1 /* 2 * 2.5 block I/O model 3 * 4 * Copyright (C) 2001 Jens Axboe <axboe@suse.de> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public Licens 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 19 */ 20 #ifndef __LINUX_BIO_H 21 #define __LINUX_BIO_H 22 23 #include <linux/highmem.h> 24 #include <linux/mempool.h> 25 #include <linux/ioprio.h> 26 27 #ifdef CONFIG_BLOCK 28 29 #include <asm/io.h> 30 31 #define BIO_DEBUG 32 33 #ifdef BIO_DEBUG 34 #define BIO_BUG_ON BUG_ON 35 #else 36 #define BIO_BUG_ON 37 #endif 38 39 #define BIO_MAX_PAGES 256 40 #define BIO_MAX_SIZE (BIO_MAX_PAGES << PAGE_CACHE_SHIFT) 41 #define BIO_MAX_SECTORS (BIO_MAX_SIZE >> 9) 42 43 /* 44 * was unsigned short, but we might as well be ready for > 64kB I/O pages 45 */ 46 struct bio_vec { 47 struct page *bv_page; 48 unsigned int bv_len; 49 unsigned int bv_offset; 50 }; 51 52 struct bio_set; 53 struct bio; 54 struct bio_integrity_payload; 55 typedef void (bio_end_io_t) (struct bio *, int); 56 typedef void (bio_destructor_t) (struct bio *); 57 58 /* 59 * main unit of I/O for the block layer and lower layers (ie drivers and 60 * stacking drivers) 61 */ 62 struct bio { 63 sector_t bi_sector; /* device address in 512 byte 64 sectors */ 65 struct bio *bi_next; /* request queue link */ 66 struct block_device *bi_bdev; 67 unsigned long bi_flags; /* status, command, etc */ 68 unsigned long bi_rw; /* bottom bits READ/WRITE, 69 * top bits priority 70 */ 71 72 unsigned short bi_vcnt; /* how many bio_vec's */ 73 unsigned short bi_idx; /* current index into bvl_vec */ 74 75 /* Number of segments in this BIO after 76 * physical address coalescing is performed. 77 */ 78 unsigned int bi_phys_segments; 79 80 unsigned int bi_size; /* residual I/O count */ 81 82 /* 83 * To keep track of the max segment size, we account for the 84 * sizes of the first and last mergeable segments in this bio. 85 */ 86 unsigned int bi_seg_front_size; 87 unsigned int bi_seg_back_size; 88 89 unsigned int bi_max_vecs; /* max bvl_vecs we can hold */ 90 91 unsigned int bi_comp_cpu; /* completion CPU */ 92 93 atomic_t bi_cnt; /* pin count */ 94 95 struct bio_vec *bi_io_vec; /* the actual vec list */ 96 97 bio_end_io_t *bi_end_io; 98 99 void *bi_private; 100 #if defined(CONFIG_BLK_DEV_INTEGRITY) 101 struct bio_integrity_payload *bi_integrity; /* data integrity */ 102 #endif 103 104 bio_destructor_t *bi_destructor; /* destructor */ 105 106 /* 107 * We can inline a number of vecs at the end of the bio, to avoid 108 * double allocations for a small number of bio_vecs. This member 109 * MUST obviously be kept at the very end of the bio. 110 */ 111 struct bio_vec bi_inline_vecs[0]; 112 }; 113 114 /* 115 * bio flags 116 */ 117 #define BIO_UPTODATE 0 /* ok after I/O completion */ 118 #define BIO_RW_BLOCK 1 /* RW_AHEAD set, and read/write would block */ 119 #define BIO_EOF 2 /* out-out-bounds error */ 120 #define BIO_SEG_VALID 3 /* bi_phys_segments valid */ 121 #define BIO_CLONED 4 /* doesn't own data */ 122 #define BIO_BOUNCED 5 /* bio is a bounce bio */ 123 #define BIO_USER_MAPPED 6 /* contains user pages */ 124 #define BIO_EOPNOTSUPP 7 /* not supported */ 125 #define BIO_CPU_AFFINE 8 /* complete bio on same CPU as submitted */ 126 #define BIO_NULL_MAPPED 9 /* contains invalid user pages */ 127 #define BIO_FS_INTEGRITY 10 /* fs owns integrity data, not block layer */ 128 #define BIO_QUIET 11 /* Make BIO Quiet */ 129 #define bio_flagged(bio, flag) ((bio)->bi_flags & (1 << (flag))) 130 131 /* 132 * top 4 bits of bio flags indicate the pool this bio came from 133 */ 134 #define BIO_POOL_BITS (4) 135 #define BIO_POOL_NONE ((1UL << BIO_POOL_BITS) - 1) 136 #define BIO_POOL_OFFSET (BITS_PER_LONG - BIO_POOL_BITS) 137 #define BIO_POOL_MASK (1UL << BIO_POOL_OFFSET) 138 #define BIO_POOL_IDX(bio) ((bio)->bi_flags >> BIO_POOL_OFFSET) 139 140 /* 141 * bio bi_rw flags 142 * 143 * bit 0 -- data direction 144 * If not set, bio is a read from device. If set, it's a write to device. 145 * bit 1 -- fail fast device errors 146 * bit 2 -- fail fast transport errors 147 * bit 3 -- fail fast driver errors 148 * bit 4 -- rw-ahead when set 149 * bit 5 -- barrier 150 * Insert a serialization point in the IO queue, forcing previously 151 * submitted IO to be completed before this one is issued. 152 * bit 6 -- synchronous I/O hint. 153 * bit 7 -- Unplug the device immediately after submitting this bio. 154 * bit 8 -- metadata request 155 * Used for tracing to differentiate metadata and data IO. May also 156 * get some preferential treatment in the IO scheduler 157 * bit 9 -- discard sectors 158 * Informs the lower level device that this range of sectors is no longer 159 * used by the file system and may thus be freed by the device. Used 160 * for flash based storage. 161 * Don't want driver retries for any fast fail whatever the reason. 162 * bit 10 -- Tell the IO scheduler not to wait for more requests after this 163 one has been submitted, even if it is a SYNC request. 164 */ 165 enum bio_rw_flags { 166 BIO_RW, 167 BIO_RW_FAILFAST_DEV, 168 BIO_RW_FAILFAST_TRANSPORT, 169 BIO_RW_FAILFAST_DRIVER, 170 /* above flags must match REQ_* */ 171 BIO_RW_AHEAD, 172 BIO_RW_BARRIER, 173 BIO_RW_SYNCIO, 174 BIO_RW_UNPLUG, 175 BIO_RW_META, 176 BIO_RW_DISCARD, 177 BIO_RW_NOIDLE, 178 }; 179 180 /* 181 * First four bits must match between bio->bi_rw and rq->cmd_flags, make 182 * that explicit here. 183 */ 184 #define BIO_RW_RQ_MASK 0xf 185 186 static inline bool bio_rw_flagged(struct bio *bio, enum bio_rw_flags flag) 187 { 188 return (bio->bi_rw & (1 << flag)) != 0; 189 } 190 191 /* 192 * upper 16 bits of bi_rw define the io priority of this bio 193 */ 194 #define BIO_PRIO_SHIFT (8 * sizeof(unsigned long) - IOPRIO_BITS) 195 #define bio_prio(bio) ((bio)->bi_rw >> BIO_PRIO_SHIFT) 196 #define bio_prio_valid(bio) ioprio_valid(bio_prio(bio)) 197 198 #define bio_set_prio(bio, prio) do { \ 199 WARN_ON(prio >= (1 << IOPRIO_BITS)); \ 200 (bio)->bi_rw &= ((1UL << BIO_PRIO_SHIFT) - 1); \ 201 (bio)->bi_rw |= ((unsigned long) (prio) << BIO_PRIO_SHIFT); \ 202 } while (0) 203 204 /* 205 * various member access, note that bio_data should of course not be used 206 * on highmem page vectors 207 */ 208 #define bio_iovec_idx(bio, idx) (&((bio)->bi_io_vec[(idx)])) 209 #define bio_iovec(bio) bio_iovec_idx((bio), (bio)->bi_idx) 210 #define bio_page(bio) bio_iovec((bio))->bv_page 211 #define bio_offset(bio) bio_iovec((bio))->bv_offset 212 #define bio_segments(bio) ((bio)->bi_vcnt - (bio)->bi_idx) 213 #define bio_sectors(bio) ((bio)->bi_size >> 9) 214 #define bio_empty_barrier(bio) (bio_rw_flagged(bio, BIO_RW_BARRIER) && !bio_has_data(bio) && !bio_rw_flagged(bio, BIO_RW_DISCARD)) 215 216 static inline unsigned int bio_cur_bytes(struct bio *bio) 217 { 218 if (bio->bi_vcnt) 219 return bio_iovec(bio)->bv_len; 220 else /* dataless requests such as discard */ 221 return bio->bi_size; 222 } 223 224 static inline void *bio_data(struct bio *bio) 225 { 226 if (bio->bi_vcnt) 227 return page_address(bio_page(bio)) + bio_offset(bio); 228 229 return NULL; 230 } 231 232 static inline int bio_has_allocated_vec(struct bio *bio) 233 { 234 return bio->bi_io_vec && bio->bi_io_vec != bio->bi_inline_vecs; 235 } 236 237 /* 238 * will die 239 */ 240 #define bio_to_phys(bio) (page_to_phys(bio_page((bio))) + (unsigned long) bio_offset((bio))) 241 #define bvec_to_phys(bv) (page_to_phys((bv)->bv_page) + (unsigned long) (bv)->bv_offset) 242 243 /* 244 * queues that have highmem support enabled may still need to revert to 245 * PIO transfers occasionally and thus map high pages temporarily. For 246 * permanent PIO fall back, user is probably better off disabling highmem 247 * I/O completely on that queue (see ide-dma for example) 248 */ 249 #define __bio_kmap_atomic(bio, idx, kmtype) \ 250 (kmap_atomic(bio_iovec_idx((bio), (idx))->bv_page, kmtype) + \ 251 bio_iovec_idx((bio), (idx))->bv_offset) 252 253 #define __bio_kunmap_atomic(addr, kmtype) kunmap_atomic(addr, kmtype) 254 255 /* 256 * merge helpers etc 257 */ 258 259 #define __BVEC_END(bio) bio_iovec_idx((bio), (bio)->bi_vcnt - 1) 260 #define __BVEC_START(bio) bio_iovec_idx((bio), (bio)->bi_idx) 261 262 /* Default implementation of BIOVEC_PHYS_MERGEABLE */ 263 #define __BIOVEC_PHYS_MERGEABLE(vec1, vec2) \ 264 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2))) 265 266 /* 267 * allow arch override, for eg virtualized architectures (put in asm/io.h) 268 */ 269 #ifndef BIOVEC_PHYS_MERGEABLE 270 #define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \ 271 __BIOVEC_PHYS_MERGEABLE(vec1, vec2) 272 #endif 273 274 #define __BIO_SEG_BOUNDARY(addr1, addr2, mask) \ 275 (((addr1) | (mask)) == (((addr2) - 1) | (mask))) 276 #define BIOVEC_SEG_BOUNDARY(q, b1, b2) \ 277 __BIO_SEG_BOUNDARY(bvec_to_phys((b1)), bvec_to_phys((b2)) + (b2)->bv_len, queue_segment_boundary((q))) 278 #define BIO_SEG_BOUNDARY(q, b1, b2) \ 279 BIOVEC_SEG_BOUNDARY((q), __BVEC_END((b1)), __BVEC_START((b2))) 280 281 #define bio_io_error(bio) bio_endio((bio), -EIO) 282 283 /* 284 * drivers should not use the __ version unless they _really_ want to 285 * run through the entire bio and not just pending pieces 286 */ 287 #define __bio_for_each_segment(bvl, bio, i, start_idx) \ 288 for (bvl = bio_iovec_idx((bio), (start_idx)), i = (start_idx); \ 289 i < (bio)->bi_vcnt; \ 290 bvl++, i++) 291 292 #define bio_for_each_segment(bvl, bio, i) \ 293 __bio_for_each_segment(bvl, bio, i, (bio)->bi_idx) 294 295 /* 296 * get a reference to a bio, so it won't disappear. the intended use is 297 * something like: 298 * 299 * bio_get(bio); 300 * submit_bio(rw, bio); 301 * if (bio->bi_flags ...) 302 * do_something 303 * bio_put(bio); 304 * 305 * without the bio_get(), it could potentially complete I/O before submit_bio 306 * returns. and then bio would be freed memory when if (bio->bi_flags ...) 307 * runs 308 */ 309 #define bio_get(bio) atomic_inc(&(bio)->bi_cnt) 310 311 #if defined(CONFIG_BLK_DEV_INTEGRITY) 312 /* 313 * bio integrity payload 314 */ 315 struct bio_integrity_payload { 316 struct bio *bip_bio; /* parent bio */ 317 318 sector_t bip_sector; /* virtual start sector */ 319 320 void *bip_buf; /* generated integrity data */ 321 bio_end_io_t *bip_end_io; /* saved I/O completion fn */ 322 323 unsigned int bip_size; 324 325 unsigned short bip_slab; /* slab the bip came from */ 326 unsigned short bip_vcnt; /* # of integrity bio_vecs */ 327 unsigned short bip_idx; /* current bip_vec index */ 328 329 struct work_struct bip_work; /* I/O completion */ 330 struct bio_vec bip_vec[0]; /* embedded bvec array */ 331 }; 332 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 333 334 /* 335 * A bio_pair is used when we need to split a bio. 336 * This can only happen for a bio that refers to just one 337 * page of data, and in the unusual situation when the 338 * page crosses a chunk/device boundary 339 * 340 * The address of the master bio is stored in bio1.bi_private 341 * The address of the pool the pair was allocated from is stored 342 * in bio2.bi_private 343 */ 344 struct bio_pair { 345 struct bio bio1, bio2; 346 struct bio_vec bv1, bv2; 347 #if defined(CONFIG_BLK_DEV_INTEGRITY) 348 struct bio_integrity_payload bip1, bip2; 349 struct bio_vec iv1, iv2; 350 #endif 351 atomic_t cnt; 352 int error; 353 }; 354 extern struct bio_pair *bio_split(struct bio *bi, int first_sectors); 355 extern void bio_pair_release(struct bio_pair *dbio); 356 357 extern struct bio_set *bioset_create(unsigned int, unsigned int); 358 extern void bioset_free(struct bio_set *); 359 360 extern struct bio *bio_alloc(gfp_t, int); 361 extern struct bio *bio_kmalloc(gfp_t, int); 362 extern struct bio *bio_alloc_bioset(gfp_t, int, struct bio_set *); 363 extern void bio_put(struct bio *); 364 extern void bio_free(struct bio *, struct bio_set *); 365 366 extern void bio_endio(struct bio *, int); 367 struct request_queue; 368 extern int bio_phys_segments(struct request_queue *, struct bio *); 369 370 extern void __bio_clone(struct bio *, struct bio *); 371 extern struct bio *bio_clone(struct bio *, gfp_t); 372 373 extern void bio_init(struct bio *); 374 375 extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int); 376 extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, 377 unsigned int, unsigned int); 378 extern int bio_get_nr_vecs(struct block_device *); 379 extern sector_t bio_sector_offset(struct bio *, unsigned short, unsigned int); 380 extern struct bio *bio_map_user(struct request_queue *, struct block_device *, 381 unsigned long, unsigned int, int, gfp_t); 382 struct sg_iovec; 383 struct rq_map_data; 384 extern struct bio *bio_map_user_iov(struct request_queue *, 385 struct block_device *, 386 struct sg_iovec *, int, int, gfp_t); 387 extern void bio_unmap_user(struct bio *); 388 extern struct bio *bio_map_kern(struct request_queue *, void *, unsigned int, 389 gfp_t); 390 extern struct bio *bio_copy_kern(struct request_queue *, void *, unsigned int, 391 gfp_t, int); 392 extern void bio_set_pages_dirty(struct bio *bio); 393 extern void bio_check_pages_dirty(struct bio *bio); 394 395 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 396 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 397 #endif 398 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 399 extern void bio_flush_dcache_pages(struct bio *bi); 400 #else 401 static inline void bio_flush_dcache_pages(struct bio *bi) 402 { 403 } 404 #endif 405 406 extern struct bio *bio_copy_user(struct request_queue *, struct rq_map_data *, 407 unsigned long, unsigned int, int, gfp_t); 408 extern struct bio *bio_copy_user_iov(struct request_queue *, 409 struct rq_map_data *, struct sg_iovec *, 410 int, int, gfp_t); 411 extern int bio_uncopy_user(struct bio *); 412 void zero_fill_bio(struct bio *bio); 413 extern struct bio_vec *bvec_alloc_bs(gfp_t, int, unsigned long *, struct bio_set *); 414 extern void bvec_free_bs(struct bio_set *, struct bio_vec *, unsigned int); 415 extern unsigned int bvec_nr_vecs(unsigned short idx); 416 417 /* 418 * Allow queuer to specify a completion CPU for this bio 419 */ 420 static inline void bio_set_completion_cpu(struct bio *bio, unsigned int cpu) 421 { 422 bio->bi_comp_cpu = cpu; 423 } 424 425 /* 426 * bio_set is used to allow other portions of the IO system to 427 * allocate their own private memory pools for bio and iovec structures. 428 * These memory pools in turn all allocate from the bio_slab 429 * and the bvec_slabs[]. 430 */ 431 #define BIO_POOL_SIZE 2 432 #define BIOVEC_NR_POOLS 6 433 #define BIOVEC_MAX_IDX (BIOVEC_NR_POOLS - 1) 434 435 struct bio_set { 436 struct kmem_cache *bio_slab; 437 unsigned int front_pad; 438 439 mempool_t *bio_pool; 440 #if defined(CONFIG_BLK_DEV_INTEGRITY) 441 mempool_t *bio_integrity_pool; 442 #endif 443 mempool_t *bvec_pool; 444 }; 445 446 struct biovec_slab { 447 int nr_vecs; 448 char *name; 449 struct kmem_cache *slab; 450 }; 451 452 extern struct bio_set *fs_bio_set; 453 extern struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly; 454 455 /* 456 * a small number of entries is fine, not going to be performance critical. 457 * basically we just need to survive 458 */ 459 #define BIO_SPLIT_ENTRIES 2 460 461 #ifdef CONFIG_HIGHMEM 462 /* 463 * remember never ever reenable interrupts between a bvec_kmap_irq and 464 * bvec_kunmap_irq! 465 */ 466 static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) 467 { 468 unsigned long addr; 469 470 /* 471 * might not be a highmem page, but the preempt/irq count 472 * balancing is a lot nicer this way 473 */ 474 local_irq_save(*flags); 475 addr = (unsigned long) kmap_atomic(bvec->bv_page, KM_BIO_SRC_IRQ); 476 477 BUG_ON(addr & ~PAGE_MASK); 478 479 return (char *) addr + bvec->bv_offset; 480 } 481 482 static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) 483 { 484 unsigned long ptr = (unsigned long) buffer & PAGE_MASK; 485 486 kunmap_atomic((void *) ptr, KM_BIO_SRC_IRQ); 487 local_irq_restore(*flags); 488 } 489 490 #else 491 #define bvec_kmap_irq(bvec, flags) (page_address((bvec)->bv_page) + (bvec)->bv_offset) 492 #define bvec_kunmap_irq(buf, flags) do { *(flags) = 0; } while (0) 493 #endif 494 495 static inline char *__bio_kmap_irq(struct bio *bio, unsigned short idx, 496 unsigned long *flags) 497 { 498 return bvec_kmap_irq(bio_iovec_idx(bio, idx), flags); 499 } 500 #define __bio_kunmap_irq(buf, flags) bvec_kunmap_irq(buf, flags) 501 502 #define bio_kmap_irq(bio, flags) \ 503 __bio_kmap_irq((bio), (bio)->bi_idx, (flags)) 504 #define bio_kunmap_irq(buf,flags) __bio_kunmap_irq(buf, flags) 505 506 /* 507 * Check whether this bio carries any data or not. A NULL bio is allowed. 508 */ 509 static inline int bio_has_data(struct bio *bio) 510 { 511 return bio && bio->bi_io_vec != NULL; 512 } 513 514 /* 515 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. 516 * 517 * A bio_list anchors a singly-linked list of bios chained through the bi_next 518 * member of the bio. The bio_list also caches the last list member to allow 519 * fast access to the tail. 520 */ 521 struct bio_list { 522 struct bio *head; 523 struct bio *tail; 524 }; 525 526 static inline int bio_list_empty(const struct bio_list *bl) 527 { 528 return bl->head == NULL; 529 } 530 531 static inline void bio_list_init(struct bio_list *bl) 532 { 533 bl->head = bl->tail = NULL; 534 } 535 536 #define bio_list_for_each(bio, bl) \ 537 for (bio = (bl)->head; bio; bio = bio->bi_next) 538 539 static inline unsigned bio_list_size(const struct bio_list *bl) 540 { 541 unsigned sz = 0; 542 struct bio *bio; 543 544 bio_list_for_each(bio, bl) 545 sz++; 546 547 return sz; 548 } 549 550 static inline void bio_list_add(struct bio_list *bl, struct bio *bio) 551 { 552 bio->bi_next = NULL; 553 554 if (bl->tail) 555 bl->tail->bi_next = bio; 556 else 557 bl->head = bio; 558 559 bl->tail = bio; 560 } 561 562 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) 563 { 564 bio->bi_next = bl->head; 565 566 bl->head = bio; 567 568 if (!bl->tail) 569 bl->tail = bio; 570 } 571 572 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) 573 { 574 if (!bl2->head) 575 return; 576 577 if (bl->tail) 578 bl->tail->bi_next = bl2->head; 579 else 580 bl->head = bl2->head; 581 582 bl->tail = bl2->tail; 583 } 584 585 static inline void bio_list_merge_head(struct bio_list *bl, 586 struct bio_list *bl2) 587 { 588 if (!bl2->head) 589 return; 590 591 if (bl->head) 592 bl2->tail->bi_next = bl->head; 593 else 594 bl->tail = bl2->tail; 595 596 bl->head = bl2->head; 597 } 598 599 static inline struct bio *bio_list_peek(struct bio_list *bl) 600 { 601 return bl->head; 602 } 603 604 static inline struct bio *bio_list_pop(struct bio_list *bl) 605 { 606 struct bio *bio = bl->head; 607 608 if (bio) { 609 bl->head = bl->head->bi_next; 610 if (!bl->head) 611 bl->tail = NULL; 612 613 bio->bi_next = NULL; 614 } 615 616 return bio; 617 } 618 619 static inline struct bio *bio_list_get(struct bio_list *bl) 620 { 621 struct bio *bio = bl->head; 622 623 bl->head = bl->tail = NULL; 624 625 return bio; 626 } 627 628 #if defined(CONFIG_BLK_DEV_INTEGRITY) 629 630 #define bip_vec_idx(bip, idx) (&(bip->bip_vec[(idx)])) 631 #define bip_vec(bip) bip_vec_idx(bip, 0) 632 633 #define __bip_for_each_vec(bvl, bip, i, start_idx) \ 634 for (bvl = bip_vec_idx((bip), (start_idx)), i = (start_idx); \ 635 i < (bip)->bip_vcnt; \ 636 bvl++, i++) 637 638 #define bip_for_each_vec(bvl, bip, i) \ 639 __bip_for_each_vec(bvl, bip, i, (bip)->bip_idx) 640 641 #define bio_integrity(bio) (bio->bi_integrity != NULL) 642 643 extern struct bio_integrity_payload *bio_integrity_alloc_bioset(struct bio *, gfp_t, unsigned int, struct bio_set *); 644 extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int); 645 extern void bio_integrity_free(struct bio *, struct bio_set *); 646 extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int); 647 extern int bio_integrity_enabled(struct bio *bio); 648 extern int bio_integrity_set_tag(struct bio *, void *, unsigned int); 649 extern int bio_integrity_get_tag(struct bio *, void *, unsigned int); 650 extern int bio_integrity_prep(struct bio *); 651 extern void bio_integrity_endio(struct bio *, int); 652 extern void bio_integrity_advance(struct bio *, unsigned int); 653 extern void bio_integrity_trim(struct bio *, unsigned int, unsigned int); 654 extern void bio_integrity_split(struct bio *, struct bio_pair *, int); 655 extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t, struct bio_set *); 656 extern int bioset_integrity_create(struct bio_set *, int); 657 extern void bioset_integrity_free(struct bio_set *); 658 extern void bio_integrity_init(void); 659 660 #else /* CONFIG_BLK_DEV_INTEGRITY */ 661 662 #define bio_integrity(a) (0) 663 #define bioset_integrity_create(a, b) (0) 664 #define bio_integrity_prep(a) (0) 665 #define bio_integrity_enabled(a) (0) 666 #define bio_integrity_clone(a, b, c, d) (0) 667 #define bioset_integrity_free(a) do { } while (0) 668 #define bio_integrity_free(a, b) do { } while (0) 669 #define bio_integrity_endio(a, b) do { } while (0) 670 #define bio_integrity_advance(a, b) do { } while (0) 671 #define bio_integrity_trim(a, b, c) do { } while (0) 672 #define bio_integrity_split(a, b, c) do { } while (0) 673 #define bio_integrity_set_tag(a, b, c) do { } while (0) 674 #define bio_integrity_get_tag(a, b, c) do { } while (0) 675 #define bio_integrity_init(a) do { } while (0) 676 677 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 678 679 #endif /* CONFIG_BLOCK */ 680 #endif /* __LINUX_BIO_H */ 681