1 /* 2 * 2.5 block I/O model 3 * 4 * Copyright (C) 2001 Jens Axboe <axboe@suse.de> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public Licens 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 19 */ 20 #ifndef __LINUX_BIO_H 21 #define __LINUX_BIO_H 22 23 #include <linux/highmem.h> 24 #include <linux/mempool.h> 25 #include <linux/ioprio.h> 26 #include <linux/bug.h> 27 28 #ifdef CONFIG_BLOCK 29 30 #include <asm/io.h> 31 32 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ 33 #include <linux/blk_types.h> 34 35 #define BIO_DEBUG 36 37 #ifdef BIO_DEBUG 38 #define BIO_BUG_ON BUG_ON 39 #else 40 #define BIO_BUG_ON 41 #endif 42 43 #define BIO_MAX_PAGES 256 44 #define BIO_MAX_SIZE (BIO_MAX_PAGES << PAGE_CACHE_SHIFT) 45 #define BIO_MAX_SECTORS (BIO_MAX_SIZE >> 9) 46 47 /* 48 * upper 16 bits of bi_rw define the io priority of this bio 49 */ 50 #define BIO_PRIO_SHIFT (8 * sizeof(unsigned long) - IOPRIO_BITS) 51 #define bio_prio(bio) ((bio)->bi_rw >> BIO_PRIO_SHIFT) 52 #define bio_prio_valid(bio) ioprio_valid(bio_prio(bio)) 53 54 #define bio_set_prio(bio, prio) do { \ 55 WARN_ON(prio >= (1 << IOPRIO_BITS)); \ 56 (bio)->bi_rw &= ((1UL << BIO_PRIO_SHIFT) - 1); \ 57 (bio)->bi_rw |= ((unsigned long) (prio) << BIO_PRIO_SHIFT); \ 58 } while (0) 59 60 /* 61 * various member access, note that bio_data should of course not be used 62 * on highmem page vectors 63 */ 64 #define bio_iovec_idx(bio, idx) (&((bio)->bi_io_vec[(idx)])) 65 #define bio_iovec(bio) bio_iovec_idx((bio), (bio)->bi_idx) 66 #define bio_page(bio) bio_iovec((bio))->bv_page 67 #define bio_offset(bio) bio_iovec((bio))->bv_offset 68 #define bio_segments(bio) ((bio)->bi_vcnt - (bio)->bi_idx) 69 #define bio_sectors(bio) ((bio)->bi_size >> 9) 70 #define bio_end_sector(bio) ((bio)->bi_sector + bio_sectors((bio))) 71 72 static inline unsigned int bio_cur_bytes(struct bio *bio) 73 { 74 if (bio->bi_vcnt) 75 return bio_iovec(bio)->bv_len; 76 else /* dataless requests such as discard */ 77 return bio->bi_size; 78 } 79 80 static inline void *bio_data(struct bio *bio) 81 { 82 if (bio->bi_vcnt) 83 return page_address(bio_page(bio)) + bio_offset(bio); 84 85 return NULL; 86 } 87 88 /* 89 * will die 90 */ 91 #define bio_to_phys(bio) (page_to_phys(bio_page((bio))) + (unsigned long) bio_offset((bio))) 92 #define bvec_to_phys(bv) (page_to_phys((bv)->bv_page) + (unsigned long) (bv)->bv_offset) 93 94 /* 95 * queues that have highmem support enabled may still need to revert to 96 * PIO transfers occasionally and thus map high pages temporarily. For 97 * permanent PIO fall back, user is probably better off disabling highmem 98 * I/O completely on that queue (see ide-dma for example) 99 */ 100 #define __bio_kmap_atomic(bio, idx) \ 101 (kmap_atomic(bio_iovec_idx((bio), (idx))->bv_page) + \ 102 bio_iovec_idx((bio), (idx))->bv_offset) 103 104 #define __bio_kunmap_atomic(addr) kunmap_atomic(addr) 105 106 /* 107 * merge helpers etc 108 */ 109 110 #define __BVEC_END(bio) bio_iovec_idx((bio), (bio)->bi_vcnt - 1) 111 #define __BVEC_START(bio) bio_iovec_idx((bio), (bio)->bi_idx) 112 113 /* Default implementation of BIOVEC_PHYS_MERGEABLE */ 114 #define __BIOVEC_PHYS_MERGEABLE(vec1, vec2) \ 115 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2))) 116 117 /* 118 * allow arch override, for eg virtualized architectures (put in asm/io.h) 119 */ 120 #ifndef BIOVEC_PHYS_MERGEABLE 121 #define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \ 122 __BIOVEC_PHYS_MERGEABLE(vec1, vec2) 123 #endif 124 125 #define __BIO_SEG_BOUNDARY(addr1, addr2, mask) \ 126 (((addr1) | (mask)) == (((addr2) - 1) | (mask))) 127 #define BIOVEC_SEG_BOUNDARY(q, b1, b2) \ 128 __BIO_SEG_BOUNDARY(bvec_to_phys((b1)), bvec_to_phys((b2)) + (b2)->bv_len, queue_segment_boundary((q))) 129 #define BIO_SEG_BOUNDARY(q, b1, b2) \ 130 BIOVEC_SEG_BOUNDARY((q), __BVEC_END((b1)), __BVEC_START((b2))) 131 132 #define bio_io_error(bio) bio_endio((bio), -EIO) 133 134 /* 135 * drivers should not use the __ version unless they _really_ know what 136 * they're doing 137 */ 138 #define __bio_for_each_segment(bvl, bio, i, start_idx) \ 139 for (bvl = bio_iovec_idx((bio), (start_idx)), i = (start_idx); \ 140 i < (bio)->bi_vcnt; \ 141 bvl++, i++) 142 143 /* 144 * drivers should _never_ use the all version - the bio may have been split 145 * before it got to the driver and the driver won't own all of it 146 */ 147 #define bio_for_each_segment_all(bvl, bio, i) \ 148 for (i = 0; \ 149 bvl = bio_iovec_idx((bio), (i)), i < (bio)->bi_vcnt; \ 150 i++) 151 152 #define bio_for_each_segment(bvl, bio, i) \ 153 for (i = (bio)->bi_idx; \ 154 bvl = bio_iovec_idx((bio), (i)), i < (bio)->bi_vcnt; \ 155 i++) 156 157 /* 158 * get a reference to a bio, so it won't disappear. the intended use is 159 * something like: 160 * 161 * bio_get(bio); 162 * submit_bio(rw, bio); 163 * if (bio->bi_flags ...) 164 * do_something 165 * bio_put(bio); 166 * 167 * without the bio_get(), it could potentially complete I/O before submit_bio 168 * returns. and then bio would be freed memory when if (bio->bi_flags ...) 169 * runs 170 */ 171 #define bio_get(bio) atomic_inc(&(bio)->bi_cnt) 172 173 #if defined(CONFIG_BLK_DEV_INTEGRITY) 174 /* 175 * bio integrity payload 176 */ 177 struct bio_integrity_payload { 178 struct bio *bip_bio; /* parent bio */ 179 180 sector_t bip_sector; /* virtual start sector */ 181 182 void *bip_buf; /* generated integrity data */ 183 bio_end_io_t *bip_end_io; /* saved I/O completion fn */ 184 185 unsigned int bip_size; 186 187 unsigned short bip_slab; /* slab the bip came from */ 188 unsigned short bip_vcnt; /* # of integrity bio_vecs */ 189 unsigned short bip_idx; /* current bip_vec index */ 190 unsigned bip_owns_buf:1; /* should free bip_buf */ 191 192 struct work_struct bip_work; /* I/O completion */ 193 194 struct bio_vec *bip_vec; 195 struct bio_vec bip_inline_vecs[0];/* embedded bvec array */ 196 }; 197 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 198 199 /* 200 * A bio_pair is used when we need to split a bio. 201 * This can only happen for a bio that refers to just one 202 * page of data, and in the unusual situation when the 203 * page crosses a chunk/device boundary 204 * 205 * The address of the master bio is stored in bio1.bi_private 206 * The address of the pool the pair was allocated from is stored 207 * in bio2.bi_private 208 */ 209 struct bio_pair { 210 struct bio bio1, bio2; 211 struct bio_vec bv1, bv2; 212 #if defined(CONFIG_BLK_DEV_INTEGRITY) 213 struct bio_integrity_payload bip1, bip2; 214 struct bio_vec iv1, iv2; 215 #endif 216 atomic_t cnt; 217 int error; 218 }; 219 extern struct bio_pair *bio_split(struct bio *bi, int first_sectors); 220 extern void bio_pair_release(struct bio_pair *dbio); 221 extern void bio_trim(struct bio *bio, int offset, int size); 222 223 extern struct bio_set *bioset_create(unsigned int, unsigned int); 224 extern void bioset_free(struct bio_set *); 225 extern mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries); 226 227 extern struct bio *bio_alloc_bioset(gfp_t, int, struct bio_set *); 228 extern void bio_put(struct bio *); 229 230 extern void __bio_clone(struct bio *, struct bio *); 231 extern struct bio *bio_clone_bioset(struct bio *, gfp_t, struct bio_set *bs); 232 233 extern struct bio_set *fs_bio_set; 234 235 static inline struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 236 { 237 return bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set); 238 } 239 240 static inline struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) 241 { 242 return bio_clone_bioset(bio, gfp_mask, fs_bio_set); 243 } 244 245 static inline struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs) 246 { 247 return bio_alloc_bioset(gfp_mask, nr_iovecs, NULL); 248 } 249 250 static inline struct bio *bio_clone_kmalloc(struct bio *bio, gfp_t gfp_mask) 251 { 252 return bio_clone_bioset(bio, gfp_mask, NULL); 253 254 } 255 256 extern void bio_endio(struct bio *, int); 257 struct request_queue; 258 extern int bio_phys_segments(struct request_queue *, struct bio *); 259 260 extern int submit_bio_wait(int rw, struct bio *bio); 261 extern void bio_advance(struct bio *, unsigned); 262 263 extern void bio_init(struct bio *); 264 extern void bio_reset(struct bio *); 265 266 extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int); 267 extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, 268 unsigned int, unsigned int); 269 extern int bio_get_nr_vecs(struct block_device *); 270 extern sector_t bio_sector_offset(struct bio *, unsigned short, unsigned int); 271 extern struct bio *bio_map_user(struct request_queue *, struct block_device *, 272 unsigned long, unsigned int, int, gfp_t); 273 struct sg_iovec; 274 struct rq_map_data; 275 extern struct bio *bio_map_user_iov(struct request_queue *, 276 struct block_device *, 277 struct sg_iovec *, int, int, gfp_t); 278 extern void bio_unmap_user(struct bio *); 279 extern struct bio *bio_map_kern(struct request_queue *, void *, unsigned int, 280 gfp_t); 281 extern struct bio *bio_copy_kern(struct request_queue *, void *, unsigned int, 282 gfp_t, int); 283 extern void bio_set_pages_dirty(struct bio *bio); 284 extern void bio_check_pages_dirty(struct bio *bio); 285 286 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 287 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 288 #endif 289 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 290 extern void bio_flush_dcache_pages(struct bio *bi); 291 #else 292 static inline void bio_flush_dcache_pages(struct bio *bi) 293 { 294 } 295 #endif 296 297 extern void bio_copy_data(struct bio *dst, struct bio *src); 298 extern int bio_alloc_pages(struct bio *bio, gfp_t gfp); 299 300 extern struct bio *bio_copy_user(struct request_queue *, struct rq_map_data *, 301 unsigned long, unsigned int, int, gfp_t); 302 extern struct bio *bio_copy_user_iov(struct request_queue *, 303 struct rq_map_data *, struct sg_iovec *, 304 int, int, gfp_t); 305 extern int bio_uncopy_user(struct bio *); 306 void zero_fill_bio(struct bio *bio); 307 extern struct bio_vec *bvec_alloc(gfp_t, int, unsigned long *, mempool_t *); 308 extern void bvec_free(mempool_t *, struct bio_vec *, unsigned int); 309 extern unsigned int bvec_nr_vecs(unsigned short idx); 310 311 #ifdef CONFIG_BLK_CGROUP 312 int bio_associate_current(struct bio *bio); 313 void bio_disassociate_task(struct bio *bio); 314 #else /* CONFIG_BLK_CGROUP */ 315 static inline int bio_associate_current(struct bio *bio) { return -ENOENT; } 316 static inline void bio_disassociate_task(struct bio *bio) { } 317 #endif /* CONFIG_BLK_CGROUP */ 318 319 #ifdef CONFIG_HIGHMEM 320 /* 321 * remember never ever reenable interrupts between a bvec_kmap_irq and 322 * bvec_kunmap_irq! 323 */ 324 static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) 325 { 326 unsigned long addr; 327 328 /* 329 * might not be a highmem page, but the preempt/irq count 330 * balancing is a lot nicer this way 331 */ 332 local_irq_save(*flags); 333 addr = (unsigned long) kmap_atomic(bvec->bv_page); 334 335 BUG_ON(addr & ~PAGE_MASK); 336 337 return (char *) addr + bvec->bv_offset; 338 } 339 340 static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) 341 { 342 unsigned long ptr = (unsigned long) buffer & PAGE_MASK; 343 344 kunmap_atomic((void *) ptr); 345 local_irq_restore(*flags); 346 } 347 348 #else 349 static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) 350 { 351 return page_address(bvec->bv_page) + bvec->bv_offset; 352 } 353 354 static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) 355 { 356 *flags = 0; 357 } 358 #endif 359 360 static inline char *__bio_kmap_irq(struct bio *bio, unsigned short idx, 361 unsigned long *flags) 362 { 363 return bvec_kmap_irq(bio_iovec_idx(bio, idx), flags); 364 } 365 #define __bio_kunmap_irq(buf, flags) bvec_kunmap_irq(buf, flags) 366 367 #define bio_kmap_irq(bio, flags) \ 368 __bio_kmap_irq((bio), (bio)->bi_idx, (flags)) 369 #define bio_kunmap_irq(buf,flags) __bio_kunmap_irq(buf, flags) 370 371 /* 372 * Check whether this bio carries any data or not. A NULL bio is allowed. 373 */ 374 static inline bool bio_has_data(struct bio *bio) 375 { 376 if (bio && bio->bi_vcnt) 377 return true; 378 379 return false; 380 } 381 382 static inline bool bio_is_rw(struct bio *bio) 383 { 384 if (!bio_has_data(bio)) 385 return false; 386 387 if (bio->bi_rw & REQ_WRITE_SAME) 388 return false; 389 390 return true; 391 } 392 393 static inline bool bio_mergeable(struct bio *bio) 394 { 395 if (bio->bi_rw & REQ_NOMERGE_FLAGS) 396 return false; 397 398 return true; 399 } 400 401 /* 402 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. 403 * 404 * A bio_list anchors a singly-linked list of bios chained through the bi_next 405 * member of the bio. The bio_list also caches the last list member to allow 406 * fast access to the tail. 407 */ 408 struct bio_list { 409 struct bio *head; 410 struct bio *tail; 411 }; 412 413 static inline int bio_list_empty(const struct bio_list *bl) 414 { 415 return bl->head == NULL; 416 } 417 418 static inline void bio_list_init(struct bio_list *bl) 419 { 420 bl->head = bl->tail = NULL; 421 } 422 423 #define BIO_EMPTY_LIST { NULL, NULL } 424 425 #define bio_list_for_each(bio, bl) \ 426 for (bio = (bl)->head; bio; bio = bio->bi_next) 427 428 static inline unsigned bio_list_size(const struct bio_list *bl) 429 { 430 unsigned sz = 0; 431 struct bio *bio; 432 433 bio_list_for_each(bio, bl) 434 sz++; 435 436 return sz; 437 } 438 439 static inline void bio_list_add(struct bio_list *bl, struct bio *bio) 440 { 441 bio->bi_next = NULL; 442 443 if (bl->tail) 444 bl->tail->bi_next = bio; 445 else 446 bl->head = bio; 447 448 bl->tail = bio; 449 } 450 451 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) 452 { 453 bio->bi_next = bl->head; 454 455 bl->head = bio; 456 457 if (!bl->tail) 458 bl->tail = bio; 459 } 460 461 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) 462 { 463 if (!bl2->head) 464 return; 465 466 if (bl->tail) 467 bl->tail->bi_next = bl2->head; 468 else 469 bl->head = bl2->head; 470 471 bl->tail = bl2->tail; 472 } 473 474 static inline void bio_list_merge_head(struct bio_list *bl, 475 struct bio_list *bl2) 476 { 477 if (!bl2->head) 478 return; 479 480 if (bl->head) 481 bl2->tail->bi_next = bl->head; 482 else 483 bl->tail = bl2->tail; 484 485 bl->head = bl2->head; 486 } 487 488 static inline struct bio *bio_list_peek(struct bio_list *bl) 489 { 490 return bl->head; 491 } 492 493 static inline struct bio *bio_list_pop(struct bio_list *bl) 494 { 495 struct bio *bio = bl->head; 496 497 if (bio) { 498 bl->head = bl->head->bi_next; 499 if (!bl->head) 500 bl->tail = NULL; 501 502 bio->bi_next = NULL; 503 } 504 505 return bio; 506 } 507 508 static inline struct bio *bio_list_get(struct bio_list *bl) 509 { 510 struct bio *bio = bl->head; 511 512 bl->head = bl->tail = NULL; 513 514 return bio; 515 } 516 517 /* 518 * bio_set is used to allow other portions of the IO system to 519 * allocate their own private memory pools for bio and iovec structures. 520 * These memory pools in turn all allocate from the bio_slab 521 * and the bvec_slabs[]. 522 */ 523 #define BIO_POOL_SIZE 2 524 #define BIOVEC_NR_POOLS 6 525 #define BIOVEC_MAX_IDX (BIOVEC_NR_POOLS - 1) 526 527 struct bio_set { 528 struct kmem_cache *bio_slab; 529 unsigned int front_pad; 530 531 mempool_t *bio_pool; 532 mempool_t *bvec_pool; 533 #if defined(CONFIG_BLK_DEV_INTEGRITY) 534 mempool_t *bio_integrity_pool; 535 mempool_t *bvec_integrity_pool; 536 #endif 537 538 /* 539 * Deadlock avoidance for stacking block drivers: see comments in 540 * bio_alloc_bioset() for details 541 */ 542 spinlock_t rescue_lock; 543 struct bio_list rescue_list; 544 struct work_struct rescue_work; 545 struct workqueue_struct *rescue_workqueue; 546 }; 547 548 struct biovec_slab { 549 int nr_vecs; 550 char *name; 551 struct kmem_cache *slab; 552 }; 553 554 /* 555 * a small number of entries is fine, not going to be performance critical. 556 * basically we just need to survive 557 */ 558 #define BIO_SPLIT_ENTRIES 2 559 560 #if defined(CONFIG_BLK_DEV_INTEGRITY) 561 562 #define bip_vec_idx(bip, idx) (&(bip->bip_vec[(idx)])) 563 #define bip_vec(bip) bip_vec_idx(bip, 0) 564 565 #define __bip_for_each_vec(bvl, bip, i, start_idx) \ 566 for (bvl = bip_vec_idx((bip), (start_idx)), i = (start_idx); \ 567 i < (bip)->bip_vcnt; \ 568 bvl++, i++) 569 570 #define bip_for_each_vec(bvl, bip, i) \ 571 __bip_for_each_vec(bvl, bip, i, (bip)->bip_idx) 572 573 #define bio_for_each_integrity_vec(_bvl, _bio, _iter) \ 574 for_each_bio(_bio) \ 575 bip_for_each_vec(_bvl, _bio->bi_integrity, _iter) 576 577 #define bio_integrity(bio) (bio->bi_integrity != NULL) 578 579 extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int); 580 extern void bio_integrity_free(struct bio *); 581 extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int); 582 extern int bio_integrity_enabled(struct bio *bio); 583 extern int bio_integrity_set_tag(struct bio *, void *, unsigned int); 584 extern int bio_integrity_get_tag(struct bio *, void *, unsigned int); 585 extern int bio_integrity_prep(struct bio *); 586 extern void bio_integrity_endio(struct bio *, int); 587 extern void bio_integrity_advance(struct bio *, unsigned int); 588 extern void bio_integrity_trim(struct bio *, unsigned int, unsigned int); 589 extern void bio_integrity_split(struct bio *, struct bio_pair *, int); 590 extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t); 591 extern int bioset_integrity_create(struct bio_set *, int); 592 extern void bioset_integrity_free(struct bio_set *); 593 extern void bio_integrity_init(void); 594 595 #else /* CONFIG_BLK_DEV_INTEGRITY */ 596 597 static inline int bio_integrity(struct bio *bio) 598 { 599 return 0; 600 } 601 602 static inline int bio_integrity_enabled(struct bio *bio) 603 { 604 return 0; 605 } 606 607 static inline int bioset_integrity_create(struct bio_set *bs, int pool_size) 608 { 609 return 0; 610 } 611 612 static inline void bioset_integrity_free (struct bio_set *bs) 613 { 614 return; 615 } 616 617 static inline int bio_integrity_prep(struct bio *bio) 618 { 619 return 0; 620 } 621 622 static inline void bio_integrity_free(struct bio *bio) 623 { 624 return; 625 } 626 627 static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src, 628 gfp_t gfp_mask) 629 { 630 return 0; 631 } 632 633 static inline void bio_integrity_split(struct bio *bio, struct bio_pair *bp, 634 int sectors) 635 { 636 return; 637 } 638 639 static inline void bio_integrity_advance(struct bio *bio, 640 unsigned int bytes_done) 641 { 642 return; 643 } 644 645 static inline void bio_integrity_trim(struct bio *bio, unsigned int offset, 646 unsigned int sectors) 647 { 648 return; 649 } 650 651 static inline void bio_integrity_init(void) 652 { 653 return; 654 } 655 656 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 657 658 #endif /* CONFIG_BLOCK */ 659 #endif /* __LINUX_BIO_H */ 660