xref: /openbmc/linux/include/linux/bio.h (revision 74de3792)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4  */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7 
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12 
13 #define BIO_MAX_VECS		256U
14 
15 static inline unsigned int bio_max_segs(unsigned int nr_segs)
16 {
17 	return min(nr_segs, BIO_MAX_VECS);
18 }
19 
20 #define bio_prio(bio)			(bio)->bi_ioprio
21 #define bio_set_prio(bio, prio)		((bio)->bi_ioprio = prio)
22 
23 #define bio_iter_iovec(bio, iter)				\
24 	bvec_iter_bvec((bio)->bi_io_vec, (iter))
25 
26 #define bio_iter_page(bio, iter)				\
27 	bvec_iter_page((bio)->bi_io_vec, (iter))
28 #define bio_iter_len(bio, iter)					\
29 	bvec_iter_len((bio)->bi_io_vec, (iter))
30 #define bio_iter_offset(bio, iter)				\
31 	bvec_iter_offset((bio)->bi_io_vec, (iter))
32 
33 #define bio_page(bio)		bio_iter_page((bio), (bio)->bi_iter)
34 #define bio_offset(bio)		bio_iter_offset((bio), (bio)->bi_iter)
35 #define bio_iovec(bio)		bio_iter_iovec((bio), (bio)->bi_iter)
36 
37 #define bvec_iter_sectors(iter)	((iter).bi_size >> 9)
38 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
39 
40 #define bio_sectors(bio)	bvec_iter_sectors((bio)->bi_iter)
41 #define bio_end_sector(bio)	bvec_iter_end_sector((bio)->bi_iter)
42 
43 /*
44  * Return the data direction, READ or WRITE.
45  */
46 #define bio_data_dir(bio) \
47 	(op_is_write(bio_op(bio)) ? WRITE : READ)
48 
49 /*
50  * Check whether this bio carries any data or not. A NULL bio is allowed.
51  */
52 static inline bool bio_has_data(struct bio *bio)
53 {
54 	if (bio &&
55 	    bio->bi_iter.bi_size &&
56 	    bio_op(bio) != REQ_OP_DISCARD &&
57 	    bio_op(bio) != REQ_OP_SECURE_ERASE &&
58 	    bio_op(bio) != REQ_OP_WRITE_ZEROES)
59 		return true;
60 
61 	return false;
62 }
63 
64 static inline bool bio_no_advance_iter(const struct bio *bio)
65 {
66 	return bio_op(bio) == REQ_OP_DISCARD ||
67 	       bio_op(bio) == REQ_OP_SECURE_ERASE ||
68 	       bio_op(bio) == REQ_OP_WRITE_ZEROES;
69 }
70 
71 static inline void *bio_data(struct bio *bio)
72 {
73 	if (bio_has_data(bio))
74 		return page_address(bio_page(bio)) + bio_offset(bio);
75 
76 	return NULL;
77 }
78 
79 static inline bool bio_next_segment(const struct bio *bio,
80 				    struct bvec_iter_all *iter)
81 {
82 	if (iter->idx >= bio->bi_vcnt)
83 		return false;
84 
85 	bvec_advance(&bio->bi_io_vec[iter->idx], iter);
86 	return true;
87 }
88 
89 /*
90  * drivers should _never_ use the all version - the bio may have been split
91  * before it got to the driver and the driver won't own all of it
92  */
93 #define bio_for_each_segment_all(bvl, bio, iter) \
94 	for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
95 
96 static inline void bio_advance_iter(const struct bio *bio,
97 				    struct bvec_iter *iter, unsigned int bytes)
98 {
99 	iter->bi_sector += bytes >> 9;
100 
101 	if (bio_no_advance_iter(bio))
102 		iter->bi_size -= bytes;
103 	else
104 		bvec_iter_advance(bio->bi_io_vec, iter, bytes);
105 		/* TODO: It is reasonable to complete bio with error here. */
106 }
107 
108 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
109 static inline void bio_advance_iter_single(const struct bio *bio,
110 					   struct bvec_iter *iter,
111 					   unsigned int bytes)
112 {
113 	iter->bi_sector += bytes >> 9;
114 
115 	if (bio_no_advance_iter(bio))
116 		iter->bi_size -= bytes;
117 	else
118 		bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
119 }
120 
121 void __bio_advance(struct bio *, unsigned bytes);
122 
123 /**
124  * bio_advance - increment/complete a bio by some number of bytes
125  * @bio:	bio to advance
126  * @nbytes:	number of bytes to complete
127  *
128  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
129  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
130  * be updated on the last bvec as well.
131  *
132  * @bio will then represent the remaining, uncompleted portion of the io.
133  */
134 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
135 {
136 	if (nbytes == bio->bi_iter.bi_size) {
137 		bio->bi_iter.bi_size = 0;
138 		return;
139 	}
140 	__bio_advance(bio, nbytes);
141 }
142 
143 #define __bio_for_each_segment(bvl, bio, iter, start)			\
144 	for (iter = (start);						\
145 	     (iter).bi_size &&						\
146 		((bvl = bio_iter_iovec((bio), (iter))), 1);		\
147 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
148 
149 #define bio_for_each_segment(bvl, bio, iter)				\
150 	__bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
151 
152 #define __bio_for_each_bvec(bvl, bio, iter, start)		\
153 	for (iter = (start);						\
154 	     (iter).bi_size &&						\
155 		((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
156 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
157 
158 /* iterate over multi-page bvec */
159 #define bio_for_each_bvec(bvl, bio, iter)			\
160 	__bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
161 
162 /*
163  * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
164  * same reasons as bio_for_each_segment_all().
165  */
166 #define bio_for_each_bvec_all(bvl, bio, i)		\
167 	for (i = 0, bvl = bio_first_bvec_all(bio);	\
168 	     i < (bio)->bi_vcnt; i++, bvl++)
169 
170 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
171 
172 static inline unsigned bio_segments(struct bio *bio)
173 {
174 	unsigned segs = 0;
175 	struct bio_vec bv;
176 	struct bvec_iter iter;
177 
178 	/*
179 	 * We special case discard/write same/write zeroes, because they
180 	 * interpret bi_size differently:
181 	 */
182 
183 	switch (bio_op(bio)) {
184 	case REQ_OP_DISCARD:
185 	case REQ_OP_SECURE_ERASE:
186 	case REQ_OP_WRITE_ZEROES:
187 		return 0;
188 	default:
189 		break;
190 	}
191 
192 	bio_for_each_segment(bv, bio, iter)
193 		segs++;
194 
195 	return segs;
196 }
197 
198 /*
199  * get a reference to a bio, so it won't disappear. the intended use is
200  * something like:
201  *
202  * bio_get(bio);
203  * submit_bio(rw, bio);
204  * if (bio->bi_flags ...)
205  *	do_something
206  * bio_put(bio);
207  *
208  * without the bio_get(), it could potentially complete I/O before submit_bio
209  * returns. and then bio would be freed memory when if (bio->bi_flags ...)
210  * runs
211  */
212 static inline void bio_get(struct bio *bio)
213 {
214 	bio->bi_flags |= (1 << BIO_REFFED);
215 	smp_mb__before_atomic();
216 	atomic_inc(&bio->__bi_cnt);
217 }
218 
219 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
220 {
221 	if (count != 1) {
222 		bio->bi_flags |= (1 << BIO_REFFED);
223 		smp_mb();
224 	}
225 	atomic_set(&bio->__bi_cnt, count);
226 }
227 
228 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
229 {
230 	return (bio->bi_flags & (1U << bit)) != 0;
231 }
232 
233 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
234 {
235 	bio->bi_flags |= (1U << bit);
236 }
237 
238 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
239 {
240 	bio->bi_flags &= ~(1U << bit);
241 }
242 
243 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
244 {
245 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
246 	return bio->bi_io_vec;
247 }
248 
249 static inline struct page *bio_first_page_all(struct bio *bio)
250 {
251 	return bio_first_bvec_all(bio)->bv_page;
252 }
253 
254 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
255 {
256 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
257 	return &bio->bi_io_vec[bio->bi_vcnt - 1];
258 }
259 
260 /**
261  * struct folio_iter - State for iterating all folios in a bio.
262  * @folio: The current folio we're iterating.  NULL after the last folio.
263  * @offset: The byte offset within the current folio.
264  * @length: The number of bytes in this iteration (will not cross folio
265  *	boundary).
266  */
267 struct folio_iter {
268 	struct folio *folio;
269 	size_t offset;
270 	size_t length;
271 	/* private: for use by the iterator */
272 	size_t _seg_count;
273 	int _i;
274 };
275 
276 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
277 				   int i)
278 {
279 	struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
280 
281 	fi->folio = page_folio(bvec->bv_page);
282 	fi->offset = bvec->bv_offset +
283 			PAGE_SIZE * (bvec->bv_page - &fi->folio->page);
284 	fi->_seg_count = bvec->bv_len;
285 	fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
286 	fi->_i = i;
287 }
288 
289 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
290 {
291 	fi->_seg_count -= fi->length;
292 	if (fi->_seg_count) {
293 		fi->folio = folio_next(fi->folio);
294 		fi->offset = 0;
295 		fi->length = min(folio_size(fi->folio), fi->_seg_count);
296 	} else if (fi->_i + 1 < bio->bi_vcnt) {
297 		bio_first_folio(fi, bio, fi->_i + 1);
298 	} else {
299 		fi->folio = NULL;
300 	}
301 }
302 
303 /**
304  * bio_for_each_folio_all - Iterate over each folio in a bio.
305  * @fi: struct folio_iter which is updated for each folio.
306  * @bio: struct bio to iterate over.
307  */
308 #define bio_for_each_folio_all(fi, bio)				\
309 	for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
310 
311 enum bip_flags {
312 	BIP_BLOCK_INTEGRITY	= 1 << 0, /* block layer owns integrity data */
313 	BIP_MAPPED_INTEGRITY	= 1 << 1, /* ref tag has been remapped */
314 	BIP_CTRL_NOCHECK	= 1 << 2, /* disable HBA integrity checking */
315 	BIP_DISK_NOCHECK	= 1 << 3, /* disable disk integrity checking */
316 	BIP_IP_CHECKSUM		= 1 << 4, /* IP checksum */
317 };
318 
319 /*
320  * bio integrity payload
321  */
322 struct bio_integrity_payload {
323 	struct bio		*bip_bio;	/* parent bio */
324 
325 	struct bvec_iter	bip_iter;
326 
327 	unsigned short		bip_vcnt;	/* # of integrity bio_vecs */
328 	unsigned short		bip_max_vcnt;	/* integrity bio_vec slots */
329 	unsigned short		bip_flags;	/* control flags */
330 
331 	struct bvec_iter	bio_iter;	/* for rewinding parent bio */
332 
333 	struct work_struct	bip_work;	/* I/O completion */
334 
335 	struct bio_vec		*bip_vec;
336 	struct bio_vec		bip_inline_vecs[];/* embedded bvec array */
337 };
338 
339 #if defined(CONFIG_BLK_DEV_INTEGRITY)
340 
341 static inline struct bio_integrity_payload *bio_integrity(struct bio *bio)
342 {
343 	if (bio->bi_opf & REQ_INTEGRITY)
344 		return bio->bi_integrity;
345 
346 	return NULL;
347 }
348 
349 static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
350 {
351 	struct bio_integrity_payload *bip = bio_integrity(bio);
352 
353 	if (bip)
354 		return bip->bip_flags & flag;
355 
356 	return false;
357 }
358 
359 static inline sector_t bip_get_seed(struct bio_integrity_payload *bip)
360 {
361 	return bip->bip_iter.bi_sector;
362 }
363 
364 static inline void bip_set_seed(struct bio_integrity_payload *bip,
365 				sector_t seed)
366 {
367 	bip->bip_iter.bi_sector = seed;
368 }
369 
370 #endif /* CONFIG_BLK_DEV_INTEGRITY */
371 
372 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
373 extern struct bio *bio_split(struct bio *bio, int sectors,
374 			     gfp_t gfp, struct bio_set *bs);
375 
376 /**
377  * bio_next_split - get next @sectors from a bio, splitting if necessary
378  * @bio:	bio to split
379  * @sectors:	number of sectors to split from the front of @bio
380  * @gfp:	gfp mask
381  * @bs:		bio set to allocate from
382  *
383  * Return: a bio representing the next @sectors of @bio - if the bio is smaller
384  * than @sectors, returns the original bio unchanged.
385  */
386 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
387 					 gfp_t gfp, struct bio_set *bs)
388 {
389 	if (sectors >= bio_sectors(bio))
390 		return bio;
391 
392 	return bio_split(bio, sectors, gfp, bs);
393 }
394 
395 enum {
396 	BIOSET_NEED_BVECS = BIT(0),
397 	BIOSET_NEED_RESCUER = BIT(1),
398 	BIOSET_PERCPU_CACHE = BIT(2),
399 };
400 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
401 extern void bioset_exit(struct bio_set *);
402 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
403 extern int bioset_init_from_src(struct bio_set *bs, struct bio_set *src);
404 
405 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
406 			     unsigned int opf, gfp_t gfp_mask,
407 			     struct bio_set *bs);
408 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, struct block_device *bdev,
409 		unsigned short nr_vecs, unsigned int opf, struct bio_set *bs);
410 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs);
411 extern void bio_put(struct bio *);
412 
413 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
414 		gfp_t gfp, struct bio_set *bs);
415 int bio_init_clone(struct block_device *bdev, struct bio *bio,
416 		struct bio *bio_src, gfp_t gfp);
417 
418 extern struct bio_set fs_bio_set;
419 
420 static inline struct bio *bio_alloc(struct block_device *bdev,
421 		unsigned short nr_vecs, unsigned int opf, gfp_t gfp_mask)
422 {
423 	return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
424 }
425 
426 void submit_bio(struct bio *bio);
427 
428 extern void bio_endio(struct bio *);
429 
430 static inline void bio_io_error(struct bio *bio)
431 {
432 	bio->bi_status = BLK_STS_IOERR;
433 	bio_endio(bio);
434 }
435 
436 static inline void bio_wouldblock_error(struct bio *bio)
437 {
438 	bio_set_flag(bio, BIO_QUIET);
439 	bio->bi_status = BLK_STS_AGAIN;
440 	bio_endio(bio);
441 }
442 
443 /*
444  * Calculate number of bvec segments that should be allocated to fit data
445  * pointed by @iter. If @iter is backed by bvec it's going to be reused
446  * instead of allocating a new one.
447  */
448 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
449 {
450 	if (iov_iter_is_bvec(iter))
451 		return 0;
452 	return iov_iter_npages(iter, max_segs);
453 }
454 
455 struct request_queue;
456 
457 extern int submit_bio_wait(struct bio *bio);
458 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
459 	      unsigned short max_vecs, unsigned int opf);
460 extern void bio_uninit(struct bio *);
461 void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf);
462 void bio_chain(struct bio *, struct bio *);
463 
464 int bio_add_page(struct bio *, struct page *, unsigned len, unsigned off);
465 bool bio_add_folio(struct bio *, struct folio *, size_t len, size_t off);
466 extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
467 			   unsigned int, unsigned int);
468 int bio_add_zone_append_page(struct bio *bio, struct page *page,
469 			     unsigned int len, unsigned int offset);
470 void __bio_add_page(struct bio *bio, struct page *page,
471 		unsigned int len, unsigned int off);
472 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
473 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter);
474 void __bio_release_pages(struct bio *bio, bool mark_dirty);
475 extern void bio_set_pages_dirty(struct bio *bio);
476 extern void bio_check_pages_dirty(struct bio *bio);
477 
478 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
479 			       struct bio *src, struct bvec_iter *src_iter);
480 extern void bio_copy_data(struct bio *dst, struct bio *src);
481 extern void bio_free_pages(struct bio *bio);
482 void guard_bio_eod(struct bio *bio);
483 void zero_fill_bio(struct bio *bio);
484 
485 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
486 {
487 	if (!bio_flagged(bio, BIO_NO_PAGE_REF))
488 		__bio_release_pages(bio, mark_dirty);
489 }
490 
491 #define bio_dev(bio) \
492 	disk_devt((bio)->bi_bdev->bd_disk)
493 
494 #ifdef CONFIG_BLK_CGROUP
495 void bio_associate_blkg(struct bio *bio);
496 void bio_associate_blkg_from_css(struct bio *bio,
497 				 struct cgroup_subsys_state *css);
498 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
499 #else	/* CONFIG_BLK_CGROUP */
500 static inline void bio_associate_blkg(struct bio *bio) { }
501 static inline void bio_associate_blkg_from_css(struct bio *bio,
502 					       struct cgroup_subsys_state *css)
503 { }
504 static inline void bio_clone_blkg_association(struct bio *dst,
505 					      struct bio *src) { }
506 #endif	/* CONFIG_BLK_CGROUP */
507 
508 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
509 {
510 	bio_clear_flag(bio, BIO_REMAPPED);
511 	if (bio->bi_bdev != bdev)
512 		bio_clear_flag(bio, BIO_THROTTLED);
513 	bio->bi_bdev = bdev;
514 	bio_associate_blkg(bio);
515 }
516 
517 /*
518  * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
519  *
520  * A bio_list anchors a singly-linked list of bios chained through the bi_next
521  * member of the bio.  The bio_list also caches the last list member to allow
522  * fast access to the tail.
523  */
524 struct bio_list {
525 	struct bio *head;
526 	struct bio *tail;
527 };
528 
529 static inline int bio_list_empty(const struct bio_list *bl)
530 {
531 	return bl->head == NULL;
532 }
533 
534 static inline void bio_list_init(struct bio_list *bl)
535 {
536 	bl->head = bl->tail = NULL;
537 }
538 
539 #define BIO_EMPTY_LIST	{ NULL, NULL }
540 
541 #define bio_list_for_each(bio, bl) \
542 	for (bio = (bl)->head; bio; bio = bio->bi_next)
543 
544 static inline unsigned bio_list_size(const struct bio_list *bl)
545 {
546 	unsigned sz = 0;
547 	struct bio *bio;
548 
549 	bio_list_for_each(bio, bl)
550 		sz++;
551 
552 	return sz;
553 }
554 
555 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
556 {
557 	bio->bi_next = NULL;
558 
559 	if (bl->tail)
560 		bl->tail->bi_next = bio;
561 	else
562 		bl->head = bio;
563 
564 	bl->tail = bio;
565 }
566 
567 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
568 {
569 	bio->bi_next = bl->head;
570 
571 	bl->head = bio;
572 
573 	if (!bl->tail)
574 		bl->tail = bio;
575 }
576 
577 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
578 {
579 	if (!bl2->head)
580 		return;
581 
582 	if (bl->tail)
583 		bl->tail->bi_next = bl2->head;
584 	else
585 		bl->head = bl2->head;
586 
587 	bl->tail = bl2->tail;
588 }
589 
590 static inline void bio_list_merge_head(struct bio_list *bl,
591 				       struct bio_list *bl2)
592 {
593 	if (!bl2->head)
594 		return;
595 
596 	if (bl->head)
597 		bl2->tail->bi_next = bl->head;
598 	else
599 		bl->tail = bl2->tail;
600 
601 	bl->head = bl2->head;
602 }
603 
604 static inline struct bio *bio_list_peek(struct bio_list *bl)
605 {
606 	return bl->head;
607 }
608 
609 static inline struct bio *bio_list_pop(struct bio_list *bl)
610 {
611 	struct bio *bio = bl->head;
612 
613 	if (bio) {
614 		bl->head = bl->head->bi_next;
615 		if (!bl->head)
616 			bl->tail = NULL;
617 
618 		bio->bi_next = NULL;
619 	}
620 
621 	return bio;
622 }
623 
624 static inline struct bio *bio_list_get(struct bio_list *bl)
625 {
626 	struct bio *bio = bl->head;
627 
628 	bl->head = bl->tail = NULL;
629 
630 	return bio;
631 }
632 
633 /*
634  * Increment chain count for the bio. Make sure the CHAIN flag update
635  * is visible before the raised count.
636  */
637 static inline void bio_inc_remaining(struct bio *bio)
638 {
639 	bio_set_flag(bio, BIO_CHAIN);
640 	smp_mb__before_atomic();
641 	atomic_inc(&bio->__bi_remaining);
642 }
643 
644 /*
645  * bio_set is used to allow other portions of the IO system to
646  * allocate their own private memory pools for bio and iovec structures.
647  * These memory pools in turn all allocate from the bio_slab
648  * and the bvec_slabs[].
649  */
650 #define BIO_POOL_SIZE 2
651 
652 struct bio_set {
653 	struct kmem_cache *bio_slab;
654 	unsigned int front_pad;
655 
656 	/*
657 	 * per-cpu bio alloc cache
658 	 */
659 	struct bio_alloc_cache __percpu *cache;
660 
661 	mempool_t bio_pool;
662 	mempool_t bvec_pool;
663 #if defined(CONFIG_BLK_DEV_INTEGRITY)
664 	mempool_t bio_integrity_pool;
665 	mempool_t bvec_integrity_pool;
666 #endif
667 
668 	unsigned int back_pad;
669 	/*
670 	 * Deadlock avoidance for stacking block drivers: see comments in
671 	 * bio_alloc_bioset() for details
672 	 */
673 	spinlock_t		rescue_lock;
674 	struct bio_list		rescue_list;
675 	struct work_struct	rescue_work;
676 	struct workqueue_struct	*rescue_workqueue;
677 
678 	/*
679 	 * Hot un-plug notifier for the per-cpu cache, if used
680 	 */
681 	struct hlist_node cpuhp_dead;
682 };
683 
684 static inline bool bioset_initialized(struct bio_set *bs)
685 {
686 	return bs->bio_slab != NULL;
687 }
688 
689 #if defined(CONFIG_BLK_DEV_INTEGRITY)
690 
691 #define bip_for_each_vec(bvl, bip, iter)				\
692 	for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter)
693 
694 #define bio_for_each_integrity_vec(_bvl, _bio, _iter)			\
695 	for_each_bio(_bio)						\
696 		bip_for_each_vec(_bvl, _bio->bi_integrity, _iter)
697 
698 extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int);
699 extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int);
700 extern bool bio_integrity_prep(struct bio *);
701 extern void bio_integrity_advance(struct bio *, unsigned int);
702 extern void bio_integrity_trim(struct bio *);
703 extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t);
704 extern int bioset_integrity_create(struct bio_set *, int);
705 extern void bioset_integrity_free(struct bio_set *);
706 extern void bio_integrity_init(void);
707 
708 #else /* CONFIG_BLK_DEV_INTEGRITY */
709 
710 static inline void *bio_integrity(struct bio *bio)
711 {
712 	return NULL;
713 }
714 
715 static inline int bioset_integrity_create(struct bio_set *bs, int pool_size)
716 {
717 	return 0;
718 }
719 
720 static inline void bioset_integrity_free (struct bio_set *bs)
721 {
722 	return;
723 }
724 
725 static inline bool bio_integrity_prep(struct bio *bio)
726 {
727 	return true;
728 }
729 
730 static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
731 				      gfp_t gfp_mask)
732 {
733 	return 0;
734 }
735 
736 static inline void bio_integrity_advance(struct bio *bio,
737 					 unsigned int bytes_done)
738 {
739 	return;
740 }
741 
742 static inline void bio_integrity_trim(struct bio *bio)
743 {
744 	return;
745 }
746 
747 static inline void bio_integrity_init(void)
748 {
749 	return;
750 }
751 
752 static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
753 {
754 	return false;
755 }
756 
757 static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp,
758 								unsigned int nr)
759 {
760 	return ERR_PTR(-EINVAL);
761 }
762 
763 static inline int bio_integrity_add_page(struct bio *bio, struct page *page,
764 					unsigned int len, unsigned int offset)
765 {
766 	return 0;
767 }
768 
769 #endif /* CONFIG_BLK_DEV_INTEGRITY */
770 
771 /*
772  * Mark a bio as polled. Note that for async polled IO, the caller must
773  * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
774  * We cannot block waiting for requests on polled IO, as those completions
775  * must be found by the caller. This is different than IRQ driven IO, where
776  * it's safe to wait for IO to complete.
777  */
778 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
779 {
780 	bio->bi_opf |= REQ_POLLED;
781 	if (!is_sync_kiocb(kiocb))
782 		bio->bi_opf |= REQ_NOWAIT;
783 }
784 
785 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
786 		unsigned int nr_pages, unsigned int opf, gfp_t gfp);
787 
788 #endif /* __LINUX_BIO_H */
789