xref: /openbmc/linux/include/linux/cgroup-defs.h (revision 965f22bc)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * linux/cgroup-defs.h - basic definitions for cgroup
4  *
5  * This file provides basic type and interface.  Include this file directly
6  * only if necessary to avoid cyclic dependencies.
7  */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10 
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23 
24 #ifdef CONFIG_CGROUPS
25 
26 struct cgroup;
27 struct cgroup_root;
28 struct cgroup_subsys;
29 struct cgroup_taskset;
30 struct kernfs_node;
31 struct kernfs_ops;
32 struct kernfs_open_file;
33 struct seq_file;
34 
35 #define MAX_CGROUP_TYPE_NAMELEN 32
36 #define MAX_CGROUP_ROOT_NAMELEN 64
37 #define MAX_CFTYPE_NAME		64
38 
39 /* define the enumeration of all cgroup subsystems */
40 #define SUBSYS(_x) _x ## _cgrp_id,
41 enum cgroup_subsys_id {
42 #include <linux/cgroup_subsys.h>
43 	CGROUP_SUBSYS_COUNT,
44 };
45 #undef SUBSYS
46 
47 /* bits in struct cgroup_subsys_state flags field */
48 enum {
49 	CSS_NO_REF	= (1 << 0), /* no reference counting for this css */
50 	CSS_ONLINE	= (1 << 1), /* between ->css_online() and ->css_offline() */
51 	CSS_RELEASED	= (1 << 2), /* refcnt reached zero, released */
52 	CSS_VISIBLE	= (1 << 3), /* css is visible to userland */
53 	CSS_DYING	= (1 << 4), /* css is dying */
54 };
55 
56 /* bits in struct cgroup flags field */
57 enum {
58 	/* Control Group requires release notifications to userspace */
59 	CGRP_NOTIFY_ON_RELEASE,
60 	/*
61 	 * Clone the parent's configuration when creating a new child
62 	 * cpuset cgroup.  For historical reasons, this option can be
63 	 * specified at mount time and thus is implemented here.
64 	 */
65 	CGRP_CPUSET_CLONE_CHILDREN,
66 };
67 
68 /* cgroup_root->flags */
69 enum {
70 	CGRP_ROOT_NOPREFIX	= (1 << 1), /* mounted subsystems have no named prefix */
71 	CGRP_ROOT_XATTR		= (1 << 2), /* supports extended attributes */
72 
73 	/*
74 	 * Consider namespaces as delegation boundaries.  If this flag is
75 	 * set, controller specific interface files in a namespace root
76 	 * aren't writeable from inside the namespace.
77 	 */
78 	CGRP_ROOT_NS_DELEGATE	= (1 << 3),
79 
80 	/*
81 	 * Enable cpuset controller in v1 cgroup to use v2 behavior.
82 	 */
83 	CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
84 };
85 
86 /* cftype->flags */
87 enum {
88 	CFTYPE_ONLY_ON_ROOT	= (1 << 0),	/* only create on root cgrp */
89 	CFTYPE_NOT_ON_ROOT	= (1 << 1),	/* don't create on root cgrp */
90 	CFTYPE_NS_DELEGATABLE	= (1 << 2),	/* writeable beyond delegation boundaries */
91 
92 	CFTYPE_NO_PREFIX	= (1 << 3),	/* (DON'T USE FOR NEW FILES) no subsys prefix */
93 	CFTYPE_WORLD_WRITABLE	= (1 << 4),	/* (DON'T USE FOR NEW FILES) S_IWUGO */
94 
95 	/* internal flags, do not use outside cgroup core proper */
96 	__CFTYPE_ONLY_ON_DFL	= (1 << 16),	/* only on default hierarchy */
97 	__CFTYPE_NOT_ON_DFL	= (1 << 17),	/* not on default hierarchy */
98 };
99 
100 /*
101  * cgroup_file is the handle for a file instance created in a cgroup which
102  * is used, for example, to generate file changed notifications.  This can
103  * be obtained by setting cftype->file_offset.
104  */
105 struct cgroup_file {
106 	/* do not access any fields from outside cgroup core */
107 	struct kernfs_node *kn;
108 	unsigned long notified_at;
109 	struct timer_list notify_timer;
110 };
111 
112 /*
113  * Per-subsystem/per-cgroup state maintained by the system.  This is the
114  * fundamental structural building block that controllers deal with.
115  *
116  * Fields marked with "PI:" are public and immutable and may be accessed
117  * directly without synchronization.
118  */
119 struct cgroup_subsys_state {
120 	/* PI: the cgroup that this css is attached to */
121 	struct cgroup *cgroup;
122 
123 	/* PI: the cgroup subsystem that this css is attached to */
124 	struct cgroup_subsys *ss;
125 
126 	/* reference count - access via css_[try]get() and css_put() */
127 	struct percpu_ref refcnt;
128 
129 	/* siblings list anchored at the parent's ->children */
130 	struct list_head sibling;
131 	struct list_head children;
132 
133 	/* flush target list anchored at cgrp->rstat_css_list */
134 	struct list_head rstat_css_node;
135 
136 	/*
137 	 * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
138 	 * matching css can be looked up using css_from_id().
139 	 */
140 	int id;
141 
142 	unsigned int flags;
143 
144 	/*
145 	 * Monotonically increasing unique serial number which defines a
146 	 * uniform order among all csses.  It's guaranteed that all
147 	 * ->children lists are in the ascending order of ->serial_nr and
148 	 * used to allow interrupting and resuming iterations.
149 	 */
150 	u64 serial_nr;
151 
152 	/*
153 	 * Incremented by online self and children.  Used to guarantee that
154 	 * parents are not offlined before their children.
155 	 */
156 	atomic_t online_cnt;
157 
158 	/* percpu_ref killing and RCU release */
159 	struct work_struct destroy_work;
160 	struct rcu_work destroy_rwork;
161 
162 	/*
163 	 * PI: the parent css.	Placed here for cache proximity to following
164 	 * fields of the containing structure.
165 	 */
166 	struct cgroup_subsys_state *parent;
167 };
168 
169 /*
170  * A css_set is a structure holding pointers to a set of
171  * cgroup_subsys_state objects. This saves space in the task struct
172  * object and speeds up fork()/exit(), since a single inc/dec and a
173  * list_add()/del() can bump the reference count on the entire cgroup
174  * set for a task.
175  */
176 struct css_set {
177 	/*
178 	 * Set of subsystem states, one for each subsystem. This array is
179 	 * immutable after creation apart from the init_css_set during
180 	 * subsystem registration (at boot time).
181 	 */
182 	struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
183 
184 	/* reference count */
185 	refcount_t refcount;
186 
187 	/*
188 	 * For a domain cgroup, the following points to self.  If threaded,
189 	 * to the matching cset of the nearest domain ancestor.  The
190 	 * dom_cset provides access to the domain cgroup and its csses to
191 	 * which domain level resource consumptions should be charged.
192 	 */
193 	struct css_set *dom_cset;
194 
195 	/* the default cgroup associated with this css_set */
196 	struct cgroup *dfl_cgrp;
197 
198 	/* internal task count, protected by css_set_lock */
199 	int nr_tasks;
200 
201 	/*
202 	 * Lists running through all tasks using this cgroup group.
203 	 * mg_tasks lists tasks which belong to this cset but are in the
204 	 * process of being migrated out or in.  Protected by
205 	 * css_set_rwsem, but, during migration, once tasks are moved to
206 	 * mg_tasks, it can be read safely while holding cgroup_mutex.
207 	 */
208 	struct list_head tasks;
209 	struct list_head mg_tasks;
210 
211 	/* all css_task_iters currently walking this cset */
212 	struct list_head task_iters;
213 
214 	/*
215 	 * On the default hierarhcy, ->subsys[ssid] may point to a css
216 	 * attached to an ancestor instead of the cgroup this css_set is
217 	 * associated with.  The following node is anchored at
218 	 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
219 	 * iterate through all css's attached to a given cgroup.
220 	 */
221 	struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
222 
223 	/* all threaded csets whose ->dom_cset points to this cset */
224 	struct list_head threaded_csets;
225 	struct list_head threaded_csets_node;
226 
227 	/*
228 	 * List running through all cgroup groups in the same hash
229 	 * slot. Protected by css_set_lock
230 	 */
231 	struct hlist_node hlist;
232 
233 	/*
234 	 * List of cgrp_cset_links pointing at cgroups referenced from this
235 	 * css_set.  Protected by css_set_lock.
236 	 */
237 	struct list_head cgrp_links;
238 
239 	/*
240 	 * List of csets participating in the on-going migration either as
241 	 * source or destination.  Protected by cgroup_mutex.
242 	 */
243 	struct list_head mg_preload_node;
244 	struct list_head mg_node;
245 
246 	/*
247 	 * If this cset is acting as the source of migration the following
248 	 * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
249 	 * respectively the source and destination cgroups of the on-going
250 	 * migration.  mg_dst_cset is the destination cset the target tasks
251 	 * on this cset should be migrated to.  Protected by cgroup_mutex.
252 	 */
253 	struct cgroup *mg_src_cgrp;
254 	struct cgroup *mg_dst_cgrp;
255 	struct css_set *mg_dst_cset;
256 
257 	/* dead and being drained, ignore for migration */
258 	bool dead;
259 
260 	/* For RCU-protected deletion */
261 	struct rcu_head rcu_head;
262 };
263 
264 struct cgroup_base_stat {
265 	struct task_cputime cputime;
266 };
267 
268 /*
269  * rstat - cgroup scalable recursive statistics.  Accounting is done
270  * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
271  * hierarchy on reads.
272  *
273  * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
274  * linked into the updated tree.  On the following read, propagation only
275  * considers and consumes the updated tree.  This makes reading O(the
276  * number of descendants which have been active since last read) instead of
277  * O(the total number of descendants).
278  *
279  * This is important because there can be a lot of (draining) cgroups which
280  * aren't active and stat may be read frequently.  The combination can
281  * become very expensive.  By propagating selectively, increasing reading
282  * frequency decreases the cost of each read.
283  *
284  * This struct hosts both the fields which implement the above -
285  * updated_children and updated_next - and the fields which track basic
286  * resource statistics on top of it - bsync, bstat and last_bstat.
287  */
288 struct cgroup_rstat_cpu {
289 	/*
290 	 * ->bsync protects ->bstat.  These are the only fields which get
291 	 * updated in the hot path.
292 	 */
293 	struct u64_stats_sync bsync;
294 	struct cgroup_base_stat bstat;
295 
296 	/*
297 	 * Snapshots at the last reading.  These are used to calculate the
298 	 * deltas to propagate to the global counters.
299 	 */
300 	struct cgroup_base_stat last_bstat;
301 
302 	/*
303 	 * Child cgroups with stat updates on this cpu since the last read
304 	 * are linked on the parent's ->updated_children through
305 	 * ->updated_next.
306 	 *
307 	 * In addition to being more compact, singly-linked list pointing
308 	 * to the cgroup makes it unnecessary for each per-cpu struct to
309 	 * point back to the associated cgroup.
310 	 *
311 	 * Protected by per-cpu cgroup_rstat_cpu_lock.
312 	 */
313 	struct cgroup *updated_children;	/* terminated by self cgroup */
314 	struct cgroup *updated_next;		/* NULL iff not on the list */
315 };
316 
317 struct cgroup {
318 	/* self css with NULL ->ss, points back to this cgroup */
319 	struct cgroup_subsys_state self;
320 
321 	unsigned long flags;		/* "unsigned long" so bitops work */
322 
323 	/*
324 	 * idr allocated in-hierarchy ID.
325 	 *
326 	 * ID 0 is not used, the ID of the root cgroup is always 1, and a
327 	 * new cgroup will be assigned with a smallest available ID.
328 	 *
329 	 * Allocating/Removing ID must be protected by cgroup_mutex.
330 	 */
331 	int id;
332 
333 	/*
334 	 * The depth this cgroup is at.  The root is at depth zero and each
335 	 * step down the hierarchy increments the level.  This along with
336 	 * ancestor_ids[] can determine whether a given cgroup is a
337 	 * descendant of another without traversing the hierarchy.
338 	 */
339 	int level;
340 
341 	/* Maximum allowed descent tree depth */
342 	int max_depth;
343 
344 	/*
345 	 * Keep track of total numbers of visible and dying descent cgroups.
346 	 * Dying cgroups are cgroups which were deleted by a user,
347 	 * but are still existing because someone else is holding a reference.
348 	 * max_descendants is a maximum allowed number of descent cgroups.
349 	 */
350 	int nr_descendants;
351 	int nr_dying_descendants;
352 	int max_descendants;
353 
354 	/*
355 	 * Each non-empty css_set associated with this cgroup contributes
356 	 * one to nr_populated_csets.  The counter is zero iff this cgroup
357 	 * doesn't have any tasks.
358 	 *
359 	 * All children which have non-zero nr_populated_csets and/or
360 	 * nr_populated_children of their own contribute one to either
361 	 * nr_populated_domain_children or nr_populated_threaded_children
362 	 * depending on their type.  Each counter is zero iff all cgroups
363 	 * of the type in the subtree proper don't have any tasks.
364 	 */
365 	int nr_populated_csets;
366 	int nr_populated_domain_children;
367 	int nr_populated_threaded_children;
368 
369 	int nr_threaded_children;	/* # of live threaded child cgroups */
370 
371 	struct kernfs_node *kn;		/* cgroup kernfs entry */
372 	struct cgroup_file procs_file;	/* handle for "cgroup.procs" */
373 	struct cgroup_file events_file;	/* handle for "cgroup.events" */
374 
375 	/*
376 	 * The bitmask of subsystems enabled on the child cgroups.
377 	 * ->subtree_control is the one configured through
378 	 * "cgroup.subtree_control" while ->child_ss_mask is the effective
379 	 * one which may have more subsystems enabled.  Controller knobs
380 	 * are made available iff it's enabled in ->subtree_control.
381 	 */
382 	u16 subtree_control;
383 	u16 subtree_ss_mask;
384 	u16 old_subtree_control;
385 	u16 old_subtree_ss_mask;
386 
387 	/* Private pointers for each registered subsystem */
388 	struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
389 
390 	struct cgroup_root *root;
391 
392 	/*
393 	 * List of cgrp_cset_links pointing at css_sets with tasks in this
394 	 * cgroup.  Protected by css_set_lock.
395 	 */
396 	struct list_head cset_links;
397 
398 	/*
399 	 * On the default hierarchy, a css_set for a cgroup with some
400 	 * susbsys disabled will point to css's which are associated with
401 	 * the closest ancestor which has the subsys enabled.  The
402 	 * following lists all css_sets which point to this cgroup's css
403 	 * for the given subsystem.
404 	 */
405 	struct list_head e_csets[CGROUP_SUBSYS_COUNT];
406 
407 	/*
408 	 * If !threaded, self.  If threaded, it points to the nearest
409 	 * domain ancestor.  Inside a threaded subtree, cgroups are exempt
410 	 * from process granularity and no-internal-task constraint.
411 	 * Domain level resource consumptions which aren't tied to a
412 	 * specific task are charged to the dom_cgrp.
413 	 */
414 	struct cgroup *dom_cgrp;
415 
416 	/* per-cpu recursive resource statistics */
417 	struct cgroup_rstat_cpu __percpu *rstat_cpu;
418 	struct list_head rstat_css_list;
419 
420 	/* cgroup basic resource statistics */
421 	struct cgroup_base_stat pending_bstat;	/* pending from children */
422 	struct cgroup_base_stat bstat;
423 	struct prev_cputime prev_cputime;	/* for printing out cputime */
424 
425 	/*
426 	 * list of pidlists, up to two for each namespace (one for procs, one
427 	 * for tasks); created on demand.
428 	 */
429 	struct list_head pidlists;
430 	struct mutex pidlist_mutex;
431 
432 	/* used to wait for offlining of csses */
433 	wait_queue_head_t offline_waitq;
434 
435 	/* used to schedule release agent */
436 	struct work_struct release_agent_work;
437 
438 	/* used to store eBPF programs */
439 	struct cgroup_bpf bpf;
440 
441 	/* If there is block congestion on this cgroup. */
442 	atomic_t congestion_count;
443 
444 	/* ids of the ancestors at each level including self */
445 	int ancestor_ids[];
446 };
447 
448 /*
449  * A cgroup_root represents the root of a cgroup hierarchy, and may be
450  * associated with a kernfs_root to form an active hierarchy.  This is
451  * internal to cgroup core.  Don't access directly from controllers.
452  */
453 struct cgroup_root {
454 	struct kernfs_root *kf_root;
455 
456 	/* The bitmask of subsystems attached to this hierarchy */
457 	unsigned int subsys_mask;
458 
459 	/* Unique id for this hierarchy. */
460 	int hierarchy_id;
461 
462 	/* The root cgroup.  Root is destroyed on its release. */
463 	struct cgroup cgrp;
464 
465 	/* for cgrp->ancestor_ids[0] */
466 	int cgrp_ancestor_id_storage;
467 
468 	/* Number of cgroups in the hierarchy, used only for /proc/cgroups */
469 	atomic_t nr_cgrps;
470 
471 	/* A list running through the active hierarchies */
472 	struct list_head root_list;
473 
474 	/* Hierarchy-specific flags */
475 	unsigned int flags;
476 
477 	/* IDs for cgroups in this hierarchy */
478 	struct idr cgroup_idr;
479 
480 	/* The path to use for release notifications. */
481 	char release_agent_path[PATH_MAX];
482 
483 	/* The name for this hierarchy - may be empty */
484 	char name[MAX_CGROUP_ROOT_NAMELEN];
485 };
486 
487 /*
488  * struct cftype: handler definitions for cgroup control files
489  *
490  * When reading/writing to a file:
491  *	- the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
492  *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
493  */
494 struct cftype {
495 	/*
496 	 * By convention, the name should begin with the name of the
497 	 * subsystem, followed by a period.  Zero length string indicates
498 	 * end of cftype array.
499 	 */
500 	char name[MAX_CFTYPE_NAME];
501 	unsigned long private;
502 
503 	/*
504 	 * The maximum length of string, excluding trailing nul, that can
505 	 * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
506 	 */
507 	size_t max_write_len;
508 
509 	/* CFTYPE_* flags */
510 	unsigned int flags;
511 
512 	/*
513 	 * If non-zero, should contain the offset from the start of css to
514 	 * a struct cgroup_file field.  cgroup will record the handle of
515 	 * the created file into it.  The recorded handle can be used as
516 	 * long as the containing css remains accessible.
517 	 */
518 	unsigned int file_offset;
519 
520 	/*
521 	 * Fields used for internal bookkeeping.  Initialized automatically
522 	 * during registration.
523 	 */
524 	struct cgroup_subsys *ss;	/* NULL for cgroup core files */
525 	struct list_head node;		/* anchored at ss->cfts */
526 	struct kernfs_ops *kf_ops;
527 
528 	int (*open)(struct kernfs_open_file *of);
529 	void (*release)(struct kernfs_open_file *of);
530 
531 	/*
532 	 * read_u64() is a shortcut for the common case of returning a
533 	 * single integer. Use it in place of read()
534 	 */
535 	u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
536 	/*
537 	 * read_s64() is a signed version of read_u64()
538 	 */
539 	s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
540 
541 	/* generic seq_file read interface */
542 	int (*seq_show)(struct seq_file *sf, void *v);
543 
544 	/* optional ops, implement all or none */
545 	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
546 	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
547 	void (*seq_stop)(struct seq_file *sf, void *v);
548 
549 	/*
550 	 * write_u64() is a shortcut for the common case of accepting
551 	 * a single integer (as parsed by simple_strtoull) from
552 	 * userspace. Use in place of write(); return 0 or error.
553 	 */
554 	int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
555 			 u64 val);
556 	/*
557 	 * write_s64() is a signed version of write_u64()
558 	 */
559 	int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
560 			 s64 val);
561 
562 	/*
563 	 * write() is the generic write callback which maps directly to
564 	 * kernfs write operation and overrides all other operations.
565 	 * Maximum write size is determined by ->max_write_len.  Use
566 	 * of_css/cft() to access the associated css and cft.
567 	 */
568 	ssize_t (*write)(struct kernfs_open_file *of,
569 			 char *buf, size_t nbytes, loff_t off);
570 
571 #ifdef CONFIG_DEBUG_LOCK_ALLOC
572 	struct lock_class_key	lockdep_key;
573 #endif
574 };
575 
576 /*
577  * Control Group subsystem type.
578  * See Documentation/cgroup-v1/cgroups.txt for details
579  */
580 struct cgroup_subsys {
581 	struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
582 	int (*css_online)(struct cgroup_subsys_state *css);
583 	void (*css_offline)(struct cgroup_subsys_state *css);
584 	void (*css_released)(struct cgroup_subsys_state *css);
585 	void (*css_free)(struct cgroup_subsys_state *css);
586 	void (*css_reset)(struct cgroup_subsys_state *css);
587 	void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
588 	int (*css_extra_stat_show)(struct seq_file *seq,
589 				   struct cgroup_subsys_state *css);
590 
591 	int (*can_attach)(struct cgroup_taskset *tset);
592 	void (*cancel_attach)(struct cgroup_taskset *tset);
593 	void (*attach)(struct cgroup_taskset *tset);
594 	void (*post_attach)(void);
595 	int (*can_fork)(struct task_struct *task);
596 	void (*cancel_fork)(struct task_struct *task);
597 	void (*fork)(struct task_struct *task);
598 	void (*exit)(struct task_struct *task);
599 	void (*free)(struct task_struct *task);
600 	void (*bind)(struct cgroup_subsys_state *root_css);
601 
602 	bool early_init:1;
603 
604 	/*
605 	 * If %true, the controller, on the default hierarchy, doesn't show
606 	 * up in "cgroup.controllers" or "cgroup.subtree_control", is
607 	 * implicitly enabled on all cgroups on the default hierarchy, and
608 	 * bypasses the "no internal process" constraint.  This is for
609 	 * utility type controllers which is transparent to userland.
610 	 *
611 	 * An implicit controller can be stolen from the default hierarchy
612 	 * anytime and thus must be okay with offline csses from previous
613 	 * hierarchies coexisting with csses for the current one.
614 	 */
615 	bool implicit_on_dfl:1;
616 
617 	/*
618 	 * If %true, the controller, supports threaded mode on the default
619 	 * hierarchy.  In a threaded subtree, both process granularity and
620 	 * no-internal-process constraint are ignored and a threaded
621 	 * controllers should be able to handle that.
622 	 *
623 	 * Note that as an implicit controller is automatically enabled on
624 	 * all cgroups on the default hierarchy, it should also be
625 	 * threaded.  implicit && !threaded is not supported.
626 	 */
627 	bool threaded:1;
628 
629 	/*
630 	 * If %false, this subsystem is properly hierarchical -
631 	 * configuration, resource accounting and restriction on a parent
632 	 * cgroup cover those of its children.  If %true, hierarchy support
633 	 * is broken in some ways - some subsystems ignore hierarchy
634 	 * completely while others are only implemented half-way.
635 	 *
636 	 * It's now disallowed to create nested cgroups if the subsystem is
637 	 * broken and cgroup core will emit a warning message on such
638 	 * cases.  Eventually, all subsystems will be made properly
639 	 * hierarchical and this will go away.
640 	 */
641 	bool broken_hierarchy:1;
642 	bool warned_broken_hierarchy:1;
643 
644 	/* the following two fields are initialized automtically during boot */
645 	int id;
646 	const char *name;
647 
648 	/* optional, initialized automatically during boot if not set */
649 	const char *legacy_name;
650 
651 	/* link to parent, protected by cgroup_lock() */
652 	struct cgroup_root *root;
653 
654 	/* idr for css->id */
655 	struct idr css_idr;
656 
657 	/*
658 	 * List of cftypes.  Each entry is the first entry of an array
659 	 * terminated by zero length name.
660 	 */
661 	struct list_head cfts;
662 
663 	/*
664 	 * Base cftypes which are automatically registered.  The two can
665 	 * point to the same array.
666 	 */
667 	struct cftype *dfl_cftypes;	/* for the default hierarchy */
668 	struct cftype *legacy_cftypes;	/* for the legacy hierarchies */
669 
670 	/*
671 	 * A subsystem may depend on other subsystems.  When such subsystem
672 	 * is enabled on a cgroup, the depended-upon subsystems are enabled
673 	 * together if available.  Subsystems enabled due to dependency are
674 	 * not visible to userland until explicitly enabled.  The following
675 	 * specifies the mask of subsystems that this one depends on.
676 	 */
677 	unsigned int depends_on;
678 };
679 
680 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
681 
682 /**
683  * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
684  * @tsk: target task
685  *
686  * Allows cgroup operations to synchronize against threadgroup changes
687  * using a percpu_rw_semaphore.
688  */
689 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
690 {
691 	percpu_down_read(&cgroup_threadgroup_rwsem);
692 }
693 
694 /**
695  * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
696  * @tsk: target task
697  *
698  * Counterpart of cgroup_threadcgroup_change_begin().
699  */
700 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
701 {
702 	percpu_up_read(&cgroup_threadgroup_rwsem);
703 }
704 
705 #else	/* CONFIG_CGROUPS */
706 
707 #define CGROUP_SUBSYS_COUNT 0
708 
709 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
710 {
711 	might_sleep();
712 }
713 
714 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
715 
716 #endif	/* CONFIG_CGROUPS */
717 
718 #ifdef CONFIG_SOCK_CGROUP_DATA
719 
720 /*
721  * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
722  * per-socket cgroup information except for memcg association.
723  *
724  * On legacy hierarchies, net_prio and net_cls controllers directly set
725  * attributes on each sock which can then be tested by the network layer.
726  * On the default hierarchy, each sock is associated with the cgroup it was
727  * created in and the networking layer can match the cgroup directly.
728  *
729  * To avoid carrying all three cgroup related fields separately in sock,
730  * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
731  * On boot, sock_cgroup_data records the cgroup that the sock was created
732  * in so that cgroup2 matches can be made; however, once either net_prio or
733  * net_cls starts being used, the area is overriden to carry prioidx and/or
734  * classid.  The two modes are distinguished by whether the lowest bit is
735  * set.  Clear bit indicates cgroup pointer while set bit prioidx and
736  * classid.
737  *
738  * While userland may start using net_prio or net_cls at any time, once
739  * either is used, cgroup2 matching no longer works.  There is no reason to
740  * mix the two and this is in line with how legacy and v2 compatibility is
741  * handled.  On mode switch, cgroup references which are already being
742  * pointed to by socks may be leaked.  While this can be remedied by adding
743  * synchronization around sock_cgroup_data, given that the number of leaked
744  * cgroups is bound and highly unlikely to be high, this seems to be the
745  * better trade-off.
746  */
747 struct sock_cgroup_data {
748 	union {
749 #ifdef __LITTLE_ENDIAN
750 		struct {
751 			u8	is_data;
752 			u8	padding;
753 			u16	prioidx;
754 			u32	classid;
755 		} __packed;
756 #else
757 		struct {
758 			u32	classid;
759 			u16	prioidx;
760 			u8	padding;
761 			u8	is_data;
762 		} __packed;
763 #endif
764 		u64		val;
765 	};
766 };
767 
768 /*
769  * There's a theoretical window where the following accessors race with
770  * updaters and return part of the previous pointer as the prioidx or
771  * classid.  Such races are short-lived and the result isn't critical.
772  */
773 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
774 {
775 	/* fallback to 1 which is always the ID of the root cgroup */
776 	return (skcd->is_data & 1) ? skcd->prioidx : 1;
777 }
778 
779 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
780 {
781 	/* fallback to 0 which is the unconfigured default classid */
782 	return (skcd->is_data & 1) ? skcd->classid : 0;
783 }
784 
785 /*
786  * If invoked concurrently, the updaters may clobber each other.  The
787  * caller is responsible for synchronization.
788  */
789 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
790 					   u16 prioidx)
791 {
792 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
793 
794 	if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
795 		return;
796 
797 	if (!(skcd_buf.is_data & 1)) {
798 		skcd_buf.val = 0;
799 		skcd_buf.is_data = 1;
800 	}
801 
802 	skcd_buf.prioidx = prioidx;
803 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
804 }
805 
806 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
807 					   u32 classid)
808 {
809 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
810 
811 	if (sock_cgroup_classid(&skcd_buf) == classid)
812 		return;
813 
814 	if (!(skcd_buf.is_data & 1)) {
815 		skcd_buf.val = 0;
816 		skcd_buf.is_data = 1;
817 	}
818 
819 	skcd_buf.classid = classid;
820 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
821 }
822 
823 #else	/* CONFIG_SOCK_CGROUP_DATA */
824 
825 struct sock_cgroup_data {
826 };
827 
828 #endif	/* CONFIG_SOCK_CGROUP_DATA */
829 
830 #endif	/* _LINUX_CGROUP_DEFS_H */
831