xref: /openbmc/linux/include/linux/bitmap.h (revision ba61bb17)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_BITMAP_H
3 #define __LINUX_BITMAP_H
4 
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/types.h>
8 #include <linux/bitops.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 
12 /*
13  * bitmaps provide bit arrays that consume one or more unsigned
14  * longs.  The bitmap interface and available operations are listed
15  * here, in bitmap.h
16  *
17  * Function implementations generic to all architectures are in
18  * lib/bitmap.c.  Functions implementations that are architecture
19  * specific are in various include/asm-<arch>/bitops.h headers
20  * and other arch/<arch> specific files.
21  *
22  * See lib/bitmap.c for more details.
23  */
24 
25 /**
26  * DOC: bitmap overview
27  *
28  * The available bitmap operations and their rough meaning in the
29  * case that the bitmap is a single unsigned long are thus:
30  *
31  * Note that nbits should be always a compile time evaluable constant.
32  * Otherwise many inlines will generate horrible code.
33  *
34  * ::
35  *
36  *  bitmap_zero(dst, nbits)                     *dst = 0UL
37  *  bitmap_fill(dst, nbits)                     *dst = ~0UL
38  *  bitmap_copy(dst, src, nbits)                *dst = *src
39  *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
40  *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
41  *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
42  *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
43  *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
44  *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
45  *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
46  *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
47  *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
48  *  bitmap_full(src, nbits)                     Are all bits set in *src?
49  *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
50  *  bitmap_set(dst, pos, nbits)                 Set specified bit area
51  *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
52  *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
53  *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask)  as above
54  *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
55  *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
56  *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
57  *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
58  *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
59  *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
60  *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
61  *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
62  *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
63  *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
64  *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
65  *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
66  *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
67  *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
68  *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
69  *
70  * Note, bitmap_zero() and bitmap_fill() operate over the region of
71  * unsigned longs, that is, bits behind bitmap till the unsigned long
72  * boundary will be zeroed or filled as well. Consider to use
73  * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
74  * respectively.
75  */
76 
77 /**
78  * DOC: bitmap bitops
79  *
80  * Also the following operations in asm/bitops.h apply to bitmaps.::
81  *
82  *  set_bit(bit, addr)                  *addr |= bit
83  *  clear_bit(bit, addr)                *addr &= ~bit
84  *  change_bit(bit, addr)               *addr ^= bit
85  *  test_bit(bit, addr)                 Is bit set in *addr?
86  *  test_and_set_bit(bit, addr)         Set bit and return old value
87  *  test_and_clear_bit(bit, addr)       Clear bit and return old value
88  *  test_and_change_bit(bit, addr)      Change bit and return old value
89  *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
90  *  find_first_bit(addr, nbits)         Position first set bit in *addr
91  *  find_next_zero_bit(addr, nbits, bit)
92  *                                      Position next zero bit in *addr >= bit
93  *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
94  *  find_next_and_bit(addr1, addr2, nbits, bit)
95  *                                      Same as find_next_bit, but in
96  *                                      (*addr1 & *addr2)
97  *
98  */
99 
100 /**
101  * DOC: declare bitmap
102  * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
103  * to declare an array named 'name' of just enough unsigned longs to
104  * contain all bit positions from 0 to 'bits' - 1.
105  */
106 
107 /*
108  * lib/bitmap.c provides these functions:
109  */
110 
111 extern int __bitmap_empty(const unsigned long *bitmap, unsigned int nbits);
112 extern int __bitmap_full(const unsigned long *bitmap, unsigned int nbits);
113 extern int __bitmap_equal(const unsigned long *bitmap1,
114 			  const unsigned long *bitmap2, unsigned int nbits);
115 extern void __bitmap_complement(unsigned long *dst, const unsigned long *src,
116 			unsigned int nbits);
117 extern void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
118 				unsigned int shift, unsigned int nbits);
119 extern void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
120 				unsigned int shift, unsigned int nbits);
121 extern int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
122 			const unsigned long *bitmap2, unsigned int nbits);
123 extern void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
124 			const unsigned long *bitmap2, unsigned int nbits);
125 extern void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
126 			const unsigned long *bitmap2, unsigned int nbits);
127 extern int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
128 			const unsigned long *bitmap2, unsigned int nbits);
129 extern int __bitmap_intersects(const unsigned long *bitmap1,
130 			const unsigned long *bitmap2, unsigned int nbits);
131 extern int __bitmap_subset(const unsigned long *bitmap1,
132 			const unsigned long *bitmap2, unsigned int nbits);
133 extern int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
134 extern void __bitmap_set(unsigned long *map, unsigned int start, int len);
135 extern void __bitmap_clear(unsigned long *map, unsigned int start, int len);
136 
137 extern unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
138 						    unsigned long size,
139 						    unsigned long start,
140 						    unsigned int nr,
141 						    unsigned long align_mask,
142 						    unsigned long align_offset);
143 
144 /**
145  * bitmap_find_next_zero_area - find a contiguous aligned zero area
146  * @map: The address to base the search on
147  * @size: The bitmap size in bits
148  * @start: The bitnumber to start searching at
149  * @nr: The number of zeroed bits we're looking for
150  * @align_mask: Alignment mask for zero area
151  *
152  * The @align_mask should be one less than a power of 2; the effect is that
153  * the bit offset of all zero areas this function finds is multiples of that
154  * power of 2. A @align_mask of 0 means no alignment is required.
155  */
156 static inline unsigned long
157 bitmap_find_next_zero_area(unsigned long *map,
158 			   unsigned long size,
159 			   unsigned long start,
160 			   unsigned int nr,
161 			   unsigned long align_mask)
162 {
163 	return bitmap_find_next_zero_area_off(map, size, start, nr,
164 					      align_mask, 0);
165 }
166 
167 extern int __bitmap_parse(const char *buf, unsigned int buflen, int is_user,
168 			unsigned long *dst, int nbits);
169 extern int bitmap_parse_user(const char __user *ubuf, unsigned int ulen,
170 			unsigned long *dst, int nbits);
171 extern int bitmap_parselist(const char *buf, unsigned long *maskp,
172 			int nmaskbits);
173 extern int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen,
174 			unsigned long *dst, int nbits);
175 extern void bitmap_remap(unsigned long *dst, const unsigned long *src,
176 		const unsigned long *old, const unsigned long *new, unsigned int nbits);
177 extern int bitmap_bitremap(int oldbit,
178 		const unsigned long *old, const unsigned long *new, int bits);
179 extern void bitmap_onto(unsigned long *dst, const unsigned long *orig,
180 		const unsigned long *relmap, unsigned int bits);
181 extern void bitmap_fold(unsigned long *dst, const unsigned long *orig,
182 		unsigned int sz, unsigned int nbits);
183 extern int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order);
184 extern void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order);
185 extern int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order);
186 
187 #ifdef __BIG_ENDIAN
188 extern void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits);
189 #else
190 #define bitmap_copy_le bitmap_copy
191 #endif
192 extern unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits);
193 extern int bitmap_print_to_pagebuf(bool list, char *buf,
194 				   const unsigned long *maskp, int nmaskbits);
195 
196 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
197 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
198 
199 #define small_const_nbits(nbits) \
200 	(__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG)
201 
202 static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
203 {
204 	if (small_const_nbits(nbits))
205 		*dst = 0UL;
206 	else {
207 		unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
208 		memset(dst, 0, len);
209 	}
210 }
211 
212 static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
213 {
214 	if (small_const_nbits(nbits))
215 		*dst = ~0UL;
216 	else {
217 		unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
218 		memset(dst, 0xff, len);
219 	}
220 }
221 
222 static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
223 			unsigned int nbits)
224 {
225 	if (small_const_nbits(nbits))
226 		*dst = *src;
227 	else {
228 		unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
229 		memcpy(dst, src, len);
230 	}
231 }
232 
233 /*
234  * Copy bitmap and clear tail bits in last word.
235  */
236 static inline void bitmap_copy_clear_tail(unsigned long *dst,
237 		const unsigned long *src, unsigned int nbits)
238 {
239 	bitmap_copy(dst, src, nbits);
240 	if (nbits % BITS_PER_LONG)
241 		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
242 }
243 
244 /*
245  * On 32-bit systems bitmaps are represented as u32 arrays internally, and
246  * therefore conversion is not needed when copying data from/to arrays of u32.
247  */
248 #if BITS_PER_LONG == 64
249 extern void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
250 							unsigned int nbits);
251 extern void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
252 							unsigned int nbits);
253 #else
254 #define bitmap_from_arr32(bitmap, buf, nbits)			\
255 	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
256 			(const unsigned long *) (buf), (nbits))
257 #define bitmap_to_arr32(buf, bitmap, nbits)			\
258 	bitmap_copy_clear_tail((unsigned long *) (buf),		\
259 			(const unsigned long *) (bitmap), (nbits))
260 #endif
261 
262 static inline int bitmap_and(unsigned long *dst, const unsigned long *src1,
263 			const unsigned long *src2, unsigned int nbits)
264 {
265 	if (small_const_nbits(nbits))
266 		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
267 	return __bitmap_and(dst, src1, src2, nbits);
268 }
269 
270 static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
271 			const unsigned long *src2, unsigned int nbits)
272 {
273 	if (small_const_nbits(nbits))
274 		*dst = *src1 | *src2;
275 	else
276 		__bitmap_or(dst, src1, src2, nbits);
277 }
278 
279 static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
280 			const unsigned long *src2, unsigned int nbits)
281 {
282 	if (small_const_nbits(nbits))
283 		*dst = *src1 ^ *src2;
284 	else
285 		__bitmap_xor(dst, src1, src2, nbits);
286 }
287 
288 static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1,
289 			const unsigned long *src2, unsigned int nbits)
290 {
291 	if (small_const_nbits(nbits))
292 		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
293 	return __bitmap_andnot(dst, src1, src2, nbits);
294 }
295 
296 static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
297 			unsigned int nbits)
298 {
299 	if (small_const_nbits(nbits))
300 		*dst = ~(*src);
301 	else
302 		__bitmap_complement(dst, src, nbits);
303 }
304 
305 #ifdef __LITTLE_ENDIAN
306 #define BITMAP_MEM_ALIGNMENT 8
307 #else
308 #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
309 #endif
310 #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
311 
312 static inline int bitmap_equal(const unsigned long *src1,
313 			const unsigned long *src2, unsigned int nbits)
314 {
315 	if (small_const_nbits(nbits))
316 		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
317 	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
318 	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
319 		return !memcmp(src1, src2, nbits / 8);
320 	return __bitmap_equal(src1, src2, nbits);
321 }
322 
323 static inline int bitmap_intersects(const unsigned long *src1,
324 			const unsigned long *src2, unsigned int nbits)
325 {
326 	if (small_const_nbits(nbits))
327 		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
328 	else
329 		return __bitmap_intersects(src1, src2, nbits);
330 }
331 
332 static inline int bitmap_subset(const unsigned long *src1,
333 			const unsigned long *src2, unsigned int nbits)
334 {
335 	if (small_const_nbits(nbits))
336 		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
337 	else
338 		return __bitmap_subset(src1, src2, nbits);
339 }
340 
341 static inline int bitmap_empty(const unsigned long *src, unsigned nbits)
342 {
343 	if (small_const_nbits(nbits))
344 		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
345 
346 	return find_first_bit(src, nbits) == nbits;
347 }
348 
349 static inline int bitmap_full(const unsigned long *src, unsigned int nbits)
350 {
351 	if (small_const_nbits(nbits))
352 		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
353 
354 	return find_first_zero_bit(src, nbits) == nbits;
355 }
356 
357 static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits)
358 {
359 	if (small_const_nbits(nbits))
360 		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
361 	return __bitmap_weight(src, nbits);
362 }
363 
364 static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
365 		unsigned int nbits)
366 {
367 	if (__builtin_constant_p(nbits) && nbits == 1)
368 		__set_bit(start, map);
369 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
370 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
371 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
372 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
373 		memset((char *)map + start / 8, 0xff, nbits / 8);
374 	else
375 		__bitmap_set(map, start, nbits);
376 }
377 
378 static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
379 		unsigned int nbits)
380 {
381 	if (__builtin_constant_p(nbits) && nbits == 1)
382 		__clear_bit(start, map);
383 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
384 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
385 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
386 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
387 		memset((char *)map + start / 8, 0, nbits / 8);
388 	else
389 		__bitmap_clear(map, start, nbits);
390 }
391 
392 static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
393 				unsigned int shift, int nbits)
394 {
395 	if (small_const_nbits(nbits))
396 		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
397 	else
398 		__bitmap_shift_right(dst, src, shift, nbits);
399 }
400 
401 static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
402 				unsigned int shift, unsigned int nbits)
403 {
404 	if (small_const_nbits(nbits))
405 		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
406 	else
407 		__bitmap_shift_left(dst, src, shift, nbits);
408 }
409 
410 static inline int bitmap_parse(const char *buf, unsigned int buflen,
411 			unsigned long *maskp, int nmaskbits)
412 {
413 	return __bitmap_parse(buf, buflen, 0, maskp, nmaskbits);
414 }
415 
416 /**
417  * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
418  * @n: u64 value
419  *
420  * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
421  * integers in 32-bit environment, and 64-bit integers in 64-bit one.
422  *
423  * There are four combinations of endianness and length of the word in linux
424  * ABIs: LE64, BE64, LE32 and BE32.
425  *
426  * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
427  * bitmaps and therefore don't require any special handling.
428  *
429  * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
430  * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
431  * other hand is represented as an array of 32-bit words and the position of
432  * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
433  * word.  For example, bit #42 is located at 10th position of 2nd word.
434  * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
435  * values in memory as it usually does. But for BE we need to swap hi and lo
436  * words manually.
437  *
438  * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
439  * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
440  * hi and lo words, as is expected by bitmap.
441  */
442 #if __BITS_PER_LONG == 64
443 #define BITMAP_FROM_U64(n) (n)
444 #else
445 #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
446 				((unsigned long) ((u64)(n) >> 32))
447 #endif
448 
449 /**
450  * bitmap_from_u64 - Check and swap words within u64.
451  *  @mask: source bitmap
452  *  @dst:  destination bitmap
453  *
454  * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
455  * to read u64 mask, we will get the wrong word.
456  * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
457  * but we expect the lower 32-bits of u64.
458  */
459 static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
460 {
461 	dst[0] = mask & ULONG_MAX;
462 
463 	if (sizeof(mask) > sizeof(unsigned long))
464 		dst[1] = mask >> 32;
465 }
466 
467 #endif /* __ASSEMBLY__ */
468 
469 #endif /* __LINUX_BITMAP_H */
470