1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de> 4 */ 5 #ifndef __LINUX_BIO_H 6 #define __LINUX_BIO_H 7 8 #include <linux/mempool.h> 9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ 10 #include <linux/blk_types.h> 11 #include <linux/uio.h> 12 13 #define BIO_MAX_VECS 256U 14 15 static inline unsigned int bio_max_segs(unsigned int nr_segs) 16 { 17 return min(nr_segs, BIO_MAX_VECS); 18 } 19 20 #define bio_prio(bio) (bio)->bi_ioprio 21 #define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio) 22 23 #define bio_iter_iovec(bio, iter) \ 24 bvec_iter_bvec((bio)->bi_io_vec, (iter)) 25 26 #define bio_iter_page(bio, iter) \ 27 bvec_iter_page((bio)->bi_io_vec, (iter)) 28 #define bio_iter_len(bio, iter) \ 29 bvec_iter_len((bio)->bi_io_vec, (iter)) 30 #define bio_iter_offset(bio, iter) \ 31 bvec_iter_offset((bio)->bi_io_vec, (iter)) 32 33 #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) 34 #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) 35 #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) 36 37 #define bvec_iter_sectors(iter) ((iter).bi_size >> 9) 38 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) 39 40 #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) 41 #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) 42 43 /* 44 * Return the data direction, READ or WRITE. 45 */ 46 #define bio_data_dir(bio) \ 47 (op_is_write(bio_op(bio)) ? WRITE : READ) 48 49 /* 50 * Check whether this bio carries any data or not. A NULL bio is allowed. 51 */ 52 static inline bool bio_has_data(struct bio *bio) 53 { 54 if (bio && 55 bio->bi_iter.bi_size && 56 bio_op(bio) != REQ_OP_DISCARD && 57 bio_op(bio) != REQ_OP_SECURE_ERASE && 58 bio_op(bio) != REQ_OP_WRITE_ZEROES) 59 return true; 60 61 return false; 62 } 63 64 static inline bool bio_no_advance_iter(const struct bio *bio) 65 { 66 return bio_op(bio) == REQ_OP_DISCARD || 67 bio_op(bio) == REQ_OP_SECURE_ERASE || 68 bio_op(bio) == REQ_OP_WRITE_ZEROES; 69 } 70 71 static inline void *bio_data(struct bio *bio) 72 { 73 if (bio_has_data(bio)) 74 return page_address(bio_page(bio)) + bio_offset(bio); 75 76 return NULL; 77 } 78 79 static inline bool bio_next_segment(const struct bio *bio, 80 struct bvec_iter_all *iter) 81 { 82 if (iter->idx >= bio->bi_vcnt) 83 return false; 84 85 bvec_advance(&bio->bi_io_vec[iter->idx], iter); 86 return true; 87 } 88 89 /* 90 * drivers should _never_ use the all version - the bio may have been split 91 * before it got to the driver and the driver won't own all of it 92 */ 93 #define bio_for_each_segment_all(bvl, bio, iter) \ 94 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) 95 96 static inline void bio_advance_iter(const struct bio *bio, 97 struct bvec_iter *iter, unsigned int bytes) 98 { 99 iter->bi_sector += bytes >> 9; 100 101 if (bio_no_advance_iter(bio)) 102 iter->bi_size -= bytes; 103 else 104 bvec_iter_advance(bio->bi_io_vec, iter, bytes); 105 /* TODO: It is reasonable to complete bio with error here. */ 106 } 107 108 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */ 109 static inline void bio_advance_iter_single(const struct bio *bio, 110 struct bvec_iter *iter, 111 unsigned int bytes) 112 { 113 iter->bi_sector += bytes >> 9; 114 115 if (bio_no_advance_iter(bio)) 116 iter->bi_size -= bytes; 117 else 118 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes); 119 } 120 121 void __bio_advance(struct bio *, unsigned bytes); 122 123 /** 124 * bio_advance - increment/complete a bio by some number of bytes 125 * @bio: bio to advance 126 * @nbytes: number of bytes to complete 127 * 128 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 129 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 130 * be updated on the last bvec as well. 131 * 132 * @bio will then represent the remaining, uncompleted portion of the io. 133 */ 134 static inline void bio_advance(struct bio *bio, unsigned int nbytes) 135 { 136 if (nbytes == bio->bi_iter.bi_size) { 137 bio->bi_iter.bi_size = 0; 138 return; 139 } 140 __bio_advance(bio, nbytes); 141 } 142 143 #define __bio_for_each_segment(bvl, bio, iter, start) \ 144 for (iter = (start); \ 145 (iter).bi_size && \ 146 ((bvl = bio_iter_iovec((bio), (iter))), 1); \ 147 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 148 149 #define bio_for_each_segment(bvl, bio, iter) \ 150 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) 151 152 #define __bio_for_each_bvec(bvl, bio, iter, start) \ 153 for (iter = (start); \ 154 (iter).bi_size && \ 155 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ 156 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 157 158 /* iterate over multi-page bvec */ 159 #define bio_for_each_bvec(bvl, bio, iter) \ 160 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) 161 162 /* 163 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the 164 * same reasons as bio_for_each_segment_all(). 165 */ 166 #define bio_for_each_bvec_all(bvl, bio, i) \ 167 for (i = 0, bvl = bio_first_bvec_all(bio); \ 168 i < (bio)->bi_vcnt; i++, bvl++) 169 170 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) 171 172 static inline unsigned bio_segments(struct bio *bio) 173 { 174 unsigned segs = 0; 175 struct bio_vec bv; 176 struct bvec_iter iter; 177 178 /* 179 * We special case discard/write same/write zeroes, because they 180 * interpret bi_size differently: 181 */ 182 183 switch (bio_op(bio)) { 184 case REQ_OP_DISCARD: 185 case REQ_OP_SECURE_ERASE: 186 case REQ_OP_WRITE_ZEROES: 187 return 0; 188 default: 189 break; 190 } 191 192 bio_for_each_segment(bv, bio, iter) 193 segs++; 194 195 return segs; 196 } 197 198 /* 199 * get a reference to a bio, so it won't disappear. the intended use is 200 * something like: 201 * 202 * bio_get(bio); 203 * submit_bio(rw, bio); 204 * if (bio->bi_flags ...) 205 * do_something 206 * bio_put(bio); 207 * 208 * without the bio_get(), it could potentially complete I/O before submit_bio 209 * returns. and then bio would be freed memory when if (bio->bi_flags ...) 210 * runs 211 */ 212 static inline void bio_get(struct bio *bio) 213 { 214 bio->bi_flags |= (1 << BIO_REFFED); 215 smp_mb__before_atomic(); 216 atomic_inc(&bio->__bi_cnt); 217 } 218 219 static inline void bio_cnt_set(struct bio *bio, unsigned int count) 220 { 221 if (count != 1) { 222 bio->bi_flags |= (1 << BIO_REFFED); 223 smp_mb(); 224 } 225 atomic_set(&bio->__bi_cnt, count); 226 } 227 228 static inline bool bio_flagged(struct bio *bio, unsigned int bit) 229 { 230 return (bio->bi_flags & (1U << bit)) != 0; 231 } 232 233 static inline void bio_set_flag(struct bio *bio, unsigned int bit) 234 { 235 bio->bi_flags |= (1U << bit); 236 } 237 238 static inline void bio_clear_flag(struct bio *bio, unsigned int bit) 239 { 240 bio->bi_flags &= ~(1U << bit); 241 } 242 243 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) 244 { 245 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 246 return bio->bi_io_vec; 247 } 248 249 static inline struct page *bio_first_page_all(struct bio *bio) 250 { 251 return bio_first_bvec_all(bio)->bv_page; 252 } 253 254 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) 255 { 256 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 257 return &bio->bi_io_vec[bio->bi_vcnt - 1]; 258 } 259 260 /** 261 * struct folio_iter - State for iterating all folios in a bio. 262 * @folio: The current folio we're iterating. NULL after the last folio. 263 * @offset: The byte offset within the current folio. 264 * @length: The number of bytes in this iteration (will not cross folio 265 * boundary). 266 */ 267 struct folio_iter { 268 struct folio *folio; 269 size_t offset; 270 size_t length; 271 /* private: for use by the iterator */ 272 struct folio *_next; 273 size_t _seg_count; 274 int _i; 275 }; 276 277 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio, 278 int i) 279 { 280 struct bio_vec *bvec = bio_first_bvec_all(bio) + i; 281 282 fi->folio = page_folio(bvec->bv_page); 283 fi->offset = bvec->bv_offset + 284 PAGE_SIZE * (bvec->bv_page - &fi->folio->page); 285 fi->_seg_count = bvec->bv_len; 286 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count); 287 fi->_next = folio_next(fi->folio); 288 fi->_i = i; 289 } 290 291 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio) 292 { 293 fi->_seg_count -= fi->length; 294 if (fi->_seg_count) { 295 fi->folio = fi->_next; 296 fi->offset = 0; 297 fi->length = min(folio_size(fi->folio), fi->_seg_count); 298 fi->_next = folio_next(fi->folio); 299 } else if (fi->_i + 1 < bio->bi_vcnt) { 300 bio_first_folio(fi, bio, fi->_i + 1); 301 } else { 302 fi->folio = NULL; 303 } 304 } 305 306 /** 307 * bio_for_each_folio_all - Iterate over each folio in a bio. 308 * @fi: struct folio_iter which is updated for each folio. 309 * @bio: struct bio to iterate over. 310 */ 311 #define bio_for_each_folio_all(fi, bio) \ 312 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio)) 313 314 enum bip_flags { 315 BIP_BLOCK_INTEGRITY = 1 << 0, /* block layer owns integrity data */ 316 BIP_MAPPED_INTEGRITY = 1 << 1, /* ref tag has been remapped */ 317 BIP_CTRL_NOCHECK = 1 << 2, /* disable HBA integrity checking */ 318 BIP_DISK_NOCHECK = 1 << 3, /* disable disk integrity checking */ 319 BIP_IP_CHECKSUM = 1 << 4, /* IP checksum */ 320 }; 321 322 /* 323 * bio integrity payload 324 */ 325 struct bio_integrity_payload { 326 struct bio *bip_bio; /* parent bio */ 327 328 struct bvec_iter bip_iter; 329 330 unsigned short bip_vcnt; /* # of integrity bio_vecs */ 331 unsigned short bip_max_vcnt; /* integrity bio_vec slots */ 332 unsigned short bip_flags; /* control flags */ 333 334 struct bvec_iter bio_iter; /* for rewinding parent bio */ 335 336 struct work_struct bip_work; /* I/O completion */ 337 338 struct bio_vec *bip_vec; 339 struct bio_vec bip_inline_vecs[];/* embedded bvec array */ 340 }; 341 342 #if defined(CONFIG_BLK_DEV_INTEGRITY) 343 344 static inline struct bio_integrity_payload *bio_integrity(struct bio *bio) 345 { 346 if (bio->bi_opf & REQ_INTEGRITY) 347 return bio->bi_integrity; 348 349 return NULL; 350 } 351 352 static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) 353 { 354 struct bio_integrity_payload *bip = bio_integrity(bio); 355 356 if (bip) 357 return bip->bip_flags & flag; 358 359 return false; 360 } 361 362 static inline sector_t bip_get_seed(struct bio_integrity_payload *bip) 363 { 364 return bip->bip_iter.bi_sector; 365 } 366 367 static inline void bip_set_seed(struct bio_integrity_payload *bip, 368 sector_t seed) 369 { 370 bip->bip_iter.bi_sector = seed; 371 } 372 373 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 374 375 void bio_trim(struct bio *bio, sector_t offset, sector_t size); 376 extern struct bio *bio_split(struct bio *bio, int sectors, 377 gfp_t gfp, struct bio_set *bs); 378 379 /** 380 * bio_next_split - get next @sectors from a bio, splitting if necessary 381 * @bio: bio to split 382 * @sectors: number of sectors to split from the front of @bio 383 * @gfp: gfp mask 384 * @bs: bio set to allocate from 385 * 386 * Return: a bio representing the next @sectors of @bio - if the bio is smaller 387 * than @sectors, returns the original bio unchanged. 388 */ 389 static inline struct bio *bio_next_split(struct bio *bio, int sectors, 390 gfp_t gfp, struct bio_set *bs) 391 { 392 if (sectors >= bio_sectors(bio)) 393 return bio; 394 395 return bio_split(bio, sectors, gfp, bs); 396 } 397 398 enum { 399 BIOSET_NEED_BVECS = BIT(0), 400 BIOSET_NEED_RESCUER = BIT(1), 401 BIOSET_PERCPU_CACHE = BIT(2), 402 }; 403 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); 404 extern void bioset_exit(struct bio_set *); 405 extern int biovec_init_pool(mempool_t *pool, int pool_entries); 406 extern int bioset_init_from_src(struct bio_set *bs, struct bio_set *src); 407 408 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 409 unsigned int opf, gfp_t gfp_mask, 410 struct bio_set *bs); 411 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, struct block_device *bdev, 412 unsigned short nr_vecs, unsigned int opf, struct bio_set *bs); 413 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs); 414 extern void bio_put(struct bio *); 415 416 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 417 gfp_t gfp, struct bio_set *bs); 418 int bio_init_clone(struct block_device *bdev, struct bio *bio, 419 struct bio *bio_src, gfp_t gfp); 420 421 extern struct bio_set fs_bio_set; 422 423 static inline struct bio *bio_alloc(struct block_device *bdev, 424 unsigned short nr_vecs, unsigned int opf, gfp_t gfp_mask) 425 { 426 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set); 427 } 428 429 void submit_bio(struct bio *bio); 430 431 extern void bio_endio(struct bio *); 432 433 static inline void bio_io_error(struct bio *bio) 434 { 435 bio->bi_status = BLK_STS_IOERR; 436 bio_endio(bio); 437 } 438 439 static inline void bio_wouldblock_error(struct bio *bio) 440 { 441 bio_set_flag(bio, BIO_QUIET); 442 bio->bi_status = BLK_STS_AGAIN; 443 bio_endio(bio); 444 } 445 446 /* 447 * Calculate number of bvec segments that should be allocated to fit data 448 * pointed by @iter. If @iter is backed by bvec it's going to be reused 449 * instead of allocating a new one. 450 */ 451 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs) 452 { 453 if (iov_iter_is_bvec(iter)) 454 return 0; 455 return iov_iter_npages(iter, max_segs); 456 } 457 458 struct request_queue; 459 460 extern int submit_bio_wait(struct bio *bio); 461 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 462 unsigned short max_vecs, unsigned int opf); 463 extern void bio_uninit(struct bio *); 464 void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf); 465 void bio_chain(struct bio *, struct bio *); 466 467 int bio_add_page(struct bio *, struct page *, unsigned len, unsigned off); 468 bool bio_add_folio(struct bio *, struct folio *, size_t len, size_t off); 469 extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, 470 unsigned int, unsigned int); 471 int bio_add_zone_append_page(struct bio *bio, struct page *page, 472 unsigned int len, unsigned int offset); 473 void __bio_add_page(struct bio *bio, struct page *page, 474 unsigned int len, unsigned int off); 475 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); 476 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter); 477 void __bio_release_pages(struct bio *bio, bool mark_dirty); 478 extern void bio_set_pages_dirty(struct bio *bio); 479 extern void bio_check_pages_dirty(struct bio *bio); 480 481 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 482 struct bio *src, struct bvec_iter *src_iter); 483 extern void bio_copy_data(struct bio *dst, struct bio *src); 484 extern void bio_free_pages(struct bio *bio); 485 void guard_bio_eod(struct bio *bio); 486 void zero_fill_bio(struct bio *bio); 487 488 static inline void bio_release_pages(struct bio *bio, bool mark_dirty) 489 { 490 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) 491 __bio_release_pages(bio, mark_dirty); 492 } 493 494 #define bio_dev(bio) \ 495 disk_devt((bio)->bi_bdev->bd_disk) 496 497 #ifdef CONFIG_BLK_CGROUP 498 void bio_associate_blkg(struct bio *bio); 499 void bio_associate_blkg_from_css(struct bio *bio, 500 struct cgroup_subsys_state *css); 501 void bio_clone_blkg_association(struct bio *dst, struct bio *src); 502 #else /* CONFIG_BLK_CGROUP */ 503 static inline void bio_associate_blkg(struct bio *bio) { } 504 static inline void bio_associate_blkg_from_css(struct bio *bio, 505 struct cgroup_subsys_state *css) 506 { } 507 static inline void bio_clone_blkg_association(struct bio *dst, 508 struct bio *src) { } 509 #endif /* CONFIG_BLK_CGROUP */ 510 511 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev) 512 { 513 bio_clear_flag(bio, BIO_REMAPPED); 514 if (bio->bi_bdev != bdev) 515 bio_clear_flag(bio, BIO_THROTTLED); 516 bio->bi_bdev = bdev; 517 bio_associate_blkg(bio); 518 } 519 520 /* 521 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. 522 * 523 * A bio_list anchors a singly-linked list of bios chained through the bi_next 524 * member of the bio. The bio_list also caches the last list member to allow 525 * fast access to the tail. 526 */ 527 struct bio_list { 528 struct bio *head; 529 struct bio *tail; 530 }; 531 532 static inline int bio_list_empty(const struct bio_list *bl) 533 { 534 return bl->head == NULL; 535 } 536 537 static inline void bio_list_init(struct bio_list *bl) 538 { 539 bl->head = bl->tail = NULL; 540 } 541 542 #define BIO_EMPTY_LIST { NULL, NULL } 543 544 #define bio_list_for_each(bio, bl) \ 545 for (bio = (bl)->head; bio; bio = bio->bi_next) 546 547 static inline unsigned bio_list_size(const struct bio_list *bl) 548 { 549 unsigned sz = 0; 550 struct bio *bio; 551 552 bio_list_for_each(bio, bl) 553 sz++; 554 555 return sz; 556 } 557 558 static inline void bio_list_add(struct bio_list *bl, struct bio *bio) 559 { 560 bio->bi_next = NULL; 561 562 if (bl->tail) 563 bl->tail->bi_next = bio; 564 else 565 bl->head = bio; 566 567 bl->tail = bio; 568 } 569 570 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) 571 { 572 bio->bi_next = bl->head; 573 574 bl->head = bio; 575 576 if (!bl->tail) 577 bl->tail = bio; 578 } 579 580 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) 581 { 582 if (!bl2->head) 583 return; 584 585 if (bl->tail) 586 bl->tail->bi_next = bl2->head; 587 else 588 bl->head = bl2->head; 589 590 bl->tail = bl2->tail; 591 } 592 593 static inline void bio_list_merge_head(struct bio_list *bl, 594 struct bio_list *bl2) 595 { 596 if (!bl2->head) 597 return; 598 599 if (bl->head) 600 bl2->tail->bi_next = bl->head; 601 else 602 bl->tail = bl2->tail; 603 604 bl->head = bl2->head; 605 } 606 607 static inline struct bio *bio_list_peek(struct bio_list *bl) 608 { 609 return bl->head; 610 } 611 612 static inline struct bio *bio_list_pop(struct bio_list *bl) 613 { 614 struct bio *bio = bl->head; 615 616 if (bio) { 617 bl->head = bl->head->bi_next; 618 if (!bl->head) 619 bl->tail = NULL; 620 621 bio->bi_next = NULL; 622 } 623 624 return bio; 625 } 626 627 static inline struct bio *bio_list_get(struct bio_list *bl) 628 { 629 struct bio *bio = bl->head; 630 631 bl->head = bl->tail = NULL; 632 633 return bio; 634 } 635 636 /* 637 * Increment chain count for the bio. Make sure the CHAIN flag update 638 * is visible before the raised count. 639 */ 640 static inline void bio_inc_remaining(struct bio *bio) 641 { 642 bio_set_flag(bio, BIO_CHAIN); 643 smp_mb__before_atomic(); 644 atomic_inc(&bio->__bi_remaining); 645 } 646 647 /* 648 * bio_set is used to allow other portions of the IO system to 649 * allocate their own private memory pools for bio and iovec structures. 650 * These memory pools in turn all allocate from the bio_slab 651 * and the bvec_slabs[]. 652 */ 653 #define BIO_POOL_SIZE 2 654 655 struct bio_set { 656 struct kmem_cache *bio_slab; 657 unsigned int front_pad; 658 659 /* 660 * per-cpu bio alloc cache 661 */ 662 struct bio_alloc_cache __percpu *cache; 663 664 mempool_t bio_pool; 665 mempool_t bvec_pool; 666 #if defined(CONFIG_BLK_DEV_INTEGRITY) 667 mempool_t bio_integrity_pool; 668 mempool_t bvec_integrity_pool; 669 #endif 670 671 unsigned int back_pad; 672 /* 673 * Deadlock avoidance for stacking block drivers: see comments in 674 * bio_alloc_bioset() for details 675 */ 676 spinlock_t rescue_lock; 677 struct bio_list rescue_list; 678 struct work_struct rescue_work; 679 struct workqueue_struct *rescue_workqueue; 680 681 /* 682 * Hot un-plug notifier for the per-cpu cache, if used 683 */ 684 struct hlist_node cpuhp_dead; 685 }; 686 687 static inline bool bioset_initialized(struct bio_set *bs) 688 { 689 return bs->bio_slab != NULL; 690 } 691 692 #if defined(CONFIG_BLK_DEV_INTEGRITY) 693 694 #define bip_for_each_vec(bvl, bip, iter) \ 695 for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter) 696 697 #define bio_for_each_integrity_vec(_bvl, _bio, _iter) \ 698 for_each_bio(_bio) \ 699 bip_for_each_vec(_bvl, _bio->bi_integrity, _iter) 700 701 extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int); 702 extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int); 703 extern bool bio_integrity_prep(struct bio *); 704 extern void bio_integrity_advance(struct bio *, unsigned int); 705 extern void bio_integrity_trim(struct bio *); 706 extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t); 707 extern int bioset_integrity_create(struct bio_set *, int); 708 extern void bioset_integrity_free(struct bio_set *); 709 extern void bio_integrity_init(void); 710 711 #else /* CONFIG_BLK_DEV_INTEGRITY */ 712 713 static inline void *bio_integrity(struct bio *bio) 714 { 715 return NULL; 716 } 717 718 static inline int bioset_integrity_create(struct bio_set *bs, int pool_size) 719 { 720 return 0; 721 } 722 723 static inline void bioset_integrity_free (struct bio_set *bs) 724 { 725 return; 726 } 727 728 static inline bool bio_integrity_prep(struct bio *bio) 729 { 730 return true; 731 } 732 733 static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src, 734 gfp_t gfp_mask) 735 { 736 return 0; 737 } 738 739 static inline void bio_integrity_advance(struct bio *bio, 740 unsigned int bytes_done) 741 { 742 return; 743 } 744 745 static inline void bio_integrity_trim(struct bio *bio) 746 { 747 return; 748 } 749 750 static inline void bio_integrity_init(void) 751 { 752 return; 753 } 754 755 static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) 756 { 757 return false; 758 } 759 760 static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp, 761 unsigned int nr) 762 { 763 return ERR_PTR(-EINVAL); 764 } 765 766 static inline int bio_integrity_add_page(struct bio *bio, struct page *page, 767 unsigned int len, unsigned int offset) 768 { 769 return 0; 770 } 771 772 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 773 774 /* 775 * Mark a bio as polled. Note that for async polled IO, the caller must 776 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). 777 * We cannot block waiting for requests on polled IO, as those completions 778 * must be found by the caller. This is different than IRQ driven IO, where 779 * it's safe to wait for IO to complete. 780 */ 781 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) 782 { 783 bio->bi_opf |= REQ_POLLED; 784 if (!is_sync_kiocb(kiocb)) 785 bio->bi_opf |= REQ_NOWAIT; 786 } 787 788 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 789 unsigned int nr_pages, unsigned int opf, gfp_t gfp); 790 791 #endif /* __LINUX_BIO_H */ 792