1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Symmetric key ciphers. 4 * 5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> 6 */ 7 8 #ifndef _CRYPTO_SKCIPHER_H 9 #define _CRYPTO_SKCIPHER_H 10 11 #include <linux/crypto.h> 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 15 /** 16 * struct skcipher_request - Symmetric key cipher request 17 * @cryptlen: Number of bytes to encrypt or decrypt 18 * @iv: Initialisation Vector 19 * @src: Source SG list 20 * @dst: Destination SG list 21 * @base: Underlying async request request 22 * @__ctx: Start of private context data 23 */ 24 struct skcipher_request { 25 unsigned int cryptlen; 26 27 u8 *iv; 28 29 struct scatterlist *src; 30 struct scatterlist *dst; 31 32 struct crypto_async_request base; 33 34 void *__ctx[] CRYPTO_MINALIGN_ATTR; 35 }; 36 37 struct crypto_skcipher { 38 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key, 39 unsigned int keylen); 40 int (*encrypt)(struct skcipher_request *req); 41 int (*decrypt)(struct skcipher_request *req); 42 43 unsigned int ivsize; 44 unsigned int reqsize; 45 unsigned int keysize; 46 47 struct crypto_tfm base; 48 }; 49 50 struct crypto_sync_skcipher { 51 struct crypto_skcipher base; 52 }; 53 54 /** 55 * struct skcipher_alg - symmetric key cipher definition 56 * @min_keysize: Minimum key size supported by the transformation. This is the 57 * smallest key length supported by this transformation algorithm. 58 * This must be set to one of the pre-defined values as this is 59 * not hardware specific. Possible values for this field can be 60 * found via git grep "_MIN_KEY_SIZE" include/crypto/ 61 * @max_keysize: Maximum key size supported by the transformation. This is the 62 * largest key length supported by this transformation algorithm. 63 * This must be set to one of the pre-defined values as this is 64 * not hardware specific. Possible values for this field can be 65 * found via git grep "_MAX_KEY_SIZE" include/crypto/ 66 * @setkey: Set key for the transformation. This function is used to either 67 * program a supplied key into the hardware or store the key in the 68 * transformation context for programming it later. Note that this 69 * function does modify the transformation context. This function can 70 * be called multiple times during the existence of the transformation 71 * object, so one must make sure the key is properly reprogrammed into 72 * the hardware. This function is also responsible for checking the key 73 * length for validity. In case a software fallback was put in place in 74 * the @cra_init call, this function might need to use the fallback if 75 * the algorithm doesn't support all of the key sizes. 76 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt 77 * the supplied scatterlist containing the blocks of data. The crypto 78 * API consumer is responsible for aligning the entries of the 79 * scatterlist properly and making sure the chunks are correctly 80 * sized. In case a software fallback was put in place in the 81 * @cra_init call, this function might need to use the fallback if 82 * the algorithm doesn't support all of the key sizes. In case the 83 * key was stored in transformation context, the key might need to be 84 * re-programmed into the hardware in this function. This function 85 * shall not modify the transformation context, as this function may 86 * be called in parallel with the same transformation object. 87 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt 88 * and the conditions are exactly the same. 89 * @init: Initialize the cryptographic transformation object. This function 90 * is used to initialize the cryptographic transformation object. 91 * This function is called only once at the instantiation time, right 92 * after the transformation context was allocated. In case the 93 * cryptographic hardware has some special requirements which need to 94 * be handled by software, this function shall check for the precise 95 * requirement of the transformation and put any software fallbacks 96 * in place. 97 * @exit: Deinitialize the cryptographic transformation object. This is a 98 * counterpart to @init, used to remove various changes set in 99 * @init. 100 * @ivsize: IV size applicable for transformation. The consumer must provide an 101 * IV of exactly that size to perform the encrypt or decrypt operation. 102 * @chunksize: Equal to the block size except for stream ciphers such as 103 * CTR where it is set to the underlying block size. 104 * @walksize: Equal to the chunk size except in cases where the algorithm is 105 * considerably more efficient if it can operate on multiple chunks 106 * in parallel. Should be a multiple of chunksize. 107 * @base: Definition of a generic crypto algorithm. 108 * 109 * All fields except @ivsize are mandatory and must be filled. 110 */ 111 struct skcipher_alg { 112 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key, 113 unsigned int keylen); 114 int (*encrypt)(struct skcipher_request *req); 115 int (*decrypt)(struct skcipher_request *req); 116 int (*init)(struct crypto_skcipher *tfm); 117 void (*exit)(struct crypto_skcipher *tfm); 118 119 unsigned int min_keysize; 120 unsigned int max_keysize; 121 unsigned int ivsize; 122 unsigned int chunksize; 123 unsigned int walksize; 124 125 struct crypto_alg base; 126 }; 127 128 #define MAX_SYNC_SKCIPHER_REQSIZE 384 129 /* 130 * This performs a type-check against the "tfm" argument to make sure 131 * all users have the correct skcipher tfm for doing on-stack requests. 132 */ 133 #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \ 134 char __##name##_desc[sizeof(struct skcipher_request) + \ 135 MAX_SYNC_SKCIPHER_REQSIZE + \ 136 (!(sizeof((struct crypto_sync_skcipher *)1 == \ 137 (typeof(tfm))1))) \ 138 ] CRYPTO_MINALIGN_ATTR; \ 139 struct skcipher_request *name = (void *)__##name##_desc 140 141 /** 142 * DOC: Symmetric Key Cipher API 143 * 144 * Symmetric key cipher API is used with the ciphers of type 145 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto). 146 * 147 * Asynchronous cipher operations imply that the function invocation for a 148 * cipher request returns immediately before the completion of the operation. 149 * The cipher request is scheduled as a separate kernel thread and therefore 150 * load-balanced on the different CPUs via the process scheduler. To allow 151 * the kernel crypto API to inform the caller about the completion of a cipher 152 * request, the caller must provide a callback function. That function is 153 * invoked with the cipher handle when the request completes. 154 * 155 * To support the asynchronous operation, additional information than just the 156 * cipher handle must be supplied to the kernel crypto API. That additional 157 * information is given by filling in the skcipher_request data structure. 158 * 159 * For the symmetric key cipher API, the state is maintained with the tfm 160 * cipher handle. A single tfm can be used across multiple calls and in 161 * parallel. For asynchronous block cipher calls, context data supplied and 162 * only used by the caller can be referenced the request data structure in 163 * addition to the IV used for the cipher request. The maintenance of such 164 * state information would be important for a crypto driver implementer to 165 * have, because when calling the callback function upon completion of the 166 * cipher operation, that callback function may need some information about 167 * which operation just finished if it invoked multiple in parallel. This 168 * state information is unused by the kernel crypto API. 169 */ 170 171 static inline struct crypto_skcipher *__crypto_skcipher_cast( 172 struct crypto_tfm *tfm) 173 { 174 return container_of(tfm, struct crypto_skcipher, base); 175 } 176 177 /** 178 * crypto_alloc_skcipher() - allocate symmetric key cipher handle 179 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 180 * skcipher cipher 181 * @type: specifies the type of the cipher 182 * @mask: specifies the mask for the cipher 183 * 184 * Allocate a cipher handle for an skcipher. The returned struct 185 * crypto_skcipher is the cipher handle that is required for any subsequent 186 * API invocation for that skcipher. 187 * 188 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 189 * of an error, PTR_ERR() returns the error code. 190 */ 191 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, 192 u32 type, u32 mask); 193 194 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name, 195 u32 type, u32 mask); 196 197 static inline struct crypto_tfm *crypto_skcipher_tfm( 198 struct crypto_skcipher *tfm) 199 { 200 return &tfm->base; 201 } 202 203 /** 204 * crypto_free_skcipher() - zeroize and free cipher handle 205 * @tfm: cipher handle to be freed 206 */ 207 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm) 208 { 209 crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm)); 210 } 211 212 static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm) 213 { 214 crypto_free_skcipher(&tfm->base); 215 } 216 217 /** 218 * crypto_has_skcipher() - Search for the availability of an skcipher. 219 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 220 * skcipher 221 * @type: specifies the type of the skcipher 222 * @mask: specifies the mask for the skcipher 223 * 224 * Return: true when the skcipher is known to the kernel crypto API; false 225 * otherwise 226 */ 227 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask); 228 229 static inline const char *crypto_skcipher_driver_name( 230 struct crypto_skcipher *tfm) 231 { 232 return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm)); 233 } 234 235 static inline struct skcipher_alg *crypto_skcipher_alg( 236 struct crypto_skcipher *tfm) 237 { 238 return container_of(crypto_skcipher_tfm(tfm)->__crt_alg, 239 struct skcipher_alg, base); 240 } 241 242 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg) 243 { 244 return alg->ivsize; 245 } 246 247 /** 248 * crypto_skcipher_ivsize() - obtain IV size 249 * @tfm: cipher handle 250 * 251 * The size of the IV for the skcipher referenced by the cipher handle is 252 * returned. This IV size may be zero if the cipher does not need an IV. 253 * 254 * Return: IV size in bytes 255 */ 256 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm) 257 { 258 return tfm->ivsize; 259 } 260 261 static inline unsigned int crypto_sync_skcipher_ivsize( 262 struct crypto_sync_skcipher *tfm) 263 { 264 return crypto_skcipher_ivsize(&tfm->base); 265 } 266 267 /** 268 * crypto_skcipher_blocksize() - obtain block size of cipher 269 * @tfm: cipher handle 270 * 271 * The block size for the skcipher referenced with the cipher handle is 272 * returned. The caller may use that information to allocate appropriate 273 * memory for the data returned by the encryption or decryption operation 274 * 275 * Return: block size of cipher 276 */ 277 static inline unsigned int crypto_skcipher_blocksize( 278 struct crypto_skcipher *tfm) 279 { 280 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm)); 281 } 282 283 static inline unsigned int crypto_skcipher_alg_chunksize( 284 struct skcipher_alg *alg) 285 { 286 return alg->chunksize; 287 } 288 289 /** 290 * crypto_skcipher_chunksize() - obtain chunk size 291 * @tfm: cipher handle 292 * 293 * The block size is set to one for ciphers such as CTR. However, 294 * you still need to provide incremental updates in multiples of 295 * the underlying block size as the IV does not have sub-block 296 * granularity. This is known in this API as the chunk size. 297 * 298 * Return: chunk size in bytes 299 */ 300 static inline unsigned int crypto_skcipher_chunksize( 301 struct crypto_skcipher *tfm) 302 { 303 return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm)); 304 } 305 306 static inline unsigned int crypto_sync_skcipher_blocksize( 307 struct crypto_sync_skcipher *tfm) 308 { 309 return crypto_skcipher_blocksize(&tfm->base); 310 } 311 312 static inline unsigned int crypto_skcipher_alignmask( 313 struct crypto_skcipher *tfm) 314 { 315 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm)); 316 } 317 318 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm) 319 { 320 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm)); 321 } 322 323 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm, 324 u32 flags) 325 { 326 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags); 327 } 328 329 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm, 330 u32 flags) 331 { 332 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags); 333 } 334 335 static inline u32 crypto_sync_skcipher_get_flags( 336 struct crypto_sync_skcipher *tfm) 337 { 338 return crypto_skcipher_get_flags(&tfm->base); 339 } 340 341 static inline void crypto_sync_skcipher_set_flags( 342 struct crypto_sync_skcipher *tfm, u32 flags) 343 { 344 crypto_skcipher_set_flags(&tfm->base, flags); 345 } 346 347 static inline void crypto_sync_skcipher_clear_flags( 348 struct crypto_sync_skcipher *tfm, u32 flags) 349 { 350 crypto_skcipher_clear_flags(&tfm->base, flags); 351 } 352 353 /** 354 * crypto_skcipher_setkey() - set key for cipher 355 * @tfm: cipher handle 356 * @key: buffer holding the key 357 * @keylen: length of the key in bytes 358 * 359 * The caller provided key is set for the skcipher referenced by the cipher 360 * handle. 361 * 362 * Note, the key length determines the cipher type. Many block ciphers implement 363 * different cipher modes depending on the key size, such as AES-128 vs AES-192 364 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 365 * is performed. 366 * 367 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 368 */ 369 static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm, 370 const u8 *key, unsigned int keylen) 371 { 372 return tfm->setkey(tfm, key, keylen); 373 } 374 375 static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm, 376 const u8 *key, unsigned int keylen) 377 { 378 return crypto_skcipher_setkey(&tfm->base, key, keylen); 379 } 380 381 static inline unsigned int crypto_skcipher_default_keysize( 382 struct crypto_skcipher *tfm) 383 { 384 return tfm->keysize; 385 } 386 387 /** 388 * crypto_skcipher_reqtfm() - obtain cipher handle from request 389 * @req: skcipher_request out of which the cipher handle is to be obtained 390 * 391 * Return the crypto_skcipher handle when furnishing an skcipher_request 392 * data structure. 393 * 394 * Return: crypto_skcipher handle 395 */ 396 static inline struct crypto_skcipher *crypto_skcipher_reqtfm( 397 struct skcipher_request *req) 398 { 399 return __crypto_skcipher_cast(req->base.tfm); 400 } 401 402 static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm( 403 struct skcipher_request *req) 404 { 405 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 406 407 return container_of(tfm, struct crypto_sync_skcipher, base); 408 } 409 410 /** 411 * crypto_skcipher_encrypt() - encrypt plaintext 412 * @req: reference to the skcipher_request handle that holds all information 413 * needed to perform the cipher operation 414 * 415 * Encrypt plaintext data using the skcipher_request handle. That data 416 * structure and how it is filled with data is discussed with the 417 * skcipher_request_* functions. 418 * 419 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 420 */ 421 int crypto_skcipher_encrypt(struct skcipher_request *req); 422 423 /** 424 * crypto_skcipher_decrypt() - decrypt ciphertext 425 * @req: reference to the skcipher_request handle that holds all information 426 * needed to perform the cipher operation 427 * 428 * Decrypt ciphertext data using the skcipher_request handle. That data 429 * structure and how it is filled with data is discussed with the 430 * skcipher_request_* functions. 431 * 432 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 433 */ 434 int crypto_skcipher_decrypt(struct skcipher_request *req); 435 436 /** 437 * DOC: Symmetric Key Cipher Request Handle 438 * 439 * The skcipher_request data structure contains all pointers to data 440 * required for the symmetric key cipher operation. This includes the cipher 441 * handle (which can be used by multiple skcipher_request instances), pointer 442 * to plaintext and ciphertext, asynchronous callback function, etc. It acts 443 * as a handle to the skcipher_request_* API calls in a similar way as 444 * skcipher handle to the crypto_skcipher_* API calls. 445 */ 446 447 /** 448 * crypto_skcipher_reqsize() - obtain size of the request data structure 449 * @tfm: cipher handle 450 * 451 * Return: number of bytes 452 */ 453 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm) 454 { 455 return tfm->reqsize; 456 } 457 458 /** 459 * skcipher_request_set_tfm() - update cipher handle reference in request 460 * @req: request handle to be modified 461 * @tfm: cipher handle that shall be added to the request handle 462 * 463 * Allow the caller to replace the existing skcipher handle in the request 464 * data structure with a different one. 465 */ 466 static inline void skcipher_request_set_tfm(struct skcipher_request *req, 467 struct crypto_skcipher *tfm) 468 { 469 req->base.tfm = crypto_skcipher_tfm(tfm); 470 } 471 472 static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req, 473 struct crypto_sync_skcipher *tfm) 474 { 475 skcipher_request_set_tfm(req, &tfm->base); 476 } 477 478 static inline struct skcipher_request *skcipher_request_cast( 479 struct crypto_async_request *req) 480 { 481 return container_of(req, struct skcipher_request, base); 482 } 483 484 /** 485 * skcipher_request_alloc() - allocate request data structure 486 * @tfm: cipher handle to be registered with the request 487 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 488 * 489 * Allocate the request data structure that must be used with the skcipher 490 * encrypt and decrypt API calls. During the allocation, the provided skcipher 491 * handle is registered in the request data structure. 492 * 493 * Return: allocated request handle in case of success, or NULL if out of memory 494 */ 495 static inline struct skcipher_request *skcipher_request_alloc( 496 struct crypto_skcipher *tfm, gfp_t gfp) 497 { 498 struct skcipher_request *req; 499 500 req = kmalloc(sizeof(struct skcipher_request) + 501 crypto_skcipher_reqsize(tfm), gfp); 502 503 if (likely(req)) 504 skcipher_request_set_tfm(req, tfm); 505 506 return req; 507 } 508 509 /** 510 * skcipher_request_free() - zeroize and free request data structure 511 * @req: request data structure cipher handle to be freed 512 */ 513 static inline void skcipher_request_free(struct skcipher_request *req) 514 { 515 kzfree(req); 516 } 517 518 static inline void skcipher_request_zero(struct skcipher_request *req) 519 { 520 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 521 522 memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm)); 523 } 524 525 /** 526 * skcipher_request_set_callback() - set asynchronous callback function 527 * @req: request handle 528 * @flags: specify zero or an ORing of the flags 529 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 530 * increase the wait queue beyond the initial maximum size; 531 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 532 * @compl: callback function pointer to be registered with the request handle 533 * @data: The data pointer refers to memory that is not used by the kernel 534 * crypto API, but provided to the callback function for it to use. Here, 535 * the caller can provide a reference to memory the callback function can 536 * operate on. As the callback function is invoked asynchronously to the 537 * related functionality, it may need to access data structures of the 538 * related functionality which can be referenced using this pointer. The 539 * callback function can access the memory via the "data" field in the 540 * crypto_async_request data structure provided to the callback function. 541 * 542 * This function allows setting the callback function that is triggered once the 543 * cipher operation completes. 544 * 545 * The callback function is registered with the skcipher_request handle and 546 * must comply with the following template:: 547 * 548 * void callback_function(struct crypto_async_request *req, int error) 549 */ 550 static inline void skcipher_request_set_callback(struct skcipher_request *req, 551 u32 flags, 552 crypto_completion_t compl, 553 void *data) 554 { 555 req->base.complete = compl; 556 req->base.data = data; 557 req->base.flags = flags; 558 } 559 560 /** 561 * skcipher_request_set_crypt() - set data buffers 562 * @req: request handle 563 * @src: source scatter / gather list 564 * @dst: destination scatter / gather list 565 * @cryptlen: number of bytes to process from @src 566 * @iv: IV for the cipher operation which must comply with the IV size defined 567 * by crypto_skcipher_ivsize 568 * 569 * This function allows setting of the source data and destination data 570 * scatter / gather lists. 571 * 572 * For encryption, the source is treated as the plaintext and the 573 * destination is the ciphertext. For a decryption operation, the use is 574 * reversed - the source is the ciphertext and the destination is the plaintext. 575 */ 576 static inline void skcipher_request_set_crypt( 577 struct skcipher_request *req, 578 struct scatterlist *src, struct scatterlist *dst, 579 unsigned int cryptlen, void *iv) 580 { 581 req->src = src; 582 req->dst = dst; 583 req->cryptlen = cryptlen; 584 req->iv = iv; 585 } 586 587 #endif /* _CRYPTO_SKCIPHER_H */ 588 589