1 /* 2 * 2.5 block I/O model 3 * 4 * Copyright (C) 2001 Jens Axboe <axboe@suse.de> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public Licens 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 19 */ 20 #ifndef __LINUX_BIO_H 21 #define __LINUX_BIO_H 22 23 #include <linux/highmem.h> 24 #include <linux/mempool.h> 25 #include <linux/ioprio.h> 26 #include <linux/bug.h> 27 28 #ifdef CONFIG_BLOCK 29 30 #include <asm/io.h> 31 32 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ 33 #include <linux/blk_types.h> 34 35 #define BIO_DEBUG 36 37 #ifdef BIO_DEBUG 38 #define BIO_BUG_ON BUG_ON 39 #else 40 #define BIO_BUG_ON 41 #endif 42 43 #define BIO_MAX_PAGES 256 44 #define BIO_MAX_SIZE (BIO_MAX_PAGES << PAGE_CACHE_SHIFT) 45 #define BIO_MAX_SECTORS (BIO_MAX_SIZE >> 9) 46 47 /* 48 * upper 16 bits of bi_rw define the io priority of this bio 49 */ 50 #define BIO_PRIO_SHIFT (8 * sizeof(unsigned long) - IOPRIO_BITS) 51 #define bio_prio(bio) ((bio)->bi_rw >> BIO_PRIO_SHIFT) 52 #define bio_prio_valid(bio) ioprio_valid(bio_prio(bio)) 53 54 #define bio_set_prio(bio, prio) do { \ 55 WARN_ON(prio >= (1 << IOPRIO_BITS)); \ 56 (bio)->bi_rw &= ((1UL << BIO_PRIO_SHIFT) - 1); \ 57 (bio)->bi_rw |= ((unsigned long) (prio) << BIO_PRIO_SHIFT); \ 58 } while (0) 59 60 /* 61 * various member access, note that bio_data should of course not be used 62 * on highmem page vectors 63 */ 64 #define bio_iovec_idx(bio, idx) (&((bio)->bi_io_vec[(idx)])) 65 #define bio_iovec(bio) bio_iovec_idx((bio), (bio)->bi_idx) 66 #define bio_page(bio) bio_iovec((bio))->bv_page 67 #define bio_offset(bio) bio_iovec((bio))->bv_offset 68 #define bio_segments(bio) ((bio)->bi_vcnt - (bio)->bi_idx) 69 #define bio_sectors(bio) ((bio)->bi_size >> 9) 70 #define bio_end_sector(bio) ((bio)->bi_sector + bio_sectors((bio))) 71 72 static inline unsigned int bio_cur_bytes(struct bio *bio) 73 { 74 if (bio->bi_vcnt) 75 return bio_iovec(bio)->bv_len; 76 else /* dataless requests such as discard */ 77 return bio->bi_size; 78 } 79 80 static inline void *bio_data(struct bio *bio) 81 { 82 if (bio->bi_vcnt) 83 return page_address(bio_page(bio)) + bio_offset(bio); 84 85 return NULL; 86 } 87 88 /* 89 * will die 90 */ 91 #define bio_to_phys(bio) (page_to_phys(bio_page((bio))) + (unsigned long) bio_offset((bio))) 92 #define bvec_to_phys(bv) (page_to_phys((bv)->bv_page) + (unsigned long) (bv)->bv_offset) 93 94 /* 95 * queues that have highmem support enabled may still need to revert to 96 * PIO transfers occasionally and thus map high pages temporarily. For 97 * permanent PIO fall back, user is probably better off disabling highmem 98 * I/O completely on that queue (see ide-dma for example) 99 */ 100 #define __bio_kmap_atomic(bio, idx) \ 101 (kmap_atomic(bio_iovec_idx((bio), (idx))->bv_page) + \ 102 bio_iovec_idx((bio), (idx))->bv_offset) 103 104 #define __bio_kunmap_atomic(addr) kunmap_atomic(addr) 105 106 /* 107 * merge helpers etc 108 */ 109 110 #define __BVEC_END(bio) bio_iovec_idx((bio), (bio)->bi_vcnt - 1) 111 #define __BVEC_START(bio) bio_iovec_idx((bio), (bio)->bi_idx) 112 113 /* Default implementation of BIOVEC_PHYS_MERGEABLE */ 114 #define __BIOVEC_PHYS_MERGEABLE(vec1, vec2) \ 115 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2))) 116 117 /* 118 * allow arch override, for eg virtualized architectures (put in asm/io.h) 119 */ 120 #ifndef BIOVEC_PHYS_MERGEABLE 121 #define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \ 122 __BIOVEC_PHYS_MERGEABLE(vec1, vec2) 123 #endif 124 125 #define __BIO_SEG_BOUNDARY(addr1, addr2, mask) \ 126 (((addr1) | (mask)) == (((addr2) - 1) | (mask))) 127 #define BIOVEC_SEG_BOUNDARY(q, b1, b2) \ 128 __BIO_SEG_BOUNDARY(bvec_to_phys((b1)), bvec_to_phys((b2)) + (b2)->bv_len, queue_segment_boundary((q))) 129 #define BIO_SEG_BOUNDARY(q, b1, b2) \ 130 BIOVEC_SEG_BOUNDARY((q), __BVEC_END((b1)), __BVEC_START((b2))) 131 132 #define bio_io_error(bio) bio_endio((bio), -EIO) 133 134 /* 135 * drivers should not use the __ version unless they _really_ know what 136 * they're doing 137 */ 138 #define __bio_for_each_segment(bvl, bio, i, start_idx) \ 139 for (bvl = bio_iovec_idx((bio), (start_idx)), i = (start_idx); \ 140 i < (bio)->bi_vcnt; \ 141 bvl++, i++) 142 143 /* 144 * drivers should _never_ use the all version - the bio may have been split 145 * before it got to the driver and the driver won't own all of it 146 */ 147 #define bio_for_each_segment_all(bvl, bio, i) \ 148 for (i = 0; \ 149 bvl = bio_iovec_idx((bio), (i)), i < (bio)->bi_vcnt; \ 150 i++) 151 152 #define bio_for_each_segment(bvl, bio, i) \ 153 for (i = (bio)->bi_idx; \ 154 bvl = bio_iovec_idx((bio), (i)), i < (bio)->bi_vcnt; \ 155 i++) 156 157 /* 158 * get a reference to a bio, so it won't disappear. the intended use is 159 * something like: 160 * 161 * bio_get(bio); 162 * submit_bio(rw, bio); 163 * if (bio->bi_flags ...) 164 * do_something 165 * bio_put(bio); 166 * 167 * without the bio_get(), it could potentially complete I/O before submit_bio 168 * returns. and then bio would be freed memory when if (bio->bi_flags ...) 169 * runs 170 */ 171 #define bio_get(bio) atomic_inc(&(bio)->bi_cnt) 172 173 #if defined(CONFIG_BLK_DEV_INTEGRITY) 174 /* 175 * bio integrity payload 176 */ 177 struct bio_integrity_payload { 178 struct bio *bip_bio; /* parent bio */ 179 180 sector_t bip_sector; /* virtual start sector */ 181 182 void *bip_buf; /* generated integrity data */ 183 bio_end_io_t *bip_end_io; /* saved I/O completion fn */ 184 185 unsigned int bip_size; 186 187 unsigned short bip_slab; /* slab the bip came from */ 188 unsigned short bip_vcnt; /* # of integrity bio_vecs */ 189 unsigned short bip_idx; /* current bip_vec index */ 190 unsigned bip_owns_buf:1; /* should free bip_buf */ 191 192 struct work_struct bip_work; /* I/O completion */ 193 194 struct bio_vec *bip_vec; 195 struct bio_vec bip_inline_vecs[0];/* embedded bvec array */ 196 }; 197 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 198 199 /* 200 * A bio_pair is used when we need to split a bio. 201 * This can only happen for a bio that refers to just one 202 * page of data, and in the unusual situation when the 203 * page crosses a chunk/device boundary 204 * 205 * The address of the master bio is stored in bio1.bi_private 206 * The address of the pool the pair was allocated from is stored 207 * in bio2.bi_private 208 */ 209 struct bio_pair { 210 struct bio bio1, bio2; 211 struct bio_vec bv1, bv2; 212 #if defined(CONFIG_BLK_DEV_INTEGRITY) 213 struct bio_integrity_payload bip1, bip2; 214 struct bio_vec iv1, iv2; 215 #endif 216 atomic_t cnt; 217 int error; 218 }; 219 extern struct bio_pair *bio_split(struct bio *bi, int first_sectors); 220 extern void bio_pair_release(struct bio_pair *dbio); 221 222 extern struct bio_set *bioset_create(unsigned int, unsigned int); 223 extern void bioset_free(struct bio_set *); 224 extern mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries); 225 226 extern struct bio *bio_alloc_bioset(gfp_t, int, struct bio_set *); 227 extern void bio_put(struct bio *); 228 229 extern void __bio_clone(struct bio *, struct bio *); 230 extern struct bio *bio_clone_bioset(struct bio *, gfp_t, struct bio_set *bs); 231 232 extern struct bio_set *fs_bio_set; 233 234 static inline struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 235 { 236 return bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set); 237 } 238 239 static inline struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) 240 { 241 return bio_clone_bioset(bio, gfp_mask, fs_bio_set); 242 } 243 244 static inline struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs) 245 { 246 return bio_alloc_bioset(gfp_mask, nr_iovecs, NULL); 247 } 248 249 static inline struct bio *bio_clone_kmalloc(struct bio *bio, gfp_t gfp_mask) 250 { 251 return bio_clone_bioset(bio, gfp_mask, NULL); 252 253 } 254 255 extern void bio_endio(struct bio *, int); 256 struct request_queue; 257 extern int bio_phys_segments(struct request_queue *, struct bio *); 258 259 extern int submit_bio_wait(int rw, struct bio *bio); 260 extern void bio_advance(struct bio *, unsigned); 261 262 extern void bio_init(struct bio *); 263 extern void bio_reset(struct bio *); 264 265 extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int); 266 extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, 267 unsigned int, unsigned int); 268 extern int bio_get_nr_vecs(struct block_device *); 269 extern sector_t bio_sector_offset(struct bio *, unsigned short, unsigned int); 270 extern struct bio *bio_map_user(struct request_queue *, struct block_device *, 271 unsigned long, unsigned int, int, gfp_t); 272 struct sg_iovec; 273 struct rq_map_data; 274 extern struct bio *bio_map_user_iov(struct request_queue *, 275 struct block_device *, 276 struct sg_iovec *, int, int, gfp_t); 277 extern void bio_unmap_user(struct bio *); 278 extern struct bio *bio_map_kern(struct request_queue *, void *, unsigned int, 279 gfp_t); 280 extern struct bio *bio_copy_kern(struct request_queue *, void *, unsigned int, 281 gfp_t, int); 282 extern void bio_set_pages_dirty(struct bio *bio); 283 extern void bio_check_pages_dirty(struct bio *bio); 284 285 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 286 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 287 #endif 288 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 289 extern void bio_flush_dcache_pages(struct bio *bi); 290 #else 291 static inline void bio_flush_dcache_pages(struct bio *bi) 292 { 293 } 294 #endif 295 296 extern void bio_copy_data(struct bio *dst, struct bio *src); 297 extern int bio_alloc_pages(struct bio *bio, gfp_t gfp); 298 299 extern struct bio *bio_copy_user(struct request_queue *, struct rq_map_data *, 300 unsigned long, unsigned int, int, gfp_t); 301 extern struct bio *bio_copy_user_iov(struct request_queue *, 302 struct rq_map_data *, struct sg_iovec *, 303 int, int, gfp_t); 304 extern int bio_uncopy_user(struct bio *); 305 void zero_fill_bio(struct bio *bio); 306 extern struct bio_vec *bvec_alloc(gfp_t, int, unsigned long *, mempool_t *); 307 extern void bvec_free(mempool_t *, struct bio_vec *, unsigned int); 308 extern unsigned int bvec_nr_vecs(unsigned short idx); 309 310 #ifdef CONFIG_BLK_CGROUP 311 int bio_associate_current(struct bio *bio); 312 void bio_disassociate_task(struct bio *bio); 313 #else /* CONFIG_BLK_CGROUP */ 314 static inline int bio_associate_current(struct bio *bio) { return -ENOENT; } 315 static inline void bio_disassociate_task(struct bio *bio) { } 316 #endif /* CONFIG_BLK_CGROUP */ 317 318 #ifdef CONFIG_HIGHMEM 319 /* 320 * remember never ever reenable interrupts between a bvec_kmap_irq and 321 * bvec_kunmap_irq! 322 */ 323 static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) 324 { 325 unsigned long addr; 326 327 /* 328 * might not be a highmem page, but the preempt/irq count 329 * balancing is a lot nicer this way 330 */ 331 local_irq_save(*flags); 332 addr = (unsigned long) kmap_atomic(bvec->bv_page); 333 334 BUG_ON(addr & ~PAGE_MASK); 335 336 return (char *) addr + bvec->bv_offset; 337 } 338 339 static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) 340 { 341 unsigned long ptr = (unsigned long) buffer & PAGE_MASK; 342 343 kunmap_atomic((void *) ptr); 344 local_irq_restore(*flags); 345 } 346 347 #else 348 static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) 349 { 350 return page_address(bvec->bv_page) + bvec->bv_offset; 351 } 352 353 static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) 354 { 355 *flags = 0; 356 } 357 #endif 358 359 static inline char *__bio_kmap_irq(struct bio *bio, unsigned short idx, 360 unsigned long *flags) 361 { 362 return bvec_kmap_irq(bio_iovec_idx(bio, idx), flags); 363 } 364 #define __bio_kunmap_irq(buf, flags) bvec_kunmap_irq(buf, flags) 365 366 #define bio_kmap_irq(bio, flags) \ 367 __bio_kmap_irq((bio), (bio)->bi_idx, (flags)) 368 #define bio_kunmap_irq(buf,flags) __bio_kunmap_irq(buf, flags) 369 370 /* 371 * Check whether this bio carries any data or not. A NULL bio is allowed. 372 */ 373 static inline bool bio_has_data(struct bio *bio) 374 { 375 if (bio && bio->bi_vcnt) 376 return true; 377 378 return false; 379 } 380 381 static inline bool bio_is_rw(struct bio *bio) 382 { 383 if (!bio_has_data(bio)) 384 return false; 385 386 if (bio->bi_rw & REQ_WRITE_SAME) 387 return false; 388 389 return true; 390 } 391 392 static inline bool bio_mergeable(struct bio *bio) 393 { 394 if (bio->bi_rw & REQ_NOMERGE_FLAGS) 395 return false; 396 397 return true; 398 } 399 400 /* 401 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. 402 * 403 * A bio_list anchors a singly-linked list of bios chained through the bi_next 404 * member of the bio. The bio_list also caches the last list member to allow 405 * fast access to the tail. 406 */ 407 struct bio_list { 408 struct bio *head; 409 struct bio *tail; 410 }; 411 412 static inline int bio_list_empty(const struct bio_list *bl) 413 { 414 return bl->head == NULL; 415 } 416 417 static inline void bio_list_init(struct bio_list *bl) 418 { 419 bl->head = bl->tail = NULL; 420 } 421 422 #define bio_list_for_each(bio, bl) \ 423 for (bio = (bl)->head; bio; bio = bio->bi_next) 424 425 static inline unsigned bio_list_size(const struct bio_list *bl) 426 { 427 unsigned sz = 0; 428 struct bio *bio; 429 430 bio_list_for_each(bio, bl) 431 sz++; 432 433 return sz; 434 } 435 436 static inline void bio_list_add(struct bio_list *bl, struct bio *bio) 437 { 438 bio->bi_next = NULL; 439 440 if (bl->tail) 441 bl->tail->bi_next = bio; 442 else 443 bl->head = bio; 444 445 bl->tail = bio; 446 } 447 448 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) 449 { 450 bio->bi_next = bl->head; 451 452 bl->head = bio; 453 454 if (!bl->tail) 455 bl->tail = bio; 456 } 457 458 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) 459 { 460 if (!bl2->head) 461 return; 462 463 if (bl->tail) 464 bl->tail->bi_next = bl2->head; 465 else 466 bl->head = bl2->head; 467 468 bl->tail = bl2->tail; 469 } 470 471 static inline void bio_list_merge_head(struct bio_list *bl, 472 struct bio_list *bl2) 473 { 474 if (!bl2->head) 475 return; 476 477 if (bl->head) 478 bl2->tail->bi_next = bl->head; 479 else 480 bl->tail = bl2->tail; 481 482 bl->head = bl2->head; 483 } 484 485 static inline struct bio *bio_list_peek(struct bio_list *bl) 486 { 487 return bl->head; 488 } 489 490 static inline struct bio *bio_list_pop(struct bio_list *bl) 491 { 492 struct bio *bio = bl->head; 493 494 if (bio) { 495 bl->head = bl->head->bi_next; 496 if (!bl->head) 497 bl->tail = NULL; 498 499 bio->bi_next = NULL; 500 } 501 502 return bio; 503 } 504 505 static inline struct bio *bio_list_get(struct bio_list *bl) 506 { 507 struct bio *bio = bl->head; 508 509 bl->head = bl->tail = NULL; 510 511 return bio; 512 } 513 514 /* 515 * bio_set is used to allow other portions of the IO system to 516 * allocate their own private memory pools for bio and iovec structures. 517 * These memory pools in turn all allocate from the bio_slab 518 * and the bvec_slabs[]. 519 */ 520 #define BIO_POOL_SIZE 2 521 #define BIOVEC_NR_POOLS 6 522 #define BIOVEC_MAX_IDX (BIOVEC_NR_POOLS - 1) 523 524 struct bio_set { 525 struct kmem_cache *bio_slab; 526 unsigned int front_pad; 527 528 mempool_t *bio_pool; 529 mempool_t *bvec_pool; 530 #if defined(CONFIG_BLK_DEV_INTEGRITY) 531 mempool_t *bio_integrity_pool; 532 mempool_t *bvec_integrity_pool; 533 #endif 534 535 /* 536 * Deadlock avoidance for stacking block drivers: see comments in 537 * bio_alloc_bioset() for details 538 */ 539 spinlock_t rescue_lock; 540 struct bio_list rescue_list; 541 struct work_struct rescue_work; 542 struct workqueue_struct *rescue_workqueue; 543 }; 544 545 struct biovec_slab { 546 int nr_vecs; 547 char *name; 548 struct kmem_cache *slab; 549 }; 550 551 /* 552 * a small number of entries is fine, not going to be performance critical. 553 * basically we just need to survive 554 */ 555 #define BIO_SPLIT_ENTRIES 2 556 557 #if defined(CONFIG_BLK_DEV_INTEGRITY) 558 559 #define bip_vec_idx(bip, idx) (&(bip->bip_vec[(idx)])) 560 #define bip_vec(bip) bip_vec_idx(bip, 0) 561 562 #define __bip_for_each_vec(bvl, bip, i, start_idx) \ 563 for (bvl = bip_vec_idx((bip), (start_idx)), i = (start_idx); \ 564 i < (bip)->bip_vcnt; \ 565 bvl++, i++) 566 567 #define bip_for_each_vec(bvl, bip, i) \ 568 __bip_for_each_vec(bvl, bip, i, (bip)->bip_idx) 569 570 #define bio_for_each_integrity_vec(_bvl, _bio, _iter) \ 571 for_each_bio(_bio) \ 572 bip_for_each_vec(_bvl, _bio->bi_integrity, _iter) 573 574 #define bio_integrity(bio) (bio->bi_integrity != NULL) 575 576 extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int); 577 extern void bio_integrity_free(struct bio *); 578 extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int); 579 extern int bio_integrity_enabled(struct bio *bio); 580 extern int bio_integrity_set_tag(struct bio *, void *, unsigned int); 581 extern int bio_integrity_get_tag(struct bio *, void *, unsigned int); 582 extern int bio_integrity_prep(struct bio *); 583 extern void bio_integrity_endio(struct bio *, int); 584 extern void bio_integrity_advance(struct bio *, unsigned int); 585 extern void bio_integrity_trim(struct bio *, unsigned int, unsigned int); 586 extern void bio_integrity_split(struct bio *, struct bio_pair *, int); 587 extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t); 588 extern int bioset_integrity_create(struct bio_set *, int); 589 extern void bioset_integrity_free(struct bio_set *); 590 extern void bio_integrity_init(void); 591 592 #else /* CONFIG_BLK_DEV_INTEGRITY */ 593 594 static inline int bio_integrity(struct bio *bio) 595 { 596 return 0; 597 } 598 599 static inline int bio_integrity_enabled(struct bio *bio) 600 { 601 return 0; 602 } 603 604 static inline int bioset_integrity_create(struct bio_set *bs, int pool_size) 605 { 606 return 0; 607 } 608 609 static inline void bioset_integrity_free (struct bio_set *bs) 610 { 611 return; 612 } 613 614 static inline int bio_integrity_prep(struct bio *bio) 615 { 616 return 0; 617 } 618 619 static inline void bio_integrity_free(struct bio *bio) 620 { 621 return; 622 } 623 624 static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src, 625 gfp_t gfp_mask) 626 { 627 return 0; 628 } 629 630 static inline void bio_integrity_split(struct bio *bio, struct bio_pair *bp, 631 int sectors) 632 { 633 return; 634 } 635 636 static inline void bio_integrity_advance(struct bio *bio, 637 unsigned int bytes_done) 638 { 639 return; 640 } 641 642 static inline void bio_integrity_trim(struct bio *bio, unsigned int offset, 643 unsigned int sectors) 644 { 645 return; 646 } 647 648 static inline void bio_integrity_init(void) 649 { 650 return; 651 } 652 653 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 654 655 #endif /* CONFIG_BLOCK */ 656 #endif /* __LINUX_BIO_H */ 657