xref: /openbmc/linux/include/linux/compiler.h (revision 2c684d89)
1 #ifndef __LINUX_COMPILER_H
2 #define __LINUX_COMPILER_H
3 
4 #ifndef __ASSEMBLY__
5 
6 #ifdef __CHECKER__
7 # define __user		__attribute__((noderef, address_space(1)))
8 # define __kernel	__attribute__((address_space(0)))
9 # define __safe		__attribute__((safe))
10 # define __force	__attribute__((force))
11 # define __nocast	__attribute__((nocast))
12 # define __iomem	__attribute__((noderef, address_space(2)))
13 # define __must_hold(x)	__attribute__((context(x,1,1)))
14 # define __acquires(x)	__attribute__((context(x,0,1)))
15 # define __releases(x)	__attribute__((context(x,1,0)))
16 # define __acquire(x)	__context__(x,1)
17 # define __release(x)	__context__(x,-1)
18 # define __cond_lock(x,c)	((c) ? ({ __acquire(x); 1; }) : 0)
19 # define __percpu	__attribute__((noderef, address_space(3)))
20 # define __pmem		__attribute__((noderef, address_space(5)))
21 #ifdef CONFIG_SPARSE_RCU_POINTER
22 # define __rcu		__attribute__((noderef, address_space(4)))
23 #else
24 # define __rcu
25 #endif
26 extern void __chk_user_ptr(const volatile void __user *);
27 extern void __chk_io_ptr(const volatile void __iomem *);
28 #else
29 # define __user
30 # define __kernel
31 # define __safe
32 # define __force
33 # define __nocast
34 # define __iomem
35 # define __chk_user_ptr(x) (void)0
36 # define __chk_io_ptr(x) (void)0
37 # define __builtin_warning(x, y...) (1)
38 # define __must_hold(x)
39 # define __acquires(x)
40 # define __releases(x)
41 # define __acquire(x) (void)0
42 # define __release(x) (void)0
43 # define __cond_lock(x,c) (c)
44 # define __percpu
45 # define __rcu
46 # define __pmem
47 #endif
48 
49 /* Indirect macros required for expanded argument pasting, eg. __LINE__. */
50 #define ___PASTE(a,b) a##b
51 #define __PASTE(a,b) ___PASTE(a,b)
52 
53 #ifdef __KERNEL__
54 
55 #ifdef __GNUC__
56 #include <linux/compiler-gcc.h>
57 #endif
58 
59 #if defined(CC_USING_HOTPATCH) && !defined(__CHECKER__)
60 #define notrace __attribute__((hotpatch(0,0)))
61 #else
62 #define notrace __attribute__((no_instrument_function))
63 #endif
64 
65 /* Intel compiler defines __GNUC__. So we will overwrite implementations
66  * coming from above header files here
67  */
68 #ifdef __INTEL_COMPILER
69 # include <linux/compiler-intel.h>
70 #endif
71 
72 /* Clang compiler defines __GNUC__. So we will overwrite implementations
73  * coming from above header files here
74  */
75 #ifdef __clang__
76 #include <linux/compiler-clang.h>
77 #endif
78 
79 /*
80  * Generic compiler-dependent macros required for kernel
81  * build go below this comment. Actual compiler/compiler version
82  * specific implementations come from the above header files
83  */
84 
85 struct ftrace_branch_data {
86 	const char *func;
87 	const char *file;
88 	unsigned line;
89 	union {
90 		struct {
91 			unsigned long correct;
92 			unsigned long incorrect;
93 		};
94 		struct {
95 			unsigned long miss;
96 			unsigned long hit;
97 		};
98 		unsigned long miss_hit[2];
99 	};
100 };
101 
102 /*
103  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
104  * to disable branch tracing on a per file basis.
105  */
106 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
107     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
108 void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect);
109 
110 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
111 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
112 
113 #define __branch_check__(x, expect) ({					\
114 			int ______r;					\
115 			static struct ftrace_branch_data		\
116 				__attribute__((__aligned__(4)))		\
117 				__attribute__((section("_ftrace_annotated_branch"))) \
118 				______f = {				\
119 				.func = __func__,			\
120 				.file = __FILE__,			\
121 				.line = __LINE__,			\
122 			};						\
123 			______r = likely_notrace(x);			\
124 			ftrace_likely_update(&______f, ______r, expect); \
125 			______r;					\
126 		})
127 
128 /*
129  * Using __builtin_constant_p(x) to ignore cases where the return
130  * value is always the same.  This idea is taken from a similar patch
131  * written by Daniel Walker.
132  */
133 # ifndef likely
134 #  define likely(x)	(__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 1))
135 # endif
136 # ifndef unlikely
137 #  define unlikely(x)	(__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 0))
138 # endif
139 
140 #ifdef CONFIG_PROFILE_ALL_BRANCHES
141 /*
142  * "Define 'is'", Bill Clinton
143  * "Define 'if'", Steven Rostedt
144  */
145 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
146 #define __trace_if(cond) \
147 	if (__builtin_constant_p((cond)) ? !!(cond) :			\
148 	({								\
149 		int ______r;						\
150 		static struct ftrace_branch_data			\
151 			__attribute__((__aligned__(4)))			\
152 			__attribute__((section("_ftrace_branch")))	\
153 			______f = {					\
154 				.func = __func__,			\
155 				.file = __FILE__,			\
156 				.line = __LINE__,			\
157 			};						\
158 		______r = !!(cond);					\
159 		______f.miss_hit[______r]++;					\
160 		______r;						\
161 	}))
162 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
163 
164 #else
165 # define likely(x)	__builtin_expect(!!(x), 1)
166 # define unlikely(x)	__builtin_expect(!!(x), 0)
167 #endif
168 
169 /* Optimization barrier */
170 #ifndef barrier
171 # define barrier() __memory_barrier()
172 #endif
173 
174 #ifndef barrier_data
175 # define barrier_data(ptr) barrier()
176 #endif
177 
178 /* Unreachable code */
179 #ifndef unreachable
180 # define unreachable() do { } while (1)
181 #endif
182 
183 #ifndef RELOC_HIDE
184 # define RELOC_HIDE(ptr, off)					\
185   ({ unsigned long __ptr;					\
186      __ptr = (unsigned long) (ptr);				\
187     (typeof(ptr)) (__ptr + (off)); })
188 #endif
189 
190 #ifndef OPTIMIZER_HIDE_VAR
191 #define OPTIMIZER_HIDE_VAR(var) barrier()
192 #endif
193 
194 /* Not-quite-unique ID. */
195 #ifndef __UNIQUE_ID
196 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
197 #endif
198 
199 #include <uapi/linux/types.h>
200 
201 #define __READ_ONCE_SIZE						\
202 ({									\
203 	switch (size) {							\
204 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\
205 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\
206 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\
207 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\
208 	default:							\
209 		barrier();						\
210 		__builtin_memcpy((void *)res, (const void *)p, size);	\
211 		barrier();						\
212 	}								\
213 })
214 
215 static __always_inline
216 void __read_once_size(const volatile void *p, void *res, int size)
217 {
218 	__READ_ONCE_SIZE;
219 }
220 
221 #ifdef CONFIG_KASAN
222 /*
223  * This function is not 'inline' because __no_sanitize_address confilcts
224  * with inlining. Attempt to inline it may cause a build failure.
225  * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
226  * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
227  */
228 static __no_sanitize_address __maybe_unused
229 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
230 {
231 	__READ_ONCE_SIZE;
232 }
233 #else
234 static __always_inline
235 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
236 {
237 	__READ_ONCE_SIZE;
238 }
239 #endif
240 
241 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
242 {
243 	switch (size) {
244 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
245 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
246 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
247 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
248 	default:
249 		barrier();
250 		__builtin_memcpy((void *)p, (const void *)res, size);
251 		barrier();
252 	}
253 }
254 
255 /*
256  * Prevent the compiler from merging or refetching reads or writes. The
257  * compiler is also forbidden from reordering successive instances of
258  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
259  * compiler is aware of some particular ordering.  One way to make the
260  * compiler aware of ordering is to put the two invocations of READ_ONCE,
261  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
262  *
263  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
264  * data types like structs or unions. If the size of the accessed data
265  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
266  * READ_ONCE() and WRITE_ONCE()  will fall back to memcpy and print a
267  * compile-time warning.
268  *
269  * Their two major use cases are: (1) Mediating communication between
270  * process-level code and irq/NMI handlers, all running on the same CPU,
271  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
272  * mutilate accesses that either do not require ordering or that interact
273  * with an explicit memory barrier or atomic instruction that provides the
274  * required ordering.
275  */
276 
277 #define __READ_ONCE(x, check)						\
278 ({									\
279 	union { typeof(x) __val; char __c[1]; } __u;			\
280 	if (check)							\
281 		__read_once_size(&(x), __u.__c, sizeof(x));		\
282 	else								\
283 		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\
284 	__u.__val;							\
285 })
286 #define READ_ONCE(x) __READ_ONCE(x, 1)
287 
288 /*
289  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
290  * to hide memory access from KASAN.
291  */
292 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
293 
294 #define WRITE_ONCE(x, val) \
295 ({							\
296 	union { typeof(x) __val; char __c[1]; } __u =	\
297 		{ .__val = (__force typeof(x)) (val) }; \
298 	__write_once_size(&(x), __u.__c, sizeof(x));	\
299 	__u.__val;					\
300 })
301 
302 #endif /* __KERNEL__ */
303 
304 #endif /* __ASSEMBLY__ */
305 
306 #ifdef __KERNEL__
307 /*
308  * Allow us to mark functions as 'deprecated' and have gcc emit a nice
309  * warning for each use, in hopes of speeding the functions removal.
310  * Usage is:
311  * 		int __deprecated foo(void)
312  */
313 #ifndef __deprecated
314 # define __deprecated		/* unimplemented */
315 #endif
316 
317 #ifdef MODULE
318 #define __deprecated_for_modules __deprecated
319 #else
320 #define __deprecated_for_modules
321 #endif
322 
323 #ifndef __must_check
324 #define __must_check
325 #endif
326 
327 #ifndef CONFIG_ENABLE_MUST_CHECK
328 #undef __must_check
329 #define __must_check
330 #endif
331 #ifndef CONFIG_ENABLE_WARN_DEPRECATED
332 #undef __deprecated
333 #undef __deprecated_for_modules
334 #define __deprecated
335 #define __deprecated_for_modules
336 #endif
337 
338 /*
339  * Allow us to avoid 'defined but not used' warnings on functions and data,
340  * as well as force them to be emitted to the assembly file.
341  *
342  * As of gcc 3.4, static functions that are not marked with attribute((used))
343  * may be elided from the assembly file.  As of gcc 3.4, static data not so
344  * marked will not be elided, but this may change in a future gcc version.
345  *
346  * NOTE: Because distributions shipped with a backported unit-at-a-time
347  * compiler in gcc 3.3, we must define __used to be __attribute__((used))
348  * for gcc >=3.3 instead of 3.4.
349  *
350  * In prior versions of gcc, such functions and data would be emitted, but
351  * would be warned about except with attribute((unused)).
352  *
353  * Mark functions that are referenced only in inline assembly as __used so
354  * the code is emitted even though it appears to be unreferenced.
355  */
356 #ifndef __used
357 # define __used			/* unimplemented */
358 #endif
359 
360 #ifndef __maybe_unused
361 # define __maybe_unused		/* unimplemented */
362 #endif
363 
364 #ifndef __always_unused
365 # define __always_unused	/* unimplemented */
366 #endif
367 
368 #ifndef noinline
369 #define noinline
370 #endif
371 
372 /*
373  * Rather then using noinline to prevent stack consumption, use
374  * noinline_for_stack instead.  For documentation reasons.
375  */
376 #define noinline_for_stack noinline
377 
378 #ifndef __always_inline
379 #define __always_inline inline
380 #endif
381 
382 #endif /* __KERNEL__ */
383 
384 /*
385  * From the GCC manual:
386  *
387  * Many functions do not examine any values except their arguments,
388  * and have no effects except the return value.  Basically this is
389  * just slightly more strict class than the `pure' attribute above,
390  * since function is not allowed to read global memory.
391  *
392  * Note that a function that has pointer arguments and examines the
393  * data pointed to must _not_ be declared `const'.  Likewise, a
394  * function that calls a non-`const' function usually must not be
395  * `const'.  It does not make sense for a `const' function to return
396  * `void'.
397  */
398 #ifndef __attribute_const__
399 # define __attribute_const__	/* unimplemented */
400 #endif
401 
402 /*
403  * Tell gcc if a function is cold. The compiler will assume any path
404  * directly leading to the call is unlikely.
405  */
406 
407 #ifndef __cold
408 #define __cold
409 #endif
410 
411 /* Simple shorthand for a section definition */
412 #ifndef __section
413 # define __section(S) __attribute__ ((__section__(#S)))
414 #endif
415 
416 #ifndef __visible
417 #define __visible
418 #endif
419 
420 /*
421  * Assume alignment of return value.
422  */
423 #ifndef __assume_aligned
424 #define __assume_aligned(a, ...)
425 #endif
426 
427 
428 /* Are two types/vars the same type (ignoring qualifiers)? */
429 #ifndef __same_type
430 # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
431 #endif
432 
433 /* Is this type a native word size -- useful for atomic operations */
434 #ifndef __native_word
435 # define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long))
436 #endif
437 
438 /* Compile time object size, -1 for unknown */
439 #ifndef __compiletime_object_size
440 # define __compiletime_object_size(obj) -1
441 #endif
442 #ifndef __compiletime_warning
443 # define __compiletime_warning(message)
444 #endif
445 #ifndef __compiletime_error
446 # define __compiletime_error(message)
447 /*
448  * Sparse complains of variable sized arrays due to the temporary variable in
449  * __compiletime_assert. Unfortunately we can't just expand it out to make
450  * sparse see a constant array size without breaking compiletime_assert on old
451  * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
452  */
453 # ifndef __CHECKER__
454 #  define __compiletime_error_fallback(condition) \
455 	do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
456 # endif
457 #endif
458 #ifndef __compiletime_error_fallback
459 # define __compiletime_error_fallback(condition) do { } while (0)
460 #endif
461 
462 #define __compiletime_assert(condition, msg, prefix, suffix)		\
463 	do {								\
464 		bool __cond = !(condition);				\
465 		extern void prefix ## suffix(void) __compiletime_error(msg); \
466 		if (__cond)						\
467 			prefix ## suffix();				\
468 		__compiletime_error_fallback(__cond);			\
469 	} while (0)
470 
471 #define _compiletime_assert(condition, msg, prefix, suffix) \
472 	__compiletime_assert(condition, msg, prefix, suffix)
473 
474 /**
475  * compiletime_assert - break build and emit msg if condition is false
476  * @condition: a compile-time constant condition to check
477  * @msg:       a message to emit if condition is false
478  *
479  * In tradition of POSIX assert, this macro will break the build if the
480  * supplied condition is *false*, emitting the supplied error message if the
481  * compiler has support to do so.
482  */
483 #define compiletime_assert(condition, msg) \
484 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
485 
486 #define compiletime_assert_atomic_type(t)				\
487 	compiletime_assert(__native_word(t),				\
488 		"Need native word sized stores/loads for atomicity.")
489 
490 /*
491  * Prevent the compiler from merging or refetching accesses.  The compiler
492  * is also forbidden from reordering successive instances of ACCESS_ONCE(),
493  * but only when the compiler is aware of some particular ordering.  One way
494  * to make the compiler aware of ordering is to put the two invocations of
495  * ACCESS_ONCE() in different C statements.
496  *
497  * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
498  * on a union member will work as long as the size of the member matches the
499  * size of the union and the size is smaller than word size.
500  *
501  * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
502  * between process-level code and irq/NMI handlers, all running on the same CPU,
503  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
504  * mutilate accesses that either do not require ordering or that interact
505  * with an explicit memory barrier or atomic instruction that provides the
506  * required ordering.
507  *
508  * If possible use READ_ONCE()/WRITE_ONCE() instead.
509  */
510 #define __ACCESS_ONCE(x) ({ \
511 	 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
512 	(volatile typeof(x) *)&(x); })
513 #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
514 
515 /**
516  * lockless_dereference() - safely load a pointer for later dereference
517  * @p: The pointer to load
518  *
519  * Similar to rcu_dereference(), but for situations where the pointed-to
520  * object's lifetime is managed by something other than RCU.  That
521  * "something other" might be reference counting or simple immortality.
522  */
523 #define lockless_dereference(p) \
524 ({ \
525 	typeof(p) _________p1 = READ_ONCE(p); \
526 	smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
527 	(_________p1); \
528 })
529 
530 /* Ignore/forbid kprobes attach on very low level functions marked by this attribute: */
531 #ifdef CONFIG_KPROBES
532 # define __kprobes	__attribute__((__section__(".kprobes.text")))
533 # define nokprobe_inline	__always_inline
534 #else
535 # define __kprobes
536 # define nokprobe_inline	inline
537 #endif
538 #endif /* __LINUX_COMPILER_H */
539