
147 
148 #ifndef RELOC_HIDE
149 # define RELOC_HIDE(ptr, off)					\
150   ({ unsigned long __ptr;					\
151      __ptr = (unsigned long) (ptr);				\
152     (typeof(ptr)) (__ptr + (off)); })
153 #endif
154 
155 #ifndef OPTIMIZER_HIDE_VAR
156 #define OPTIMIZER_HIDE_VAR(var) barrier()
157 #endif
158 
159 /* Not-quite-unique ID. */
160 #ifndef __UNIQUE_ID
161 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
162 #endif
163 
164 #include <uapi/linux/types.h>
165 
166 #define __READ_ONCE_SIZE						\
167 ({									\
168 	switch (size) {							\
169 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\
170 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\
171 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\
172 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\
173 	default:							\
174 		barrier();						\
175 		__builtin_memcpy((void *)res, (const void *)p, size);	\
176 		barrier();						\
177 	}								\
178 })
179 
180 static __always_inline
181 void __read_once_size(const volatile void *p, void *res, int size)
182 {
183 	__READ_ONCE_SIZE;
184 }
185 
186 #ifdef CONFIG_KASAN
187 /*
188  * This function is not 'inline' because __no_sanitize_address confilcts
189  * with inlining. Attempt to inline it may cause a build failure.
190  * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
191  * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
192  */
193 static __no_sanitize_address __maybe_unused
194 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
195 {
196 	__READ_ONCE_SIZE;
197 }
198 #else
199 static __always_inline
200 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
201 {
202 	__READ_ONCE_SIZE;
203 }
204 #endif
205 
206 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
207 {
208 	switch (size) {
209 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
210 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
211 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
212 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
213 	default:
214 		barrier();
215 		__builtin_memcpy((void *)p, (const void *)res, size);
216 		barrier();
217 	}
218 }
219 
220 /*
221  * Prevent the compiler from merging or refetching reads or writes. The
222  * compiler is also forbidden from reordering successive instances of
223  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
224  * compiler is aware of some particular ordering.  One way to make the
225  * compiler aware of ordering is to put the two invocations of READ_ONCE,
226  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
227  *
228  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
229  * data types like structs or unions. If the size of the accessed data
230  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
231  * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at
232  * least two memcpy()s: one for the __builtin_memcpy() and then one for
233  * the macro doing the copy of variable - '__u' allocated on the stack.
234  *
235  * Their two major use cases are: (1) Mediating communication between
236  * process-level code and irq/NMI handlers, all running on the same CPU,
237  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
238  * mutilate accesses that either do not require ordering or that interact
239  * with an explicit memory barrier or atomic instruction that provides the
240  * required ordering.
241  */
242 #include <asm/barrier.h>
243 
244 #define __READ_ONCE(x, check)						\
245 ({									\
246 	union { typeof(x) __val; char __c[1]; } __u;			\
247 	if (check)							\
248 		__read_once_size(&(x), __u.__c, sizeof(x));		\
249 	else								\
250 		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\
251 	smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
252 	__u.__val;							\
253 })
254 #define READ_ONCE(x) __READ_ONCE(x, 1)
255 
256 /*
257  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
258  * to hide memory access from KASAN.
259  */
260 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
261 
262 #define WRITE_ONCE(x, val) \
263 ({							\
264 	union { typeof(x) __val; char __c[1]; } __u =	\
265 		{ .__val = (__force typeof(x)) (val) }; \
266 	__write_once_size(&(x), __u.__c, sizeof(x));	\
267 	__u.__val;					\
268 })
269 
270 #endif /* __KERNEL__ */
271 
272 #endif /* __ASSEMBLY__ */
273 
274 /* Compile time object size, -1 for unknown */
275 #ifndef __compiletime_object_size
276 # define __compiletime_object_size(obj) -1
277 #endif
278 #ifndef __compiletime_warning
279 # define __compiletime_warning(message)
280 #endif
281 #ifndef __compiletime_error
282 # define __compiletime_error(message)
283 /*
284  * Sparse complains of variable sized arrays due to the temporary variable in
285  * __compiletime_assert. Unfortunately we can't just expand it out to make
286  * sparse see a constant array size without breaking compiletime_assert on old
287  * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
288  */
289 # ifndef __CHECKER__
290 #  define __compiletime_error_fallback(condition) \
291 	do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
292 # endif
293 #endif
294 #ifndef __compiletime_error_fallback
295 # define __compiletime_error_fallback(condition) do { } while (0)
296 #endif
297 
298 #ifdef __OPTIMIZE__
299 # define __compiletime_assert(condition, msg, prefix, suffix)		\
300 	do {								\
301 		bool __cond = !(condition);				\
302 		extern void prefix ## suffix(void) __compiletime_error(msg); \
303 		if (__cond)						\
304 			prefix ## suffix();				\
305 		__compiletime_error_fallback(__cond);			\
306 	} while (0)
307 #else
308 # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
309 #endif
310 
311 #define _compiletime_assert(condition, msg, prefix, suffix) \
312 	__compiletime_assert(condition, msg, prefix, suffix)
313 
314 /**
315  * compiletime_assert - break build and emit msg if condition is false
316  * @condition: a compile-time constant condition to check
317  * @msg:       a message to emit if condition is false
318  *
319  * In tradition of POSIX assert, this macro will break the build if the
320  * supplied condition is *false*, emitting the supplied error message if the
321  * compiler has support to do so.
322  */
323 #define compiletime_assert(condition, msg) \
324 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
325 
326 #define compiletime_assert_atomic_type(t)				\
327 	compiletime_assert(__native_word(t),				\
328 		"Need native word sized stores/loads for atomicity.")
329 
330 /*
331  * Prevent the compiler from merging or refetching accesses.  The compiler
332  * is also forbidden from reordering successive instances of ACCESS_ONCE(),
333  * but only when the compiler is aware of some particular ordering.  One way
334  * to make the compiler aware of ordering is to put the two invocations of
335  * ACCESS_ONCE() in different C statements.
336  *
337  * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
338  * on a union member will work as long as the size of the member matches the
339  * size of the union and the size is smaller than word size.
340  *
341  * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
342  * between process-level code and irq/NMI handlers, all running on the same CPU,
343  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
344  * mutilate accesses that either do not require ordering or that interact
345  * with an explicit memory barrier or atomic instruction that provides the
346  * required ordering.
347  *
348  * If possible use READ_ONCE()/WRITE_ONCE() instead.
349  */
350 #define __ACCESS_ONCE(x) ({ \
351 	 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
352 	(volatile typeof(x) *)&(x); })
353 #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
354 
355 #endif /* __LINUX_COMPILER_H */
356