xref: /openbmc/linux/include/linux/blkdev.h (revision 89cc9abe)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 
28 struct module;
29 struct request_queue;
30 struct elevator_queue;
31 struct blk_trace;
32 struct request;
33 struct sg_io_hdr;
34 struct blkcg_gq;
35 struct blk_flush_queue;
36 struct kiocb;
37 struct pr_ops;
38 struct rq_qos;
39 struct blk_queue_stats;
40 struct blk_stat_callback;
41 struct blk_crypto_profile;
42 
43 extern const struct device_type disk_type;
44 extern struct device_type part_type;
45 extern struct class block_class;
46 
47 /* Must be consistent with blk_mq_poll_stats_bkt() */
48 #define BLK_MQ_POLL_STATS_BKTS 16
49 
50 /* Doing classic polling */
51 #define BLK_MQ_POLL_CLASSIC -1
52 
53 /*
54  * Maximum number of blkcg policies allowed to be registered concurrently.
55  * Defined here to simplify include dependency.
56  */
57 #define BLKCG_MAX_POLS		6
58 
59 #define DISK_MAX_PARTS			256
60 #define DISK_NAME_LEN			32
61 
62 #define PARTITION_META_INFO_VOLNAMELTH	64
63 /*
64  * Enough for the string representation of any kind of UUID plus NULL.
65  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
66  */
67 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
68 
69 struct partition_meta_info {
70 	char uuid[PARTITION_META_INFO_UUIDLTH];
71 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
72 };
73 
74 /**
75  * DOC: genhd capability flags
76  *
77  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
78  * removable media.  When set, the device remains present even when media is not
79  * inserted.  Shall not be set for devices which are removed entirely when the
80  * media is removed.
81  *
82  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
83  * doesn't appear in sysfs, and can't be opened from userspace or using
84  * blkdev_get*. Used for the underlying components of multipath devices.
85  *
86  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
87  * scan for partitions from add_disk, and users can't add partitions manually.
88  *
89  */
90 enum {
91 	GENHD_FL_REMOVABLE			= 1 << 0,
92 	GENHD_FL_HIDDEN				= 1 << 1,
93 	GENHD_FL_NO_PART			= 1 << 2,
94 };
95 
96 enum {
97 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
98 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
99 };
100 
101 enum {
102 	/* Poll even if events_poll_msecs is unset */
103 	DISK_EVENT_FLAG_POLL			= 1 << 0,
104 	/* Forward events to udev */
105 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
106 	/* Block event polling when open for exclusive write */
107 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
108 };
109 
110 struct disk_events;
111 struct badblocks;
112 
113 struct blk_integrity {
114 	const struct blk_integrity_profile	*profile;
115 	unsigned char				flags;
116 	unsigned char				tuple_size;
117 	unsigned char				interval_exp;
118 	unsigned char				tag_size;
119 };
120 
121 struct gendisk {
122 	/*
123 	 * major/first_minor/minors should not be set by any new driver, the
124 	 * block core will take care of allocating them automatically.
125 	 */
126 	int major;
127 	int first_minor;
128 	int minors;
129 
130 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
131 
132 	unsigned short events;		/* supported events */
133 	unsigned short event_flags;	/* flags related to event processing */
134 
135 	struct xarray part_tbl;
136 	struct block_device *part0;
137 
138 	const struct block_device_operations *fops;
139 	struct request_queue *queue;
140 	void *private_data;
141 
142 	struct bio_set bio_split;
143 
144 	int flags;
145 	unsigned long state;
146 #define GD_NEED_PART_SCAN		0
147 #define GD_READ_ONLY			1
148 #define GD_DEAD				2
149 #define GD_NATIVE_CAPACITY		3
150 #define GD_ADDED			4
151 #define GD_SUPPRESS_PART_SCAN		5
152 #define GD_OWNS_QUEUE			6
153 
154 	struct mutex open_mutex;	/* open/close mutex */
155 	unsigned open_partitions;	/* number of open partitions */
156 
157 	struct backing_dev_info	*bdi;
158 	struct kobject queue_kobj;	/* the queue/ directory */
159 	struct kobject *slave_dir;
160 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
161 	struct list_head slave_bdevs;
162 #endif
163 	struct timer_rand_state *random;
164 	atomic_t sync_io;		/* RAID */
165 	struct disk_events *ev;
166 #ifdef  CONFIG_BLK_DEV_INTEGRITY
167 	struct kobject integrity_kobj;
168 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
169 
170 #ifdef CONFIG_BLK_DEV_ZONED
171 	/*
172 	 * Zoned block device information for request dispatch control.
173 	 * nr_zones is the total number of zones of the device. This is always
174 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
175 	 * bits which indicates if a zone is conventional (bit set) or
176 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
177 	 * bits which indicates if a zone is write locked, that is, if a write
178 	 * request targeting the zone was dispatched.
179 	 *
180 	 * Reads of this information must be protected with blk_queue_enter() /
181 	 * blk_queue_exit(). Modifying this information is only allowed while
182 	 * no requests are being processed. See also blk_mq_freeze_queue() and
183 	 * blk_mq_unfreeze_queue().
184 	 */
185 	unsigned int		nr_zones;
186 	unsigned int		max_open_zones;
187 	unsigned int		max_active_zones;
188 	unsigned long		*conv_zones_bitmap;
189 	unsigned long		*seq_zones_wlock;
190 #endif /* CONFIG_BLK_DEV_ZONED */
191 
192 #if IS_ENABLED(CONFIG_CDROM)
193 	struct cdrom_device_info *cdi;
194 #endif
195 	int node_id;
196 	struct badblocks *bb;
197 	struct lockdep_map lockdep_map;
198 	u64 diskseq;
199 
200 	/*
201 	 * Independent sector access ranges. This is always NULL for
202 	 * devices that do not have multiple independent access ranges.
203 	 */
204 	struct blk_independent_access_ranges *ia_ranges;
205 };
206 
207 static inline bool disk_live(struct gendisk *disk)
208 {
209 	return !inode_unhashed(disk->part0->bd_inode);
210 }
211 
212 /**
213  * disk_openers - returns how many openers are there for a disk
214  * @disk: disk to check
215  *
216  * This returns the number of openers for a disk.  Note that this value is only
217  * stable if disk->open_mutex is held.
218  *
219  * Note: Due to a quirk in the block layer open code, each open partition is
220  * only counted once even if there are multiple openers.
221  */
222 static inline unsigned int disk_openers(struct gendisk *disk)
223 {
224 	return atomic_read(&disk->part0->bd_openers);
225 }
226 
227 /*
228  * The gendisk is refcounted by the part0 block_device, and the bd_device
229  * therein is also used for device model presentation in sysfs.
230  */
231 #define dev_to_disk(device) \
232 	(dev_to_bdev(device)->bd_disk)
233 #define disk_to_dev(disk) \
234 	(&((disk)->part0->bd_device))
235 
236 #if IS_REACHABLE(CONFIG_CDROM)
237 #define disk_to_cdi(disk)	((disk)->cdi)
238 #else
239 #define disk_to_cdi(disk)	NULL
240 #endif
241 
242 static inline dev_t disk_devt(struct gendisk *disk)
243 {
244 	return MKDEV(disk->major, disk->first_minor);
245 }
246 
247 static inline int blk_validate_block_size(unsigned long bsize)
248 {
249 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
250 		return -EINVAL;
251 
252 	return 0;
253 }
254 
255 static inline bool blk_op_is_passthrough(blk_opf_t op)
256 {
257 	op &= REQ_OP_MASK;
258 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
259 }
260 
261 /*
262  * Zoned block device models (zoned limit).
263  *
264  * Note: This needs to be ordered from the least to the most severe
265  * restrictions for the inheritance in blk_stack_limits() to work.
266  */
267 enum blk_zoned_model {
268 	BLK_ZONED_NONE = 0,	/* Regular block device */
269 	BLK_ZONED_HA,		/* Host-aware zoned block device */
270 	BLK_ZONED_HM,		/* Host-managed zoned block device */
271 };
272 
273 /*
274  * BLK_BOUNCE_NONE:	never bounce (default)
275  * BLK_BOUNCE_HIGH:	bounce all highmem pages
276  */
277 enum blk_bounce {
278 	BLK_BOUNCE_NONE,
279 	BLK_BOUNCE_HIGH,
280 };
281 
282 struct queue_limits {
283 	enum blk_bounce		bounce;
284 	unsigned long		seg_boundary_mask;
285 	unsigned long		virt_boundary_mask;
286 
287 	unsigned int		max_hw_sectors;
288 	unsigned int		max_dev_sectors;
289 	unsigned int		chunk_sectors;
290 	unsigned int		max_sectors;
291 	unsigned int		max_user_sectors;
292 	unsigned int		max_segment_size;
293 	unsigned int		physical_block_size;
294 	unsigned int		logical_block_size;
295 	unsigned int		alignment_offset;
296 	unsigned int		io_min;
297 	unsigned int		io_opt;
298 	unsigned int		max_discard_sectors;
299 	unsigned int		max_hw_discard_sectors;
300 	unsigned int		max_secure_erase_sectors;
301 	unsigned int		max_write_zeroes_sectors;
302 	unsigned int		max_zone_append_sectors;
303 	unsigned int		discard_granularity;
304 	unsigned int		discard_alignment;
305 	unsigned int		zone_write_granularity;
306 
307 	unsigned short		max_segments;
308 	unsigned short		max_integrity_segments;
309 	unsigned short		max_discard_segments;
310 
311 	unsigned char		misaligned;
312 	unsigned char		discard_misaligned;
313 	unsigned char		raid_partial_stripes_expensive;
314 	enum blk_zoned_model	zoned;
315 
316 	/*
317 	 * Drivers that set dma_alignment to less than 511 must be prepared to
318 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
319 	 * due to possible offsets.
320 	 */
321 	unsigned int		dma_alignment;
322 };
323 
324 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
325 			       void *data);
326 
327 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
328 
329 #ifdef CONFIG_BLK_DEV_ZONED
330 
331 #define BLK_ALL_ZONES  ((unsigned int)-1)
332 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
333 			unsigned int nr_zones, report_zones_cb cb, void *data);
334 unsigned int bdev_nr_zones(struct block_device *bdev);
335 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
336 			    sector_t sectors, sector_t nr_sectors,
337 			    gfp_t gfp_mask);
338 int blk_revalidate_disk_zones(struct gendisk *disk,
339 			      void (*update_driver_data)(struct gendisk *disk));
340 
341 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
342 				     unsigned int cmd, unsigned long arg);
343 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
344 				  unsigned int cmd, unsigned long arg);
345 
346 #else /* CONFIG_BLK_DEV_ZONED */
347 
348 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
349 {
350 	return 0;
351 }
352 
353 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
354 					    fmode_t mode, unsigned int cmd,
355 					    unsigned long arg)
356 {
357 	return -ENOTTY;
358 }
359 
360 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
361 					 fmode_t mode, unsigned int cmd,
362 					 unsigned long arg)
363 {
364 	return -ENOTTY;
365 }
366 
367 #endif /* CONFIG_BLK_DEV_ZONED */
368 
369 /*
370  * Independent access ranges: struct blk_independent_access_range describes
371  * a range of contiguous sectors that can be accessed using device command
372  * execution resources that are independent from the resources used for
373  * other access ranges. This is typically found with single-LUN multi-actuator
374  * HDDs where each access range is served by a different set of heads.
375  * The set of independent ranges supported by the device is defined using
376  * struct blk_independent_access_ranges. The independent ranges must not overlap
377  * and must include all sectors within the disk capacity (no sector holes
378  * allowed).
379  * For a device with multiple ranges, requests targeting sectors in different
380  * ranges can be executed in parallel. A request can straddle an access range
381  * boundary.
382  */
383 struct blk_independent_access_range {
384 	struct kobject		kobj;
385 	sector_t		sector;
386 	sector_t		nr_sectors;
387 };
388 
389 struct blk_independent_access_ranges {
390 	struct kobject				kobj;
391 	bool					sysfs_registered;
392 	unsigned int				nr_ia_ranges;
393 	struct blk_independent_access_range	ia_range[];
394 };
395 
396 struct request_queue {
397 	struct request		*last_merge;
398 	struct elevator_queue	*elevator;
399 
400 	struct percpu_ref	q_usage_counter;
401 
402 	struct blk_queue_stats	*stats;
403 	struct rq_qos		*rq_qos;
404 
405 	const struct blk_mq_ops	*mq_ops;
406 
407 	/* sw queues */
408 	struct blk_mq_ctx __percpu	*queue_ctx;
409 
410 	unsigned int		queue_depth;
411 
412 	/* hw dispatch queues */
413 	struct xarray		hctx_table;
414 	unsigned int		nr_hw_queues;
415 
416 	/*
417 	 * The queue owner gets to use this for whatever they like.
418 	 * ll_rw_blk doesn't touch it.
419 	 */
420 	void			*queuedata;
421 
422 	/*
423 	 * various queue flags, see QUEUE_* below
424 	 */
425 	unsigned long		queue_flags;
426 	/*
427 	 * Number of contexts that have called blk_set_pm_only(). If this
428 	 * counter is above zero then only RQF_PM requests are processed.
429 	 */
430 	atomic_t		pm_only;
431 
432 	/*
433 	 * ida allocated id for this queue.  Used to index queues from
434 	 * ioctx.
435 	 */
436 	int			id;
437 
438 	spinlock_t		queue_lock;
439 
440 	struct gendisk		*disk;
441 
442 	refcount_t		refs;
443 
444 	/*
445 	 * mq queue kobject
446 	 */
447 	struct kobject *mq_kobj;
448 
449 #ifdef  CONFIG_BLK_DEV_INTEGRITY
450 	struct blk_integrity integrity;
451 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
452 
453 #ifdef CONFIG_PM
454 	struct device		*dev;
455 	enum rpm_status		rpm_status;
456 #endif
457 
458 	/*
459 	 * queue settings
460 	 */
461 	unsigned long		nr_requests;	/* Max # of requests */
462 
463 	unsigned int		dma_pad_mask;
464 
465 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
466 	struct blk_crypto_profile *crypto_profile;
467 	struct kobject *crypto_kobject;
468 #endif
469 
470 	unsigned int		rq_timeout;
471 	int			poll_nsec;
472 
473 	struct blk_stat_callback	*poll_cb;
474 	struct blk_rq_stat	*poll_stat;
475 
476 	struct timer_list	timeout;
477 	struct work_struct	timeout_work;
478 
479 	atomic_t		nr_active_requests_shared_tags;
480 
481 	struct blk_mq_tags	*sched_shared_tags;
482 
483 	struct list_head	icq_list;
484 #ifdef CONFIG_BLK_CGROUP
485 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
486 	struct blkcg_gq		*root_blkg;
487 	struct list_head	blkg_list;
488 	struct mutex		blkcg_mutex;
489 #endif
490 
491 	struct queue_limits	limits;
492 
493 	unsigned int		required_elevator_features;
494 
495 	int			node;
496 #ifdef CONFIG_BLK_DEV_IO_TRACE
497 	struct blk_trace __rcu	*blk_trace;
498 #endif
499 	/*
500 	 * for flush operations
501 	 */
502 	struct blk_flush_queue	*fq;
503 
504 	struct list_head	requeue_list;
505 	spinlock_t		requeue_lock;
506 	struct delayed_work	requeue_work;
507 
508 	struct mutex		sysfs_lock;
509 	struct mutex		sysfs_dir_lock;
510 
511 	/*
512 	 * for reusing dead hctx instance in case of updating
513 	 * nr_hw_queues
514 	 */
515 	struct list_head	unused_hctx_list;
516 	spinlock_t		unused_hctx_lock;
517 
518 	int			mq_freeze_depth;
519 
520 #ifdef CONFIG_BLK_DEV_THROTTLING
521 	/* Throttle data */
522 	struct throtl_data *td;
523 #endif
524 	struct rcu_head		rcu_head;
525 	wait_queue_head_t	mq_freeze_wq;
526 	/*
527 	 * Protect concurrent access to q_usage_counter by
528 	 * percpu_ref_kill() and percpu_ref_reinit().
529 	 */
530 	struct mutex		mq_freeze_lock;
531 
532 	int			quiesce_depth;
533 
534 	struct blk_mq_tag_set	*tag_set;
535 	struct list_head	tag_set_list;
536 
537 	struct dentry		*debugfs_dir;
538 	struct dentry		*sched_debugfs_dir;
539 	struct dentry		*rqos_debugfs_dir;
540 	/*
541 	 * Serializes all debugfs metadata operations using the above dentries.
542 	 */
543 	struct mutex		debugfs_mutex;
544 
545 	bool			mq_sysfs_init_done;
546 };
547 
548 /* Keep blk_queue_flag_name[] in sync with the definitions below */
549 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
550 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
551 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
552 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
553 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
554 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
555 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
556 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
557 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
558 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
559 #define QUEUE_FLAG_SYNCHRONOUS	11	/* always completes in submit context */
560 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
561 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
562 #define QUEUE_FLAG_STABLE_WRITES 15	/* don't modify blks until WB is done */
563 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
564 #define QUEUE_FLAG_WC		17	/* Write back caching */
565 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
566 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
567 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
568 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
569 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
570 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
571 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
572 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
573 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
574 #define QUEUE_FLAG_NOWAIT       29	/* device supports NOWAIT */
575 #define QUEUE_FLAG_SQ_SCHED     30	/* single queue style io dispatch */
576 #define QUEUE_FLAG_SKIP_TAGSET_QUIESCE	31 /* quiesce_tagset skip the queue*/
577 
578 #define QUEUE_FLAG_MQ_DEFAULT	((1UL << QUEUE_FLAG_IO_STAT) |		\
579 				 (1UL << QUEUE_FLAG_SAME_COMP) |	\
580 				 (1UL << QUEUE_FLAG_NOWAIT))
581 
582 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
583 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
584 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
585 
586 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
587 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
588 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
589 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
590 #define blk_queue_noxmerges(q)	\
591 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
592 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
593 #define blk_queue_stable_writes(q) \
594 	test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
595 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
596 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
597 #define blk_queue_zone_resetall(q)	\
598 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
599 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
600 #define blk_queue_pci_p2pdma(q)	\
601 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
602 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
603 #define blk_queue_rq_alloc_time(q)	\
604 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
605 #else
606 #define blk_queue_rq_alloc_time(q)	false
607 #endif
608 
609 #define blk_noretry_request(rq) \
610 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
611 			     REQ_FAILFAST_DRIVER))
612 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
613 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
614 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
615 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
616 #define blk_queue_skip_tagset_quiesce(q) \
617 	test_bit(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, &(q)->queue_flags)
618 
619 extern void blk_set_pm_only(struct request_queue *q);
620 extern void blk_clear_pm_only(struct request_queue *q);
621 
622 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
623 
624 #define dma_map_bvec(dev, bv, dir, attrs) \
625 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
626 	(dir), (attrs))
627 
628 static inline bool queue_is_mq(struct request_queue *q)
629 {
630 	return q->mq_ops;
631 }
632 
633 #ifdef CONFIG_PM
634 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
635 {
636 	return q->rpm_status;
637 }
638 #else
639 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
640 {
641 	return RPM_ACTIVE;
642 }
643 #endif
644 
645 static inline enum blk_zoned_model
646 blk_queue_zoned_model(struct request_queue *q)
647 {
648 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
649 		return q->limits.zoned;
650 	return BLK_ZONED_NONE;
651 }
652 
653 static inline bool blk_queue_is_zoned(struct request_queue *q)
654 {
655 	switch (blk_queue_zoned_model(q)) {
656 	case BLK_ZONED_HA:
657 	case BLK_ZONED_HM:
658 		return true;
659 	default:
660 		return false;
661 	}
662 }
663 
664 #ifdef CONFIG_BLK_DEV_ZONED
665 static inline unsigned int disk_nr_zones(struct gendisk *disk)
666 {
667 	return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0;
668 }
669 
670 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
671 {
672 	if (!blk_queue_is_zoned(disk->queue))
673 		return 0;
674 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
675 }
676 
677 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
678 {
679 	if (!blk_queue_is_zoned(disk->queue))
680 		return false;
681 	if (!disk->conv_zones_bitmap)
682 		return true;
683 	return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap);
684 }
685 
686 static inline void disk_set_max_open_zones(struct gendisk *disk,
687 		unsigned int max_open_zones)
688 {
689 	disk->max_open_zones = max_open_zones;
690 }
691 
692 static inline void disk_set_max_active_zones(struct gendisk *disk,
693 		unsigned int max_active_zones)
694 {
695 	disk->max_active_zones = max_active_zones;
696 }
697 
698 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
699 {
700 	return bdev->bd_disk->max_open_zones;
701 }
702 
703 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
704 {
705 	return bdev->bd_disk->max_active_zones;
706 }
707 
708 #else /* CONFIG_BLK_DEV_ZONED */
709 static inline unsigned int disk_nr_zones(struct gendisk *disk)
710 {
711 	return 0;
712 }
713 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
714 {
715 	return false;
716 }
717 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
718 {
719 	return 0;
720 }
721 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
722 {
723 	return 0;
724 }
725 
726 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
727 {
728 	return 0;
729 }
730 #endif /* CONFIG_BLK_DEV_ZONED */
731 
732 static inline unsigned int blk_queue_depth(struct request_queue *q)
733 {
734 	if (q->queue_depth)
735 		return q->queue_depth;
736 
737 	return q->nr_requests;
738 }
739 
740 /*
741  * default timeout for SG_IO if none specified
742  */
743 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
744 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
745 
746 /* This should not be used directly - use rq_for_each_segment */
747 #define for_each_bio(_bio)		\
748 	for (; _bio; _bio = _bio->bi_next)
749 
750 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
751 				 const struct attribute_group **groups);
752 static inline int __must_check add_disk(struct gendisk *disk)
753 {
754 	return device_add_disk(NULL, disk, NULL);
755 }
756 void del_gendisk(struct gendisk *gp);
757 void invalidate_disk(struct gendisk *disk);
758 void set_disk_ro(struct gendisk *disk, bool read_only);
759 void disk_uevent(struct gendisk *disk, enum kobject_action action);
760 
761 static inline int get_disk_ro(struct gendisk *disk)
762 {
763 	return disk->part0->bd_read_only ||
764 		test_bit(GD_READ_ONLY, &disk->state);
765 }
766 
767 static inline int bdev_read_only(struct block_device *bdev)
768 {
769 	return bdev->bd_read_only || get_disk_ro(bdev->bd_disk);
770 }
771 
772 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
773 bool disk_force_media_change(struct gendisk *disk, unsigned int events);
774 
775 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
776 void rand_initialize_disk(struct gendisk *disk);
777 
778 static inline sector_t get_start_sect(struct block_device *bdev)
779 {
780 	return bdev->bd_start_sect;
781 }
782 
783 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
784 {
785 	return bdev->bd_nr_sectors;
786 }
787 
788 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
789 {
790 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
791 }
792 
793 static inline sector_t get_capacity(struct gendisk *disk)
794 {
795 	return bdev_nr_sectors(disk->part0);
796 }
797 
798 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
799 {
800 	return bdev_nr_sectors(sb->s_bdev) >>
801 		(sb->s_blocksize_bits - SECTOR_SHIFT);
802 }
803 
804 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
805 
806 void put_disk(struct gendisk *disk);
807 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass);
808 
809 /**
810  * blk_alloc_disk - allocate a gendisk structure
811  * @node_id: numa node to allocate on
812  *
813  * Allocate and pre-initialize a gendisk structure for use with BIO based
814  * drivers.
815  *
816  * Context: can sleep
817  */
818 #define blk_alloc_disk(node_id)						\
819 ({									\
820 	static struct lock_class_key __key;				\
821 									\
822 	__blk_alloc_disk(node_id, &__key);				\
823 })
824 
825 int __register_blkdev(unsigned int major, const char *name,
826 		void (*probe)(dev_t devt));
827 #define register_blkdev(major, name) \
828 	__register_blkdev(major, name, NULL)
829 void unregister_blkdev(unsigned int major, const char *name);
830 
831 bool bdev_check_media_change(struct block_device *bdev);
832 int __invalidate_device(struct block_device *bdev, bool kill_dirty);
833 void set_capacity(struct gendisk *disk, sector_t size);
834 
835 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
836 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
837 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
838 #else
839 static inline int bd_link_disk_holder(struct block_device *bdev,
840 				      struct gendisk *disk)
841 {
842 	return 0;
843 }
844 static inline void bd_unlink_disk_holder(struct block_device *bdev,
845 					 struct gendisk *disk)
846 {
847 }
848 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
849 
850 dev_t part_devt(struct gendisk *disk, u8 partno);
851 void inc_diskseq(struct gendisk *disk);
852 dev_t blk_lookup_devt(const char *name, int partno);
853 void blk_request_module(dev_t devt);
854 
855 extern int blk_register_queue(struct gendisk *disk);
856 extern void blk_unregister_queue(struct gendisk *disk);
857 void submit_bio_noacct(struct bio *bio);
858 struct bio *bio_split_to_limits(struct bio *bio);
859 
860 extern int blk_lld_busy(struct request_queue *q);
861 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
862 extern void blk_queue_exit(struct request_queue *q);
863 extern void blk_sync_queue(struct request_queue *q);
864 
865 /* Helper to convert REQ_OP_XXX to its string format XXX */
866 extern const char *blk_op_str(enum req_op op);
867 
868 int blk_status_to_errno(blk_status_t status);
869 blk_status_t errno_to_blk_status(int errno);
870 
871 /* only poll the hardware once, don't continue until a completion was found */
872 #define BLK_POLL_ONESHOT		(1 << 0)
873 /* do not sleep to wait for the expected completion time */
874 #define BLK_POLL_NOSLEEP		(1 << 1)
875 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
876 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
877 			unsigned int flags);
878 
879 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
880 {
881 	return bdev->bd_queue;	/* this is never NULL */
882 }
883 
884 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
885 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
886 
887 static inline unsigned int bio_zone_no(struct bio *bio)
888 {
889 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
890 }
891 
892 static inline unsigned int bio_zone_is_seq(struct bio *bio)
893 {
894 	return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
895 }
896 
897 /*
898  * Return how much of the chunk is left to be used for I/O at a given offset.
899  */
900 static inline unsigned int blk_chunk_sectors_left(sector_t offset,
901 		unsigned int chunk_sectors)
902 {
903 	if (unlikely(!is_power_of_2(chunk_sectors)))
904 		return chunk_sectors - sector_div(offset, chunk_sectors);
905 	return chunk_sectors - (offset & (chunk_sectors - 1));
906 }
907 
908 /*
909  * Access functions for manipulating queue properties
910  */
911 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
912 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
913 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
914 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
915 extern void blk_queue_max_discard_segments(struct request_queue *,
916 		unsigned short);
917 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
918 		unsigned int max_sectors);
919 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
920 extern void blk_queue_max_discard_sectors(struct request_queue *q,
921 		unsigned int max_discard_sectors);
922 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
923 		unsigned int max_write_same_sectors);
924 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
925 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
926 		unsigned int max_zone_append_sectors);
927 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
928 void blk_queue_zone_write_granularity(struct request_queue *q,
929 				      unsigned int size);
930 extern void blk_queue_alignment_offset(struct request_queue *q,
931 				       unsigned int alignment);
932 void disk_update_readahead(struct gendisk *disk);
933 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
934 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
935 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
936 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
937 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
938 extern void blk_set_stacking_limits(struct queue_limits *lim);
939 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
940 			    sector_t offset);
941 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
942 			      sector_t offset);
943 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
944 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
945 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
946 extern void blk_queue_dma_alignment(struct request_queue *, int);
947 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
948 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
949 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
950 
951 struct blk_independent_access_ranges *
952 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
953 void disk_set_independent_access_ranges(struct gendisk *disk,
954 				struct blk_independent_access_ranges *iars);
955 
956 /*
957  * Elevator features for blk_queue_required_elevator_features:
958  */
959 /* Supports zoned block devices sequential write constraint */
960 #define ELEVATOR_F_ZBD_SEQ_WRITE	(1U << 0)
961 
962 extern void blk_queue_required_elevator_features(struct request_queue *q,
963 						 unsigned int features);
964 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
965 					      struct device *dev);
966 
967 bool __must_check blk_get_queue(struct request_queue *);
968 extern void blk_put_queue(struct request_queue *);
969 
970 void blk_mark_disk_dead(struct gendisk *disk);
971 
972 #ifdef CONFIG_BLOCK
973 /*
974  * blk_plug permits building a queue of related requests by holding the I/O
975  * fragments for a short period. This allows merging of sequential requests
976  * into single larger request. As the requests are moved from a per-task list to
977  * the device's request_queue in a batch, this results in improved scalability
978  * as the lock contention for request_queue lock is reduced.
979  *
980  * It is ok not to disable preemption when adding the request to the plug list
981  * or when attempting a merge. For details, please see schedule() where
982  * blk_flush_plug() is called.
983  */
984 struct blk_plug {
985 	struct request *mq_list; /* blk-mq requests */
986 
987 	/* if ios_left is > 1, we can batch tag/rq allocations */
988 	struct request *cached_rq;
989 	unsigned short nr_ios;
990 
991 	unsigned short rq_count;
992 
993 	bool multiple_queues;
994 	bool has_elevator;
995 	bool nowait;
996 
997 	struct list_head cb_list; /* md requires an unplug callback */
998 };
999 
1000 struct blk_plug_cb;
1001 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1002 struct blk_plug_cb {
1003 	struct list_head list;
1004 	blk_plug_cb_fn callback;
1005 	void *data;
1006 };
1007 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1008 					     void *data, int size);
1009 extern void blk_start_plug(struct blk_plug *);
1010 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1011 extern void blk_finish_plug(struct blk_plug *);
1012 
1013 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
1014 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1015 {
1016 	if (plug)
1017 		__blk_flush_plug(plug, async);
1018 }
1019 
1020 int blkdev_issue_flush(struct block_device *bdev);
1021 long nr_blockdev_pages(void);
1022 #else /* CONFIG_BLOCK */
1023 struct blk_plug {
1024 };
1025 
1026 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1027 					 unsigned short nr_ios)
1028 {
1029 }
1030 
1031 static inline void blk_start_plug(struct blk_plug *plug)
1032 {
1033 }
1034 
1035 static inline void blk_finish_plug(struct blk_plug *plug)
1036 {
1037 }
1038 
1039 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1040 {
1041 }
1042 
1043 static inline int blkdev_issue_flush(struct block_device *bdev)
1044 {
1045 	return 0;
1046 }
1047 
1048 static inline long nr_blockdev_pages(void)
1049 {
1050 	return 0;
1051 }
1052 #endif /* CONFIG_BLOCK */
1053 
1054 extern void blk_io_schedule(void);
1055 
1056 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1057 		sector_t nr_sects, gfp_t gfp_mask);
1058 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1059 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1060 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1061 		sector_t nr_sects, gfp_t gfp);
1062 
1063 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1064 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1065 
1066 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1067 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1068 		unsigned flags);
1069 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1070 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1071 
1072 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1073 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1074 {
1075 	return blkdev_issue_discard(sb->s_bdev,
1076 				    block << (sb->s_blocksize_bits -
1077 					      SECTOR_SHIFT),
1078 				    nr_blocks << (sb->s_blocksize_bits -
1079 						  SECTOR_SHIFT),
1080 				    gfp_mask);
1081 }
1082 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1083 		sector_t nr_blocks, gfp_t gfp_mask)
1084 {
1085 	return blkdev_issue_zeroout(sb->s_bdev,
1086 				    block << (sb->s_blocksize_bits -
1087 					      SECTOR_SHIFT),
1088 				    nr_blocks << (sb->s_blocksize_bits -
1089 						  SECTOR_SHIFT),
1090 				    gfp_mask, 0);
1091 }
1092 
1093 static inline bool bdev_is_partition(struct block_device *bdev)
1094 {
1095 	return bdev->bd_partno;
1096 }
1097 
1098 enum blk_default_limits {
1099 	BLK_MAX_SEGMENTS	= 128,
1100 	BLK_SAFE_MAX_SECTORS	= 255,
1101 	BLK_MAX_SEGMENT_SIZE	= 65536,
1102 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1103 };
1104 
1105 #define BLK_DEF_MAX_SECTORS 2560u
1106 
1107 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1108 {
1109 	return q->limits.seg_boundary_mask;
1110 }
1111 
1112 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1113 {
1114 	return q->limits.virt_boundary_mask;
1115 }
1116 
1117 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1118 {
1119 	return q->limits.max_sectors;
1120 }
1121 
1122 static inline unsigned int queue_max_bytes(struct request_queue *q)
1123 {
1124 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1125 }
1126 
1127 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1128 {
1129 	return q->limits.max_hw_sectors;
1130 }
1131 
1132 static inline unsigned short queue_max_segments(const struct request_queue *q)
1133 {
1134 	return q->limits.max_segments;
1135 }
1136 
1137 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1138 {
1139 	return q->limits.max_discard_segments;
1140 }
1141 
1142 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1143 {
1144 	return q->limits.max_segment_size;
1145 }
1146 
1147 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1148 {
1149 
1150 	const struct queue_limits *l = &q->limits;
1151 
1152 	return min(l->max_zone_append_sectors, l->max_sectors);
1153 }
1154 
1155 static inline unsigned int
1156 bdev_max_zone_append_sectors(struct block_device *bdev)
1157 {
1158 	return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1159 }
1160 
1161 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1162 {
1163 	return queue_max_segments(bdev_get_queue(bdev));
1164 }
1165 
1166 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1167 {
1168 	int retval = 512;
1169 
1170 	if (q && q->limits.logical_block_size)
1171 		retval = q->limits.logical_block_size;
1172 
1173 	return retval;
1174 }
1175 
1176 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1177 {
1178 	return queue_logical_block_size(bdev_get_queue(bdev));
1179 }
1180 
1181 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1182 {
1183 	return q->limits.physical_block_size;
1184 }
1185 
1186 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1187 {
1188 	return queue_physical_block_size(bdev_get_queue(bdev));
1189 }
1190 
1191 static inline unsigned int queue_io_min(const struct request_queue *q)
1192 {
1193 	return q->limits.io_min;
1194 }
1195 
1196 static inline int bdev_io_min(struct block_device *bdev)
1197 {
1198 	return queue_io_min(bdev_get_queue(bdev));
1199 }
1200 
1201 static inline unsigned int queue_io_opt(const struct request_queue *q)
1202 {
1203 	return q->limits.io_opt;
1204 }
1205 
1206 static inline int bdev_io_opt(struct block_device *bdev)
1207 {
1208 	return queue_io_opt(bdev_get_queue(bdev));
1209 }
1210 
1211 static inline unsigned int
1212 queue_zone_write_granularity(const struct request_queue *q)
1213 {
1214 	return q->limits.zone_write_granularity;
1215 }
1216 
1217 static inline unsigned int
1218 bdev_zone_write_granularity(struct block_device *bdev)
1219 {
1220 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1221 }
1222 
1223 int bdev_alignment_offset(struct block_device *bdev);
1224 unsigned int bdev_discard_alignment(struct block_device *bdev);
1225 
1226 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1227 {
1228 	return bdev_get_queue(bdev)->limits.max_discard_sectors;
1229 }
1230 
1231 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1232 {
1233 	return bdev_get_queue(bdev)->limits.discard_granularity;
1234 }
1235 
1236 static inline unsigned int
1237 bdev_max_secure_erase_sectors(struct block_device *bdev)
1238 {
1239 	return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1240 }
1241 
1242 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1243 {
1244 	struct request_queue *q = bdev_get_queue(bdev);
1245 
1246 	if (q)
1247 		return q->limits.max_write_zeroes_sectors;
1248 
1249 	return 0;
1250 }
1251 
1252 static inline bool bdev_nonrot(struct block_device *bdev)
1253 {
1254 	return blk_queue_nonrot(bdev_get_queue(bdev));
1255 }
1256 
1257 static inline bool bdev_synchronous(struct block_device *bdev)
1258 {
1259 	return test_bit(QUEUE_FLAG_SYNCHRONOUS,
1260 			&bdev_get_queue(bdev)->queue_flags);
1261 }
1262 
1263 static inline bool bdev_stable_writes(struct block_device *bdev)
1264 {
1265 	return test_bit(QUEUE_FLAG_STABLE_WRITES,
1266 			&bdev_get_queue(bdev)->queue_flags);
1267 }
1268 
1269 static inline bool bdev_write_cache(struct block_device *bdev)
1270 {
1271 	return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags);
1272 }
1273 
1274 static inline bool bdev_fua(struct block_device *bdev)
1275 {
1276 	return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags);
1277 }
1278 
1279 static inline bool bdev_nowait(struct block_device *bdev)
1280 {
1281 	return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags);
1282 }
1283 
1284 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1285 {
1286 	return blk_queue_zoned_model(bdev_get_queue(bdev));
1287 }
1288 
1289 static inline bool bdev_is_zoned(struct block_device *bdev)
1290 {
1291 	return blk_queue_is_zoned(bdev_get_queue(bdev));
1292 }
1293 
1294 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1295 {
1296 	return disk_zone_no(bdev->bd_disk, sec);
1297 }
1298 
1299 static inline bool bdev_op_is_zoned_write(struct block_device *bdev,
1300 					  blk_opf_t op)
1301 {
1302 	if (!bdev_is_zoned(bdev))
1303 		return false;
1304 
1305 	return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES;
1306 }
1307 
1308 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1309 {
1310 	struct request_queue *q = bdev_get_queue(bdev);
1311 
1312 	if (!blk_queue_is_zoned(q))
1313 		return 0;
1314 	return q->limits.chunk_sectors;
1315 }
1316 
1317 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1318 						   sector_t sector)
1319 {
1320 	return sector & (bdev_zone_sectors(bdev) - 1);
1321 }
1322 
1323 static inline bool bdev_is_zone_start(struct block_device *bdev,
1324 				      sector_t sector)
1325 {
1326 	return bdev_offset_from_zone_start(bdev, sector) == 0;
1327 }
1328 
1329 static inline int queue_dma_alignment(const struct request_queue *q)
1330 {
1331 	return q ? q->limits.dma_alignment : 511;
1332 }
1333 
1334 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1335 {
1336 	return queue_dma_alignment(bdev_get_queue(bdev));
1337 }
1338 
1339 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1340 					struct iov_iter *iter)
1341 {
1342 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1343 				   bdev_logical_block_size(bdev) - 1);
1344 }
1345 
1346 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1347 				 unsigned int len)
1348 {
1349 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1350 	return !(addr & alignment) && !(len & alignment);
1351 }
1352 
1353 /* assumes size > 256 */
1354 static inline unsigned int blksize_bits(unsigned int size)
1355 {
1356 	return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1357 }
1358 
1359 static inline unsigned int block_size(struct block_device *bdev)
1360 {
1361 	return 1 << bdev->bd_inode->i_blkbits;
1362 }
1363 
1364 int kblockd_schedule_work(struct work_struct *work);
1365 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1366 
1367 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1368 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1369 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1370 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1371 
1372 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1373 
1374 bool blk_crypto_register(struct blk_crypto_profile *profile,
1375 			 struct request_queue *q);
1376 
1377 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1378 
1379 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1380 				       struct request_queue *q)
1381 {
1382 	return true;
1383 }
1384 
1385 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1386 
1387 enum blk_unique_id {
1388 	/* these match the Designator Types specified in SPC */
1389 	BLK_UID_T10	= 1,
1390 	BLK_UID_EUI64	= 2,
1391 	BLK_UID_NAA	= 3,
1392 };
1393 
1394 #define NFL4_UFLG_MASK			0x0000003F
1395 
1396 struct block_device_operations {
1397 	void (*submit_bio)(struct bio *bio);
1398 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1399 			unsigned int flags);
1400 	int (*open) (struct block_device *, fmode_t);
1401 	void (*release) (struct gendisk *, fmode_t);
1402 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1403 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1404 	unsigned int (*check_events) (struct gendisk *disk,
1405 				      unsigned int clearing);
1406 	void (*unlock_native_capacity) (struct gendisk *);
1407 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1408 	int (*set_read_only)(struct block_device *bdev, bool ro);
1409 	void (*free_disk)(struct gendisk *disk);
1410 	/* this callback is with swap_lock and sometimes page table lock held */
1411 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1412 	int (*report_zones)(struct gendisk *, sector_t sector,
1413 			unsigned int nr_zones, report_zones_cb cb, void *data);
1414 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1415 	/* returns the length of the identifier or a negative errno: */
1416 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1417 			enum blk_unique_id id_type);
1418 	struct module *owner;
1419 	const struct pr_ops *pr_ops;
1420 
1421 	/*
1422 	 * Special callback for probing GPT entry at a given sector.
1423 	 * Needed by Android devices, used by GPT scanner and MMC blk
1424 	 * driver.
1425 	 */
1426 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1427 };
1428 
1429 #ifdef CONFIG_COMPAT
1430 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1431 				      unsigned int, unsigned long);
1432 #else
1433 #define blkdev_compat_ptr_ioctl NULL
1434 #endif
1435 
1436 static inline void blk_wake_io_task(struct task_struct *waiter)
1437 {
1438 	/*
1439 	 * If we're polling, the task itself is doing the completions. For
1440 	 * that case, we don't need to signal a wakeup, it's enough to just
1441 	 * mark us as RUNNING.
1442 	 */
1443 	if (waiter == current)
1444 		__set_current_state(TASK_RUNNING);
1445 	else
1446 		wake_up_process(waiter);
1447 }
1448 
1449 unsigned long bdev_start_io_acct(struct block_device *bdev,
1450 				 unsigned int sectors, enum req_op op,
1451 				 unsigned long start_time);
1452 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1453 		unsigned long start_time);
1454 
1455 unsigned long bio_start_io_acct(struct bio *bio);
1456 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1457 		struct block_device *orig_bdev);
1458 
1459 /**
1460  * bio_end_io_acct - end I/O accounting for bio based drivers
1461  * @bio:	bio to end account for
1462  * @start_time:	start time returned by bio_start_io_acct()
1463  */
1464 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1465 {
1466 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1467 }
1468 
1469 int bdev_read_only(struct block_device *bdev);
1470 int set_blocksize(struct block_device *bdev, int size);
1471 
1472 int lookup_bdev(const char *pathname, dev_t *dev);
1473 
1474 void blkdev_show(struct seq_file *seqf, off_t offset);
1475 
1476 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1477 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1478 #ifdef CONFIG_BLOCK
1479 #define BLKDEV_MAJOR_MAX	512
1480 #else
1481 #define BLKDEV_MAJOR_MAX	0
1482 #endif
1483 
1484 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1485 		void *holder);
1486 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
1487 int bd_prepare_to_claim(struct block_device *bdev, void *holder);
1488 void bd_abort_claiming(struct block_device *bdev, void *holder);
1489 void blkdev_put(struct block_device *bdev, fmode_t mode);
1490 
1491 /* just for blk-cgroup, don't use elsewhere */
1492 struct block_device *blkdev_get_no_open(dev_t dev);
1493 void blkdev_put_no_open(struct block_device *bdev);
1494 
1495 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
1496 void bdev_add(struct block_device *bdev, dev_t dev);
1497 struct block_device *I_BDEV(struct inode *inode);
1498 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
1499 		loff_t lend);
1500 
1501 #ifdef CONFIG_BLOCK
1502 void invalidate_bdev(struct block_device *bdev);
1503 int sync_blockdev(struct block_device *bdev);
1504 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1505 int sync_blockdev_nowait(struct block_device *bdev);
1506 void sync_bdevs(bool wait);
1507 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat);
1508 void printk_all_partitions(void);
1509 #else
1510 static inline void invalidate_bdev(struct block_device *bdev)
1511 {
1512 }
1513 static inline int sync_blockdev(struct block_device *bdev)
1514 {
1515 	return 0;
1516 }
1517 static inline int sync_blockdev_nowait(struct block_device *bdev)
1518 {
1519 	return 0;
1520 }
1521 static inline void sync_bdevs(bool wait)
1522 {
1523 }
1524 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat)
1525 {
1526 }
1527 static inline void printk_all_partitions(void)
1528 {
1529 }
1530 #endif /* CONFIG_BLOCK */
1531 
1532 int fsync_bdev(struct block_device *bdev);
1533 
1534 int freeze_bdev(struct block_device *bdev);
1535 int thaw_bdev(struct block_device *bdev);
1536 
1537 struct io_comp_batch {
1538 	struct request *req_list;
1539 	bool need_ts;
1540 	void (*complete)(struct io_comp_batch *);
1541 };
1542 
1543 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1544 
1545 #endif /* _LINUX_BLKDEV_H */
1546