xref: /openbmc/linux/include/linux/blkdev.h (revision 2dec9e09)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/srcu.h>
26 #include <linux/uuid.h>
27 #include <linux/xarray.h>
28 
29 struct module;
30 struct request_queue;
31 struct elevator_queue;
32 struct blk_trace;
33 struct request;
34 struct sg_io_hdr;
35 struct blkcg_gq;
36 struct blk_flush_queue;
37 struct kiocb;
38 struct pr_ops;
39 struct rq_qos;
40 struct blk_queue_stats;
41 struct blk_stat_callback;
42 struct blk_crypto_profile;
43 
44 extern const struct device_type disk_type;
45 extern struct device_type part_type;
46 extern struct class block_class;
47 
48 /* Must be consistent with blk_mq_poll_stats_bkt() */
49 #define BLK_MQ_POLL_STATS_BKTS 16
50 
51 /* Doing classic polling */
52 #define BLK_MQ_POLL_CLASSIC -1
53 
54 /*
55  * Maximum number of blkcg policies allowed to be registered concurrently.
56  * Defined here to simplify include dependency.
57  */
58 #define BLKCG_MAX_POLS		6
59 
60 #define DISK_MAX_PARTS			256
61 #define DISK_NAME_LEN			32
62 
63 #define PARTITION_META_INFO_VOLNAMELTH	64
64 /*
65  * Enough for the string representation of any kind of UUID plus NULL.
66  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
67  */
68 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
69 
70 struct partition_meta_info {
71 	char uuid[PARTITION_META_INFO_UUIDLTH];
72 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
73 };
74 
75 /**
76  * DOC: genhd capability flags
77  *
78  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
79  * removable media.  When set, the device remains present even when media is not
80  * inserted.  Shall not be set for devices which are removed entirely when the
81  * media is removed.
82  *
83  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
84  * doesn't appear in sysfs, and can't be opened from userspace or using
85  * blkdev_get*. Used for the underlying components of multipath devices.
86  *
87  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
88  * scan for partitions from add_disk, and users can't add partitions manually.
89  *
90  */
91 enum {
92 	GENHD_FL_REMOVABLE			= 1 << 0,
93 	GENHD_FL_HIDDEN				= 1 << 1,
94 	GENHD_FL_NO_PART			= 1 << 2,
95 };
96 
97 enum {
98 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
99 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
100 };
101 
102 enum {
103 	/* Poll even if events_poll_msecs is unset */
104 	DISK_EVENT_FLAG_POLL			= 1 << 0,
105 	/* Forward events to udev */
106 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
107 	/* Block event polling when open for exclusive write */
108 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
109 };
110 
111 struct disk_events;
112 struct badblocks;
113 
114 struct blk_integrity {
115 	const struct blk_integrity_profile	*profile;
116 	unsigned char				flags;
117 	unsigned char				tuple_size;
118 	unsigned char				interval_exp;
119 	unsigned char				tag_size;
120 };
121 
122 struct gendisk {
123 	/*
124 	 * major/first_minor/minors should not be set by any new driver, the
125 	 * block core will take care of allocating them automatically.
126 	 */
127 	int major;
128 	int first_minor;
129 	int minors;
130 
131 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
132 
133 	unsigned short events;		/* supported events */
134 	unsigned short event_flags;	/* flags related to event processing */
135 
136 	struct xarray part_tbl;
137 	struct block_device *part0;
138 
139 	const struct block_device_operations *fops;
140 	struct request_queue *queue;
141 	void *private_data;
142 
143 	struct bio_set bio_split;
144 
145 	int flags;
146 	unsigned long state;
147 #define GD_NEED_PART_SCAN		0
148 #define GD_READ_ONLY			1
149 #define GD_DEAD				2
150 #define GD_NATIVE_CAPACITY		3
151 #define GD_ADDED			4
152 #define GD_SUPPRESS_PART_SCAN		5
153 #define GD_OWNS_QUEUE			6
154 
155 	struct mutex open_mutex;	/* open/close mutex */
156 	unsigned open_partitions;	/* number of open partitions */
157 
158 	struct backing_dev_info	*bdi;
159 	struct kobject *slave_dir;
160 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
161 	struct list_head slave_bdevs;
162 #endif
163 	struct timer_rand_state *random;
164 	atomic_t sync_io;		/* RAID */
165 	struct disk_events *ev;
166 #ifdef  CONFIG_BLK_DEV_INTEGRITY
167 	struct kobject integrity_kobj;
168 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
169 
170 #ifdef CONFIG_BLK_DEV_ZONED
171 	/*
172 	 * Zoned block device information for request dispatch control.
173 	 * nr_zones is the total number of zones of the device. This is always
174 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
175 	 * bits which indicates if a zone is conventional (bit set) or
176 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
177 	 * bits which indicates if a zone is write locked, that is, if a write
178 	 * request targeting the zone was dispatched.
179 	 *
180 	 * Reads of this information must be protected with blk_queue_enter() /
181 	 * blk_queue_exit(). Modifying this information is only allowed while
182 	 * no requests are being processed. See also blk_mq_freeze_queue() and
183 	 * blk_mq_unfreeze_queue().
184 	 */
185 	unsigned int		nr_zones;
186 	unsigned int		max_open_zones;
187 	unsigned int		max_active_zones;
188 	unsigned long		*conv_zones_bitmap;
189 	unsigned long		*seq_zones_wlock;
190 #endif /* CONFIG_BLK_DEV_ZONED */
191 
192 #if IS_ENABLED(CONFIG_CDROM)
193 	struct cdrom_device_info *cdi;
194 #endif
195 	int node_id;
196 	struct badblocks *bb;
197 	struct lockdep_map lockdep_map;
198 	u64 diskseq;
199 
200 	/*
201 	 * Independent sector access ranges. This is always NULL for
202 	 * devices that do not have multiple independent access ranges.
203 	 */
204 	struct blk_independent_access_ranges *ia_ranges;
205 };
206 
207 static inline bool disk_live(struct gendisk *disk)
208 {
209 	return !inode_unhashed(disk->part0->bd_inode);
210 }
211 
212 /**
213  * disk_openers - returns how many openers are there for a disk
214  * @disk: disk to check
215  *
216  * This returns the number of openers for a disk.  Note that this value is only
217  * stable if disk->open_mutex is held.
218  *
219  * Note: Due to a quirk in the block layer open code, each open partition is
220  * only counted once even if there are multiple openers.
221  */
222 static inline unsigned int disk_openers(struct gendisk *disk)
223 {
224 	return atomic_read(&disk->part0->bd_openers);
225 }
226 
227 /*
228  * The gendisk is refcounted by the part0 block_device, and the bd_device
229  * therein is also used for device model presentation in sysfs.
230  */
231 #define dev_to_disk(device) \
232 	(dev_to_bdev(device)->bd_disk)
233 #define disk_to_dev(disk) \
234 	(&((disk)->part0->bd_device))
235 
236 #if IS_REACHABLE(CONFIG_CDROM)
237 #define disk_to_cdi(disk)	((disk)->cdi)
238 #else
239 #define disk_to_cdi(disk)	NULL
240 #endif
241 
242 static inline dev_t disk_devt(struct gendisk *disk)
243 {
244 	return MKDEV(disk->major, disk->first_minor);
245 }
246 
247 static inline int blk_validate_block_size(unsigned long bsize)
248 {
249 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
250 		return -EINVAL;
251 
252 	return 0;
253 }
254 
255 static inline bool blk_op_is_passthrough(blk_opf_t op)
256 {
257 	op &= REQ_OP_MASK;
258 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
259 }
260 
261 /*
262  * Zoned block device models (zoned limit).
263  *
264  * Note: This needs to be ordered from the least to the most severe
265  * restrictions for the inheritance in blk_stack_limits() to work.
266  */
267 enum blk_zoned_model {
268 	BLK_ZONED_NONE = 0,	/* Regular block device */
269 	BLK_ZONED_HA,		/* Host-aware zoned block device */
270 	BLK_ZONED_HM,		/* Host-managed zoned block device */
271 };
272 
273 /*
274  * BLK_BOUNCE_NONE:	never bounce (default)
275  * BLK_BOUNCE_HIGH:	bounce all highmem pages
276  */
277 enum blk_bounce {
278 	BLK_BOUNCE_NONE,
279 	BLK_BOUNCE_HIGH,
280 };
281 
282 struct queue_limits {
283 	enum blk_bounce		bounce;
284 	unsigned long		seg_boundary_mask;
285 	unsigned long		virt_boundary_mask;
286 
287 	unsigned int		max_hw_sectors;
288 	unsigned int		max_dev_sectors;
289 	unsigned int		chunk_sectors;
290 	unsigned int		max_sectors;
291 	unsigned int		max_segment_size;
292 	unsigned int		physical_block_size;
293 	unsigned int		logical_block_size;
294 	unsigned int		alignment_offset;
295 	unsigned int		io_min;
296 	unsigned int		io_opt;
297 	unsigned int		max_discard_sectors;
298 	unsigned int		max_hw_discard_sectors;
299 	unsigned int		max_secure_erase_sectors;
300 	unsigned int		max_write_zeroes_sectors;
301 	unsigned int		max_zone_append_sectors;
302 	unsigned int		discard_granularity;
303 	unsigned int		discard_alignment;
304 	unsigned int		zone_write_granularity;
305 
306 	unsigned short		max_segments;
307 	unsigned short		max_integrity_segments;
308 	unsigned short		max_discard_segments;
309 
310 	unsigned char		misaligned;
311 	unsigned char		discard_misaligned;
312 	unsigned char		raid_partial_stripes_expensive;
313 	enum blk_zoned_model	zoned;
314 };
315 
316 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
317 			       void *data);
318 
319 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
320 
321 #ifdef CONFIG_BLK_DEV_ZONED
322 
323 #define BLK_ALL_ZONES  ((unsigned int)-1)
324 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
325 			unsigned int nr_zones, report_zones_cb cb, void *data);
326 unsigned int bdev_nr_zones(struct block_device *bdev);
327 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
328 			    sector_t sectors, sector_t nr_sectors,
329 			    gfp_t gfp_mask);
330 int blk_revalidate_disk_zones(struct gendisk *disk,
331 			      void (*update_driver_data)(struct gendisk *disk));
332 
333 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
334 				     unsigned int cmd, unsigned long arg);
335 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
336 				  unsigned int cmd, unsigned long arg);
337 
338 #else /* CONFIG_BLK_DEV_ZONED */
339 
340 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
341 {
342 	return 0;
343 }
344 
345 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
346 					    fmode_t mode, unsigned int cmd,
347 					    unsigned long arg)
348 {
349 	return -ENOTTY;
350 }
351 
352 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
353 					 fmode_t mode, unsigned int cmd,
354 					 unsigned long arg)
355 {
356 	return -ENOTTY;
357 }
358 
359 #endif /* CONFIG_BLK_DEV_ZONED */
360 
361 /*
362  * Independent access ranges: struct blk_independent_access_range describes
363  * a range of contiguous sectors that can be accessed using device command
364  * execution resources that are independent from the resources used for
365  * other access ranges. This is typically found with single-LUN multi-actuator
366  * HDDs where each access range is served by a different set of heads.
367  * The set of independent ranges supported by the device is defined using
368  * struct blk_independent_access_ranges. The independent ranges must not overlap
369  * and must include all sectors within the disk capacity (no sector holes
370  * allowed).
371  * For a device with multiple ranges, requests targeting sectors in different
372  * ranges can be executed in parallel. A request can straddle an access range
373  * boundary.
374  */
375 struct blk_independent_access_range {
376 	struct kobject		kobj;
377 	sector_t		sector;
378 	sector_t		nr_sectors;
379 };
380 
381 struct blk_independent_access_ranges {
382 	struct kobject				kobj;
383 	bool					sysfs_registered;
384 	unsigned int				nr_ia_ranges;
385 	struct blk_independent_access_range	ia_range[];
386 };
387 
388 struct request_queue {
389 	struct request		*last_merge;
390 	struct elevator_queue	*elevator;
391 
392 	struct percpu_ref	q_usage_counter;
393 
394 	struct blk_queue_stats	*stats;
395 	struct rq_qos		*rq_qos;
396 
397 	const struct blk_mq_ops	*mq_ops;
398 
399 	/* sw queues */
400 	struct blk_mq_ctx __percpu	*queue_ctx;
401 
402 	unsigned int		queue_depth;
403 
404 	/* hw dispatch queues */
405 	struct xarray		hctx_table;
406 	unsigned int		nr_hw_queues;
407 
408 	/*
409 	 * The queue owner gets to use this for whatever they like.
410 	 * ll_rw_blk doesn't touch it.
411 	 */
412 	void			*queuedata;
413 
414 	/*
415 	 * various queue flags, see QUEUE_* below
416 	 */
417 	unsigned long		queue_flags;
418 	/*
419 	 * Number of contexts that have called blk_set_pm_only(). If this
420 	 * counter is above zero then only RQF_PM requests are processed.
421 	 */
422 	atomic_t		pm_only;
423 
424 	/*
425 	 * ida allocated id for this queue.  Used to index queues from
426 	 * ioctx.
427 	 */
428 	int			id;
429 
430 	spinlock_t		queue_lock;
431 
432 	struct gendisk		*disk;
433 
434 	/*
435 	 * queue kobject
436 	 */
437 	struct kobject kobj;
438 
439 	/*
440 	 * mq queue kobject
441 	 */
442 	struct kobject *mq_kobj;
443 
444 #ifdef  CONFIG_BLK_DEV_INTEGRITY
445 	struct blk_integrity integrity;
446 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
447 
448 #ifdef CONFIG_PM
449 	struct device		*dev;
450 	enum rpm_status		rpm_status;
451 #endif
452 
453 	/*
454 	 * queue settings
455 	 */
456 	unsigned long		nr_requests;	/* Max # of requests */
457 
458 	unsigned int		dma_pad_mask;
459 	/*
460 	 * Drivers that set dma_alignment to less than 511 must be prepared to
461 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
462 	 * due to possible offsets.
463 	 */
464 	unsigned int		dma_alignment;
465 
466 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
467 	struct blk_crypto_profile *crypto_profile;
468 	struct kobject *crypto_kobject;
469 #endif
470 
471 	unsigned int		rq_timeout;
472 	int			poll_nsec;
473 
474 	struct blk_stat_callback	*poll_cb;
475 	struct blk_rq_stat	*poll_stat;
476 
477 	struct timer_list	timeout;
478 	struct work_struct	timeout_work;
479 
480 	atomic_t		nr_active_requests_shared_tags;
481 
482 	struct blk_mq_tags	*sched_shared_tags;
483 
484 	struct list_head	icq_list;
485 #ifdef CONFIG_BLK_CGROUP
486 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
487 	struct blkcg_gq		*root_blkg;
488 	struct list_head	blkg_list;
489 #endif
490 
491 	struct queue_limits	limits;
492 
493 	unsigned int		required_elevator_features;
494 
495 	int			node;
496 #ifdef CONFIG_BLK_DEV_IO_TRACE
497 	struct blk_trace __rcu	*blk_trace;
498 #endif
499 	/*
500 	 * for flush operations
501 	 */
502 	struct blk_flush_queue	*fq;
503 
504 	struct list_head	requeue_list;
505 	spinlock_t		requeue_lock;
506 	struct delayed_work	requeue_work;
507 
508 	struct mutex		sysfs_lock;
509 	struct mutex		sysfs_dir_lock;
510 
511 	/*
512 	 * for reusing dead hctx instance in case of updating
513 	 * nr_hw_queues
514 	 */
515 	struct list_head	unused_hctx_list;
516 	spinlock_t		unused_hctx_lock;
517 
518 	int			mq_freeze_depth;
519 
520 #ifdef CONFIG_BLK_DEV_THROTTLING
521 	/* Throttle data */
522 	struct throtl_data *td;
523 #endif
524 	struct rcu_head		rcu_head;
525 	wait_queue_head_t	mq_freeze_wq;
526 	/*
527 	 * Protect concurrent access to q_usage_counter by
528 	 * percpu_ref_kill() and percpu_ref_reinit().
529 	 */
530 	struct mutex		mq_freeze_lock;
531 
532 	int			quiesce_depth;
533 
534 	struct blk_mq_tag_set	*tag_set;
535 	struct list_head	tag_set_list;
536 
537 	struct dentry		*debugfs_dir;
538 	struct dentry		*sched_debugfs_dir;
539 	struct dentry		*rqos_debugfs_dir;
540 	/*
541 	 * Serializes all debugfs metadata operations using the above dentries.
542 	 */
543 	struct mutex		debugfs_mutex;
544 
545 	bool			mq_sysfs_init_done;
546 
547 	/**
548 	 * @srcu: Sleepable RCU. Use as lock when type of the request queue
549 	 * is blocking (BLK_MQ_F_BLOCKING). Must be the last member
550 	 */
551 	struct srcu_struct	srcu[];
552 };
553 
554 /* Keep blk_queue_flag_name[] in sync with the definitions below */
555 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
556 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
557 #define QUEUE_FLAG_HAS_SRCU	2	/* SRCU is allocated */
558 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
559 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
560 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
561 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
562 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
563 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
564 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
565 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
566 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
567 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
568 #define QUEUE_FLAG_STABLE_WRITES 15	/* don't modify blks until WB is done */
569 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
570 #define QUEUE_FLAG_WC		17	/* Write back caching */
571 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
572 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
573 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
574 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
575 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
576 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
577 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
578 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
579 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
580 #define QUEUE_FLAG_NOWAIT       29	/* device supports NOWAIT */
581 #define QUEUE_FLAG_SQ_SCHED     30	/* single queue style io dispatch */
582 
583 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
584 				 (1 << QUEUE_FLAG_SAME_COMP) |		\
585 				 (1 << QUEUE_FLAG_NOWAIT))
586 
587 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
588 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
589 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
590 
591 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
592 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
593 #define blk_queue_has_srcu(q)	test_bit(QUEUE_FLAG_HAS_SRCU, &(q)->queue_flags)
594 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
595 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
596 #define blk_queue_noxmerges(q)	\
597 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
598 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
599 #define blk_queue_stable_writes(q) \
600 	test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
601 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
602 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
603 #define blk_queue_zone_resetall(q)	\
604 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
605 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
606 #define blk_queue_pci_p2pdma(q)	\
607 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
608 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
609 #define blk_queue_rq_alloc_time(q)	\
610 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
611 #else
612 #define blk_queue_rq_alloc_time(q)	false
613 #endif
614 
615 #define blk_noretry_request(rq) \
616 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
617 			     REQ_FAILFAST_DRIVER))
618 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
619 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
620 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
621 #define blk_queue_nowait(q)	test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
622 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
623 
624 extern void blk_set_pm_only(struct request_queue *q);
625 extern void blk_clear_pm_only(struct request_queue *q);
626 
627 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
628 
629 #define dma_map_bvec(dev, bv, dir, attrs) \
630 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
631 	(dir), (attrs))
632 
633 static inline bool queue_is_mq(struct request_queue *q)
634 {
635 	return q->mq_ops;
636 }
637 
638 #ifdef CONFIG_PM
639 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
640 {
641 	return q->rpm_status;
642 }
643 #else
644 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
645 {
646 	return RPM_ACTIVE;
647 }
648 #endif
649 
650 static inline enum blk_zoned_model
651 blk_queue_zoned_model(struct request_queue *q)
652 {
653 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
654 		return q->limits.zoned;
655 	return BLK_ZONED_NONE;
656 }
657 
658 static inline bool blk_queue_is_zoned(struct request_queue *q)
659 {
660 	switch (blk_queue_zoned_model(q)) {
661 	case BLK_ZONED_HA:
662 	case BLK_ZONED_HM:
663 		return true;
664 	default:
665 		return false;
666 	}
667 }
668 
669 #ifdef CONFIG_BLK_DEV_ZONED
670 static inline unsigned int disk_nr_zones(struct gendisk *disk)
671 {
672 	return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0;
673 }
674 
675 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
676 {
677 	if (!blk_queue_is_zoned(disk->queue))
678 		return 0;
679 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
680 }
681 
682 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
683 {
684 	if (!blk_queue_is_zoned(disk->queue))
685 		return false;
686 	if (!disk->conv_zones_bitmap)
687 		return true;
688 	return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap);
689 }
690 
691 static inline void disk_set_max_open_zones(struct gendisk *disk,
692 		unsigned int max_open_zones)
693 {
694 	disk->max_open_zones = max_open_zones;
695 }
696 
697 static inline void disk_set_max_active_zones(struct gendisk *disk,
698 		unsigned int max_active_zones)
699 {
700 	disk->max_active_zones = max_active_zones;
701 }
702 
703 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
704 {
705 	return bdev->bd_disk->max_open_zones;
706 }
707 
708 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
709 {
710 	return bdev->bd_disk->max_active_zones;
711 }
712 
713 #else /* CONFIG_BLK_DEV_ZONED */
714 static inline unsigned int disk_nr_zones(struct gendisk *disk)
715 {
716 	return 0;
717 }
718 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
719 {
720 	return false;
721 }
722 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
723 {
724 	return 0;
725 }
726 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
727 {
728 	return 0;
729 }
730 
731 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
732 {
733 	return 0;
734 }
735 #endif /* CONFIG_BLK_DEV_ZONED */
736 
737 static inline unsigned int blk_queue_depth(struct request_queue *q)
738 {
739 	if (q->queue_depth)
740 		return q->queue_depth;
741 
742 	return q->nr_requests;
743 }
744 
745 /*
746  * default timeout for SG_IO if none specified
747  */
748 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
749 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
750 
751 /* This should not be used directly - use rq_for_each_segment */
752 #define for_each_bio(_bio)		\
753 	for (; _bio; _bio = _bio->bi_next)
754 
755 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
756 				 const struct attribute_group **groups);
757 static inline int __must_check add_disk(struct gendisk *disk)
758 {
759 	return device_add_disk(NULL, disk, NULL);
760 }
761 void del_gendisk(struct gendisk *gp);
762 void invalidate_disk(struct gendisk *disk);
763 void set_disk_ro(struct gendisk *disk, bool read_only);
764 void disk_uevent(struct gendisk *disk, enum kobject_action action);
765 
766 static inline int get_disk_ro(struct gendisk *disk)
767 {
768 	return disk->part0->bd_read_only ||
769 		test_bit(GD_READ_ONLY, &disk->state);
770 }
771 
772 static inline int bdev_read_only(struct block_device *bdev)
773 {
774 	return bdev->bd_read_only || get_disk_ro(bdev->bd_disk);
775 }
776 
777 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
778 bool disk_force_media_change(struct gendisk *disk, unsigned int events);
779 
780 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
781 void rand_initialize_disk(struct gendisk *disk);
782 
783 static inline sector_t get_start_sect(struct block_device *bdev)
784 {
785 	return bdev->bd_start_sect;
786 }
787 
788 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
789 {
790 	return bdev->bd_nr_sectors;
791 }
792 
793 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
794 {
795 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
796 }
797 
798 static inline sector_t get_capacity(struct gendisk *disk)
799 {
800 	return bdev_nr_sectors(disk->part0);
801 }
802 
803 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
804 {
805 	return bdev_nr_sectors(sb->s_bdev) >>
806 		(sb->s_blocksize_bits - SECTOR_SHIFT);
807 }
808 
809 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
810 
811 void put_disk(struct gendisk *disk);
812 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass);
813 
814 /**
815  * blk_alloc_disk - allocate a gendisk structure
816  * @node_id: numa node to allocate on
817  *
818  * Allocate and pre-initialize a gendisk structure for use with BIO based
819  * drivers.
820  *
821  * Context: can sleep
822  */
823 #define blk_alloc_disk(node_id)						\
824 ({									\
825 	static struct lock_class_key __key;				\
826 									\
827 	__blk_alloc_disk(node_id, &__key);				\
828 })
829 
830 int __register_blkdev(unsigned int major, const char *name,
831 		void (*probe)(dev_t devt));
832 #define register_blkdev(major, name) \
833 	__register_blkdev(major, name, NULL)
834 void unregister_blkdev(unsigned int major, const char *name);
835 
836 bool bdev_check_media_change(struct block_device *bdev);
837 int __invalidate_device(struct block_device *bdev, bool kill_dirty);
838 void set_capacity(struct gendisk *disk, sector_t size);
839 
840 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
841 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
842 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
843 int bd_register_pending_holders(struct gendisk *disk);
844 #else
845 static inline int bd_link_disk_holder(struct block_device *bdev,
846 				      struct gendisk *disk)
847 {
848 	return 0;
849 }
850 static inline void bd_unlink_disk_holder(struct block_device *bdev,
851 					 struct gendisk *disk)
852 {
853 }
854 static inline int bd_register_pending_holders(struct gendisk *disk)
855 {
856 	return 0;
857 }
858 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
859 
860 dev_t part_devt(struct gendisk *disk, u8 partno);
861 void inc_diskseq(struct gendisk *disk);
862 dev_t blk_lookup_devt(const char *name, int partno);
863 void blk_request_module(dev_t devt);
864 
865 extern int blk_register_queue(struct gendisk *disk);
866 extern void blk_unregister_queue(struct gendisk *disk);
867 void submit_bio_noacct(struct bio *bio);
868 struct bio *bio_split_to_limits(struct bio *bio);
869 
870 extern int blk_lld_busy(struct request_queue *q);
871 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
872 extern void blk_queue_exit(struct request_queue *q);
873 extern void blk_sync_queue(struct request_queue *q);
874 
875 /* Helper to convert REQ_OP_XXX to its string format XXX */
876 extern const char *blk_op_str(enum req_op op);
877 
878 int blk_status_to_errno(blk_status_t status);
879 blk_status_t errno_to_blk_status(int errno);
880 
881 /* only poll the hardware once, don't continue until a completion was found */
882 #define BLK_POLL_ONESHOT		(1 << 0)
883 /* do not sleep to wait for the expected completion time */
884 #define BLK_POLL_NOSLEEP		(1 << 1)
885 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
886 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
887 			unsigned int flags);
888 
889 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
890 {
891 	return bdev->bd_queue;	/* this is never NULL */
892 }
893 
894 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
895 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
896 
897 static inline unsigned int bio_zone_no(struct bio *bio)
898 {
899 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
900 }
901 
902 static inline unsigned int bio_zone_is_seq(struct bio *bio)
903 {
904 	return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
905 }
906 
907 /*
908  * Return how much of the chunk is left to be used for I/O at a given offset.
909  */
910 static inline unsigned int blk_chunk_sectors_left(sector_t offset,
911 		unsigned int chunk_sectors)
912 {
913 	if (unlikely(!is_power_of_2(chunk_sectors)))
914 		return chunk_sectors - sector_div(offset, chunk_sectors);
915 	return chunk_sectors - (offset & (chunk_sectors - 1));
916 }
917 
918 /*
919  * Access functions for manipulating queue properties
920  */
921 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
922 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
923 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
924 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
925 extern void blk_queue_max_discard_segments(struct request_queue *,
926 		unsigned short);
927 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
928 		unsigned int max_sectors);
929 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
930 extern void blk_queue_max_discard_sectors(struct request_queue *q,
931 		unsigned int max_discard_sectors);
932 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
933 		unsigned int max_write_same_sectors);
934 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
935 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
936 		unsigned int max_zone_append_sectors);
937 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
938 void blk_queue_zone_write_granularity(struct request_queue *q,
939 				      unsigned int size);
940 extern void blk_queue_alignment_offset(struct request_queue *q,
941 				       unsigned int alignment);
942 void disk_update_readahead(struct gendisk *disk);
943 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
944 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
945 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
946 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
947 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
948 extern void blk_set_default_limits(struct queue_limits *lim);
949 extern void blk_set_stacking_limits(struct queue_limits *lim);
950 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
951 			    sector_t offset);
952 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
953 			      sector_t offset);
954 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
955 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
956 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
957 extern void blk_queue_dma_alignment(struct request_queue *, int);
958 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
959 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
960 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
961 
962 struct blk_independent_access_ranges *
963 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
964 void disk_set_independent_access_ranges(struct gendisk *disk,
965 				struct blk_independent_access_ranges *iars);
966 
967 /*
968  * Elevator features for blk_queue_required_elevator_features:
969  */
970 /* Supports zoned block devices sequential write constraint */
971 #define ELEVATOR_F_ZBD_SEQ_WRITE	(1U << 0)
972 
973 extern void blk_queue_required_elevator_features(struct request_queue *q,
974 						 unsigned int features);
975 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
976 					      struct device *dev);
977 
978 bool __must_check blk_get_queue(struct request_queue *);
979 extern void blk_put_queue(struct request_queue *);
980 
981 void blk_mark_disk_dead(struct gendisk *disk);
982 
983 #ifdef CONFIG_BLOCK
984 /*
985  * blk_plug permits building a queue of related requests by holding the I/O
986  * fragments for a short period. This allows merging of sequential requests
987  * into single larger request. As the requests are moved from a per-task list to
988  * the device's request_queue in a batch, this results in improved scalability
989  * as the lock contention for request_queue lock is reduced.
990  *
991  * It is ok not to disable preemption when adding the request to the plug list
992  * or when attempting a merge. For details, please see schedule() where
993  * blk_flush_plug() is called.
994  */
995 struct blk_plug {
996 	struct request *mq_list; /* blk-mq requests */
997 
998 	/* if ios_left is > 1, we can batch tag/rq allocations */
999 	struct request *cached_rq;
1000 	unsigned short nr_ios;
1001 
1002 	unsigned short rq_count;
1003 
1004 	bool multiple_queues;
1005 	bool has_elevator;
1006 	bool nowait;
1007 
1008 	struct list_head cb_list; /* md requires an unplug callback */
1009 };
1010 
1011 struct blk_plug_cb;
1012 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1013 struct blk_plug_cb {
1014 	struct list_head list;
1015 	blk_plug_cb_fn callback;
1016 	void *data;
1017 };
1018 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1019 					     void *data, int size);
1020 extern void blk_start_plug(struct blk_plug *);
1021 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1022 extern void blk_finish_plug(struct blk_plug *);
1023 
1024 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
1025 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1026 {
1027 	if (plug)
1028 		__blk_flush_plug(plug, async);
1029 }
1030 
1031 int blkdev_issue_flush(struct block_device *bdev);
1032 long nr_blockdev_pages(void);
1033 #else /* CONFIG_BLOCK */
1034 struct blk_plug {
1035 };
1036 
1037 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1038 					 unsigned short nr_ios)
1039 {
1040 }
1041 
1042 static inline void blk_start_plug(struct blk_plug *plug)
1043 {
1044 }
1045 
1046 static inline void blk_finish_plug(struct blk_plug *plug)
1047 {
1048 }
1049 
1050 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1051 {
1052 }
1053 
1054 static inline int blkdev_issue_flush(struct block_device *bdev)
1055 {
1056 	return 0;
1057 }
1058 
1059 static inline long nr_blockdev_pages(void)
1060 {
1061 	return 0;
1062 }
1063 #endif /* CONFIG_BLOCK */
1064 
1065 extern void blk_io_schedule(void);
1066 
1067 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1068 		sector_t nr_sects, gfp_t gfp_mask);
1069 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1070 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1071 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1072 		sector_t nr_sects, gfp_t gfp);
1073 
1074 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1075 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1076 
1077 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1078 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1079 		unsigned flags);
1080 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1081 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1082 
1083 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1084 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1085 {
1086 	return blkdev_issue_discard(sb->s_bdev,
1087 				    block << (sb->s_blocksize_bits -
1088 					      SECTOR_SHIFT),
1089 				    nr_blocks << (sb->s_blocksize_bits -
1090 						  SECTOR_SHIFT),
1091 				    gfp_mask);
1092 }
1093 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1094 		sector_t nr_blocks, gfp_t gfp_mask)
1095 {
1096 	return blkdev_issue_zeroout(sb->s_bdev,
1097 				    block << (sb->s_blocksize_bits -
1098 					      SECTOR_SHIFT),
1099 				    nr_blocks << (sb->s_blocksize_bits -
1100 						  SECTOR_SHIFT),
1101 				    gfp_mask, 0);
1102 }
1103 
1104 static inline bool bdev_is_partition(struct block_device *bdev)
1105 {
1106 	return bdev->bd_partno;
1107 }
1108 
1109 enum blk_default_limits {
1110 	BLK_MAX_SEGMENTS	= 128,
1111 	BLK_SAFE_MAX_SECTORS	= 255,
1112 	BLK_DEF_MAX_SECTORS	= 2560,
1113 	BLK_MAX_SEGMENT_SIZE	= 65536,
1114 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1115 };
1116 
1117 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1118 {
1119 	return q->limits.seg_boundary_mask;
1120 }
1121 
1122 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1123 {
1124 	return q->limits.virt_boundary_mask;
1125 }
1126 
1127 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1128 {
1129 	return q->limits.max_sectors;
1130 }
1131 
1132 static inline unsigned int queue_max_bytes(struct request_queue *q)
1133 {
1134 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1135 }
1136 
1137 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1138 {
1139 	return q->limits.max_hw_sectors;
1140 }
1141 
1142 static inline unsigned short queue_max_segments(const struct request_queue *q)
1143 {
1144 	return q->limits.max_segments;
1145 }
1146 
1147 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1148 {
1149 	return q->limits.max_discard_segments;
1150 }
1151 
1152 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1153 {
1154 	return q->limits.max_segment_size;
1155 }
1156 
1157 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1158 {
1159 
1160 	const struct queue_limits *l = &q->limits;
1161 
1162 	return min(l->max_zone_append_sectors, l->max_sectors);
1163 }
1164 
1165 static inline unsigned int
1166 bdev_max_zone_append_sectors(struct block_device *bdev)
1167 {
1168 	return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1169 }
1170 
1171 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1172 {
1173 	return queue_max_segments(bdev_get_queue(bdev));
1174 }
1175 
1176 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1177 {
1178 	int retval = 512;
1179 
1180 	if (q && q->limits.logical_block_size)
1181 		retval = q->limits.logical_block_size;
1182 
1183 	return retval;
1184 }
1185 
1186 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1187 {
1188 	return queue_logical_block_size(bdev_get_queue(bdev));
1189 }
1190 
1191 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1192 {
1193 	return q->limits.physical_block_size;
1194 }
1195 
1196 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1197 {
1198 	return queue_physical_block_size(bdev_get_queue(bdev));
1199 }
1200 
1201 static inline unsigned int queue_io_min(const struct request_queue *q)
1202 {
1203 	return q->limits.io_min;
1204 }
1205 
1206 static inline int bdev_io_min(struct block_device *bdev)
1207 {
1208 	return queue_io_min(bdev_get_queue(bdev));
1209 }
1210 
1211 static inline unsigned int queue_io_opt(const struct request_queue *q)
1212 {
1213 	return q->limits.io_opt;
1214 }
1215 
1216 static inline int bdev_io_opt(struct block_device *bdev)
1217 {
1218 	return queue_io_opt(bdev_get_queue(bdev));
1219 }
1220 
1221 static inline unsigned int
1222 queue_zone_write_granularity(const struct request_queue *q)
1223 {
1224 	return q->limits.zone_write_granularity;
1225 }
1226 
1227 static inline unsigned int
1228 bdev_zone_write_granularity(struct block_device *bdev)
1229 {
1230 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1231 }
1232 
1233 int bdev_alignment_offset(struct block_device *bdev);
1234 unsigned int bdev_discard_alignment(struct block_device *bdev);
1235 
1236 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1237 {
1238 	return bdev_get_queue(bdev)->limits.max_discard_sectors;
1239 }
1240 
1241 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1242 {
1243 	return bdev_get_queue(bdev)->limits.discard_granularity;
1244 }
1245 
1246 static inline unsigned int
1247 bdev_max_secure_erase_sectors(struct block_device *bdev)
1248 {
1249 	return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1250 }
1251 
1252 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1253 {
1254 	struct request_queue *q = bdev_get_queue(bdev);
1255 
1256 	if (q)
1257 		return q->limits.max_write_zeroes_sectors;
1258 
1259 	return 0;
1260 }
1261 
1262 static inline bool bdev_nonrot(struct block_device *bdev)
1263 {
1264 	return blk_queue_nonrot(bdev_get_queue(bdev));
1265 }
1266 
1267 static inline bool bdev_stable_writes(struct block_device *bdev)
1268 {
1269 	return test_bit(QUEUE_FLAG_STABLE_WRITES,
1270 			&bdev_get_queue(bdev)->queue_flags);
1271 }
1272 
1273 static inline bool bdev_write_cache(struct block_device *bdev)
1274 {
1275 	return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags);
1276 }
1277 
1278 static inline bool bdev_fua(struct block_device *bdev)
1279 {
1280 	return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags);
1281 }
1282 
1283 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1284 {
1285 	struct request_queue *q = bdev_get_queue(bdev);
1286 
1287 	if (q)
1288 		return blk_queue_zoned_model(q);
1289 
1290 	return BLK_ZONED_NONE;
1291 }
1292 
1293 static inline bool bdev_is_zoned(struct block_device *bdev)
1294 {
1295 	struct request_queue *q = bdev_get_queue(bdev);
1296 
1297 	if (q)
1298 		return blk_queue_is_zoned(q);
1299 
1300 	return false;
1301 }
1302 
1303 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1304 {
1305 	struct request_queue *q = bdev_get_queue(bdev);
1306 
1307 	if (!blk_queue_is_zoned(q))
1308 		return 0;
1309 	return q->limits.chunk_sectors;
1310 }
1311 
1312 static inline int queue_dma_alignment(const struct request_queue *q)
1313 {
1314 	return q ? q->dma_alignment : 511;
1315 }
1316 
1317 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1318 {
1319 	return queue_dma_alignment(bdev_get_queue(bdev));
1320 }
1321 
1322 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1323 					struct iov_iter *iter)
1324 {
1325 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1326 				   bdev_logical_block_size(bdev) - 1);
1327 }
1328 
1329 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1330 				 unsigned int len)
1331 {
1332 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1333 	return !(addr & alignment) && !(len & alignment);
1334 }
1335 
1336 /* assumes size > 256 */
1337 static inline unsigned int blksize_bits(unsigned int size)
1338 {
1339 	unsigned int bits = 8;
1340 	do {
1341 		bits++;
1342 		size >>= 1;
1343 	} while (size > 256);
1344 	return bits;
1345 }
1346 
1347 static inline unsigned int block_size(struct block_device *bdev)
1348 {
1349 	return 1 << bdev->bd_inode->i_blkbits;
1350 }
1351 
1352 int kblockd_schedule_work(struct work_struct *work);
1353 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1354 
1355 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1356 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1357 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1358 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1359 
1360 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1361 
1362 bool blk_crypto_register(struct blk_crypto_profile *profile,
1363 			 struct request_queue *q);
1364 
1365 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1366 
1367 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1368 				       struct request_queue *q)
1369 {
1370 	return true;
1371 }
1372 
1373 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1374 
1375 enum blk_unique_id {
1376 	/* these match the Designator Types specified in SPC */
1377 	BLK_UID_T10	= 1,
1378 	BLK_UID_EUI64	= 2,
1379 	BLK_UID_NAA	= 3,
1380 };
1381 
1382 #define NFL4_UFLG_MASK			0x0000003F
1383 
1384 struct block_device_operations {
1385 	void (*submit_bio)(struct bio *bio);
1386 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1387 			unsigned int flags);
1388 	int (*open) (struct block_device *, fmode_t);
1389 	void (*release) (struct gendisk *, fmode_t);
1390 	int (*rw_page)(struct block_device *, sector_t, struct page *, enum req_op);
1391 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1392 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1393 	unsigned int (*check_events) (struct gendisk *disk,
1394 				      unsigned int clearing);
1395 	void (*unlock_native_capacity) (struct gendisk *);
1396 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1397 	int (*set_read_only)(struct block_device *bdev, bool ro);
1398 	void (*free_disk)(struct gendisk *disk);
1399 	/* this callback is with swap_lock and sometimes page table lock held */
1400 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1401 	int (*report_zones)(struct gendisk *, sector_t sector,
1402 			unsigned int nr_zones, report_zones_cb cb, void *data);
1403 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1404 	/* returns the length of the identifier or a negative errno: */
1405 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1406 			enum blk_unique_id id_type);
1407 	struct module *owner;
1408 	const struct pr_ops *pr_ops;
1409 
1410 	/*
1411 	 * Special callback for probing GPT entry at a given sector.
1412 	 * Needed by Android devices, used by GPT scanner and MMC blk
1413 	 * driver.
1414 	 */
1415 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1416 };
1417 
1418 #ifdef CONFIG_COMPAT
1419 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1420 				      unsigned int, unsigned long);
1421 #else
1422 #define blkdev_compat_ptr_ioctl NULL
1423 #endif
1424 
1425 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1426 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1427 						struct writeback_control *);
1428 
1429 static inline void blk_wake_io_task(struct task_struct *waiter)
1430 {
1431 	/*
1432 	 * If we're polling, the task itself is doing the completions. For
1433 	 * that case, we don't need to signal a wakeup, it's enough to just
1434 	 * mark us as RUNNING.
1435 	 */
1436 	if (waiter == current)
1437 		__set_current_state(TASK_RUNNING);
1438 	else
1439 		wake_up_process(waiter);
1440 }
1441 
1442 unsigned long bdev_start_io_acct(struct block_device *bdev,
1443 				 unsigned int sectors, enum req_op op,
1444 				 unsigned long start_time);
1445 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1446 		unsigned long start_time);
1447 
1448 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time);
1449 unsigned long bio_start_io_acct(struct bio *bio);
1450 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1451 		struct block_device *orig_bdev);
1452 
1453 /**
1454  * bio_end_io_acct - end I/O accounting for bio based drivers
1455  * @bio:	bio to end account for
1456  * @start_time:	start time returned by bio_start_io_acct()
1457  */
1458 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1459 {
1460 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1461 }
1462 
1463 int bdev_read_only(struct block_device *bdev);
1464 int set_blocksize(struct block_device *bdev, int size);
1465 
1466 int lookup_bdev(const char *pathname, dev_t *dev);
1467 
1468 void blkdev_show(struct seq_file *seqf, off_t offset);
1469 
1470 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1471 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1472 #ifdef CONFIG_BLOCK
1473 #define BLKDEV_MAJOR_MAX	512
1474 #else
1475 #define BLKDEV_MAJOR_MAX	0
1476 #endif
1477 
1478 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1479 		void *holder);
1480 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
1481 int bd_prepare_to_claim(struct block_device *bdev, void *holder);
1482 void bd_abort_claiming(struct block_device *bdev, void *holder);
1483 void blkdev_put(struct block_device *bdev, fmode_t mode);
1484 
1485 /* just for blk-cgroup, don't use elsewhere */
1486 struct block_device *blkdev_get_no_open(dev_t dev);
1487 void blkdev_put_no_open(struct block_device *bdev);
1488 
1489 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
1490 void bdev_add(struct block_device *bdev, dev_t dev);
1491 struct block_device *I_BDEV(struct inode *inode);
1492 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
1493 		loff_t lend);
1494 
1495 #ifdef CONFIG_BLOCK
1496 void invalidate_bdev(struct block_device *bdev);
1497 int sync_blockdev(struct block_device *bdev);
1498 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1499 int sync_blockdev_nowait(struct block_device *bdev);
1500 void sync_bdevs(bool wait);
1501 void printk_all_partitions(void);
1502 #else
1503 static inline void invalidate_bdev(struct block_device *bdev)
1504 {
1505 }
1506 static inline int sync_blockdev(struct block_device *bdev)
1507 {
1508 	return 0;
1509 }
1510 static inline int sync_blockdev_nowait(struct block_device *bdev)
1511 {
1512 	return 0;
1513 }
1514 static inline void sync_bdevs(bool wait)
1515 {
1516 }
1517 static inline void printk_all_partitions(void)
1518 {
1519 }
1520 #endif /* CONFIG_BLOCK */
1521 
1522 int fsync_bdev(struct block_device *bdev);
1523 
1524 int freeze_bdev(struct block_device *bdev);
1525 int thaw_bdev(struct block_device *bdev);
1526 
1527 struct io_comp_batch {
1528 	struct request *req_list;
1529 	bool need_ts;
1530 	void (*complete)(struct io_comp_batch *);
1531 };
1532 
1533 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1534 
1535 #endif /* _LINUX_BLKDEV_H */
1536