xref: /openbmc/linux/include/crypto/skcipher.h (revision 5a170e9e)
1 /*
2  * Symmetric key ciphers.
3  *
4  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  *
11  */
12 
13 #ifndef _CRYPTO_SKCIPHER_H
14 #define _CRYPTO_SKCIPHER_H
15 
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 
20 /**
21  *	struct skcipher_request - Symmetric key cipher request
22  *	@cryptlen: Number of bytes to encrypt or decrypt
23  *	@iv: Initialisation Vector
24  *	@src: Source SG list
25  *	@dst: Destination SG list
26  *	@base: Underlying async request request
27  *	@__ctx: Start of private context data
28  */
29 struct skcipher_request {
30 	unsigned int cryptlen;
31 
32 	u8 *iv;
33 
34 	struct scatterlist *src;
35 	struct scatterlist *dst;
36 
37 	struct crypto_async_request base;
38 
39 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
40 };
41 
42 struct crypto_skcipher {
43 	int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
44 	              unsigned int keylen);
45 	int (*encrypt)(struct skcipher_request *req);
46 	int (*decrypt)(struct skcipher_request *req);
47 
48 	unsigned int ivsize;
49 	unsigned int reqsize;
50 	unsigned int keysize;
51 
52 	struct crypto_tfm base;
53 };
54 
55 struct crypto_sync_skcipher {
56 	struct crypto_skcipher base;
57 };
58 
59 /**
60  * struct skcipher_alg - symmetric key cipher definition
61  * @min_keysize: Minimum key size supported by the transformation. This is the
62  *		 smallest key length supported by this transformation algorithm.
63  *		 This must be set to one of the pre-defined values as this is
64  *		 not hardware specific. Possible values for this field can be
65  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
66  * @max_keysize: Maximum key size supported by the transformation. This is the
67  *		 largest key length supported by this transformation algorithm.
68  *		 This must be set to one of the pre-defined values as this is
69  *		 not hardware specific. Possible values for this field can be
70  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
71  * @setkey: Set key for the transformation. This function is used to either
72  *	    program a supplied key into the hardware or store the key in the
73  *	    transformation context for programming it later. Note that this
74  *	    function does modify the transformation context. This function can
75  *	    be called multiple times during the existence of the transformation
76  *	    object, so one must make sure the key is properly reprogrammed into
77  *	    the hardware. This function is also responsible for checking the key
78  *	    length for validity. In case a software fallback was put in place in
79  *	    the @cra_init call, this function might need to use the fallback if
80  *	    the algorithm doesn't support all of the key sizes.
81  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
82  *	     the supplied scatterlist containing the blocks of data. The crypto
83  *	     API consumer is responsible for aligning the entries of the
84  *	     scatterlist properly and making sure the chunks are correctly
85  *	     sized. In case a software fallback was put in place in the
86  *	     @cra_init call, this function might need to use the fallback if
87  *	     the algorithm doesn't support all of the key sizes. In case the
88  *	     key was stored in transformation context, the key might need to be
89  *	     re-programmed into the hardware in this function. This function
90  *	     shall not modify the transformation context, as this function may
91  *	     be called in parallel with the same transformation object.
92  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
93  *	     and the conditions are exactly the same.
94  * @init: Initialize the cryptographic transformation object. This function
95  *	  is used to initialize the cryptographic transformation object.
96  *	  This function is called only once at the instantiation time, right
97  *	  after the transformation context was allocated. In case the
98  *	  cryptographic hardware has some special requirements which need to
99  *	  be handled by software, this function shall check for the precise
100  *	  requirement of the transformation and put any software fallbacks
101  *	  in place.
102  * @exit: Deinitialize the cryptographic transformation object. This is a
103  *	  counterpart to @init, used to remove various changes set in
104  *	  @init.
105  * @ivsize: IV size applicable for transformation. The consumer must provide an
106  *	    IV of exactly that size to perform the encrypt or decrypt operation.
107  * @chunksize: Equal to the block size except for stream ciphers such as
108  *	       CTR where it is set to the underlying block size.
109  * @walksize: Equal to the chunk size except in cases where the algorithm is
110  * 	      considerably more efficient if it can operate on multiple chunks
111  * 	      in parallel. Should be a multiple of chunksize.
112  * @base: Definition of a generic crypto algorithm.
113  *
114  * All fields except @ivsize are mandatory and must be filled.
115  */
116 struct skcipher_alg {
117 	int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
118 	              unsigned int keylen);
119 	int (*encrypt)(struct skcipher_request *req);
120 	int (*decrypt)(struct skcipher_request *req);
121 	int (*init)(struct crypto_skcipher *tfm);
122 	void (*exit)(struct crypto_skcipher *tfm);
123 
124 	unsigned int min_keysize;
125 	unsigned int max_keysize;
126 	unsigned int ivsize;
127 	unsigned int chunksize;
128 	unsigned int walksize;
129 
130 	struct crypto_alg base;
131 };
132 
133 #define MAX_SYNC_SKCIPHER_REQSIZE      384
134 /*
135  * This performs a type-check against the "tfm" argument to make sure
136  * all users have the correct skcipher tfm for doing on-stack requests.
137  */
138 #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
139 	char __##name##_desc[sizeof(struct skcipher_request) + \
140 			     MAX_SYNC_SKCIPHER_REQSIZE + \
141 			     (!(sizeof((struct crypto_sync_skcipher *)1 == \
142 				       (typeof(tfm))1))) \
143 			    ] CRYPTO_MINALIGN_ATTR; \
144 	struct skcipher_request *name = (void *)__##name##_desc
145 
146 /**
147  * DOC: Symmetric Key Cipher API
148  *
149  * Symmetric key cipher API is used with the ciphers of type
150  * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
151  *
152  * Asynchronous cipher operations imply that the function invocation for a
153  * cipher request returns immediately before the completion of the operation.
154  * The cipher request is scheduled as a separate kernel thread and therefore
155  * load-balanced on the different CPUs via the process scheduler. To allow
156  * the kernel crypto API to inform the caller about the completion of a cipher
157  * request, the caller must provide a callback function. That function is
158  * invoked with the cipher handle when the request completes.
159  *
160  * To support the asynchronous operation, additional information than just the
161  * cipher handle must be supplied to the kernel crypto API. That additional
162  * information is given by filling in the skcipher_request data structure.
163  *
164  * For the symmetric key cipher API, the state is maintained with the tfm
165  * cipher handle. A single tfm can be used across multiple calls and in
166  * parallel. For asynchronous block cipher calls, context data supplied and
167  * only used by the caller can be referenced the request data structure in
168  * addition to the IV used for the cipher request. The maintenance of such
169  * state information would be important for a crypto driver implementer to
170  * have, because when calling the callback function upon completion of the
171  * cipher operation, that callback function may need some information about
172  * which operation just finished if it invoked multiple in parallel. This
173  * state information is unused by the kernel crypto API.
174  */
175 
176 static inline struct crypto_skcipher *__crypto_skcipher_cast(
177 	struct crypto_tfm *tfm)
178 {
179 	return container_of(tfm, struct crypto_skcipher, base);
180 }
181 
182 /**
183  * crypto_alloc_skcipher() - allocate symmetric key cipher handle
184  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
185  *	      skcipher cipher
186  * @type: specifies the type of the cipher
187  * @mask: specifies the mask for the cipher
188  *
189  * Allocate a cipher handle for an skcipher. The returned struct
190  * crypto_skcipher is the cipher handle that is required for any subsequent
191  * API invocation for that skcipher.
192  *
193  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
194  *	   of an error, PTR_ERR() returns the error code.
195  */
196 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
197 					      u32 type, u32 mask);
198 
199 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
200 					      u32 type, u32 mask);
201 
202 static inline struct crypto_tfm *crypto_skcipher_tfm(
203 	struct crypto_skcipher *tfm)
204 {
205 	return &tfm->base;
206 }
207 
208 /**
209  * crypto_free_skcipher() - zeroize and free cipher handle
210  * @tfm: cipher handle to be freed
211  */
212 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
213 {
214 	crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
215 }
216 
217 static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
218 {
219 	crypto_free_skcipher(&tfm->base);
220 }
221 
222 /**
223  * crypto_has_skcipher() - Search for the availability of an skcipher.
224  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
225  *	      skcipher
226  * @type: specifies the type of the cipher
227  * @mask: specifies the mask for the cipher
228  *
229  * Return: true when the skcipher is known to the kernel crypto API; false
230  *	   otherwise
231  */
232 static inline int crypto_has_skcipher(const char *alg_name, u32 type,
233 					u32 mask)
234 {
235 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
236 			      crypto_skcipher_mask(mask));
237 }
238 
239 /**
240  * crypto_has_skcipher2() - Search for the availability of an skcipher.
241  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
242  *	      skcipher
243  * @type: specifies the type of the skcipher
244  * @mask: specifies the mask for the skcipher
245  *
246  * Return: true when the skcipher is known to the kernel crypto API; false
247  *	   otherwise
248  */
249 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
250 
251 static inline const char *crypto_skcipher_driver_name(
252 	struct crypto_skcipher *tfm)
253 {
254 	return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
255 }
256 
257 static inline struct skcipher_alg *crypto_skcipher_alg(
258 	struct crypto_skcipher *tfm)
259 {
260 	return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
261 			    struct skcipher_alg, base);
262 }
263 
264 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
265 {
266 	if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
267 	    CRYPTO_ALG_TYPE_BLKCIPHER)
268 		return alg->base.cra_blkcipher.ivsize;
269 
270 	if (alg->base.cra_ablkcipher.encrypt)
271 		return alg->base.cra_ablkcipher.ivsize;
272 
273 	return alg->ivsize;
274 }
275 
276 /**
277  * crypto_skcipher_ivsize() - obtain IV size
278  * @tfm: cipher handle
279  *
280  * The size of the IV for the skcipher referenced by the cipher handle is
281  * returned. This IV size may be zero if the cipher does not need an IV.
282  *
283  * Return: IV size in bytes
284  */
285 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
286 {
287 	return tfm->ivsize;
288 }
289 
290 static inline unsigned int crypto_sync_skcipher_ivsize(
291 	struct crypto_sync_skcipher *tfm)
292 {
293 	return crypto_skcipher_ivsize(&tfm->base);
294 }
295 
296 static inline unsigned int crypto_skcipher_alg_chunksize(
297 	struct skcipher_alg *alg)
298 {
299 	if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
300 	    CRYPTO_ALG_TYPE_BLKCIPHER)
301 		return alg->base.cra_blocksize;
302 
303 	if (alg->base.cra_ablkcipher.encrypt)
304 		return alg->base.cra_blocksize;
305 
306 	return alg->chunksize;
307 }
308 
309 static inline unsigned int crypto_skcipher_alg_walksize(
310 	struct skcipher_alg *alg)
311 {
312 	if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
313 	    CRYPTO_ALG_TYPE_BLKCIPHER)
314 		return alg->base.cra_blocksize;
315 
316 	if (alg->base.cra_ablkcipher.encrypt)
317 		return alg->base.cra_blocksize;
318 
319 	return alg->walksize;
320 }
321 
322 /**
323  * crypto_skcipher_chunksize() - obtain chunk size
324  * @tfm: cipher handle
325  *
326  * The block size is set to one for ciphers such as CTR.  However,
327  * you still need to provide incremental updates in multiples of
328  * the underlying block size as the IV does not have sub-block
329  * granularity.  This is known in this API as the chunk size.
330  *
331  * Return: chunk size in bytes
332  */
333 static inline unsigned int crypto_skcipher_chunksize(
334 	struct crypto_skcipher *tfm)
335 {
336 	return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
337 }
338 
339 /**
340  * crypto_skcipher_walksize() - obtain walk size
341  * @tfm: cipher handle
342  *
343  * In some cases, algorithms can only perform optimally when operating on
344  * multiple blocks in parallel. This is reflected by the walksize, which
345  * must be a multiple of the chunksize (or equal if the concern does not
346  * apply)
347  *
348  * Return: walk size in bytes
349  */
350 static inline unsigned int crypto_skcipher_walksize(
351 	struct crypto_skcipher *tfm)
352 {
353 	return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm));
354 }
355 
356 /**
357  * crypto_skcipher_blocksize() - obtain block size of cipher
358  * @tfm: cipher handle
359  *
360  * The block size for the skcipher referenced with the cipher handle is
361  * returned. The caller may use that information to allocate appropriate
362  * memory for the data returned by the encryption or decryption operation
363  *
364  * Return: block size of cipher
365  */
366 static inline unsigned int crypto_skcipher_blocksize(
367 	struct crypto_skcipher *tfm)
368 {
369 	return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
370 }
371 
372 static inline unsigned int crypto_sync_skcipher_blocksize(
373 	struct crypto_sync_skcipher *tfm)
374 {
375 	return crypto_skcipher_blocksize(&tfm->base);
376 }
377 
378 static inline unsigned int crypto_skcipher_alignmask(
379 	struct crypto_skcipher *tfm)
380 {
381 	return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
382 }
383 
384 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
385 {
386 	return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
387 }
388 
389 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
390 					       u32 flags)
391 {
392 	crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
393 }
394 
395 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
396 						 u32 flags)
397 {
398 	crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
399 }
400 
401 static inline u32 crypto_sync_skcipher_get_flags(
402 	struct crypto_sync_skcipher *tfm)
403 {
404 	return crypto_skcipher_get_flags(&tfm->base);
405 }
406 
407 static inline void crypto_sync_skcipher_set_flags(
408 	struct crypto_sync_skcipher *tfm, u32 flags)
409 {
410 	crypto_skcipher_set_flags(&tfm->base, flags);
411 }
412 
413 static inline void crypto_sync_skcipher_clear_flags(
414 	struct crypto_sync_skcipher *tfm, u32 flags)
415 {
416 	crypto_skcipher_clear_flags(&tfm->base, flags);
417 }
418 
419 /**
420  * crypto_skcipher_setkey() - set key for cipher
421  * @tfm: cipher handle
422  * @key: buffer holding the key
423  * @keylen: length of the key in bytes
424  *
425  * The caller provided key is set for the skcipher referenced by the cipher
426  * handle.
427  *
428  * Note, the key length determines the cipher type. Many block ciphers implement
429  * different cipher modes depending on the key size, such as AES-128 vs AES-192
430  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
431  * is performed.
432  *
433  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
434  */
435 static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
436 					 const u8 *key, unsigned int keylen)
437 {
438 	return tfm->setkey(tfm, key, keylen);
439 }
440 
441 static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
442 					 const u8 *key, unsigned int keylen)
443 {
444 	return crypto_skcipher_setkey(&tfm->base, key, keylen);
445 }
446 
447 static inline unsigned int crypto_skcipher_default_keysize(
448 	struct crypto_skcipher *tfm)
449 {
450 	return tfm->keysize;
451 }
452 
453 /**
454  * crypto_skcipher_reqtfm() - obtain cipher handle from request
455  * @req: skcipher_request out of which the cipher handle is to be obtained
456  *
457  * Return the crypto_skcipher handle when furnishing an skcipher_request
458  * data structure.
459  *
460  * Return: crypto_skcipher handle
461  */
462 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
463 	struct skcipher_request *req)
464 {
465 	return __crypto_skcipher_cast(req->base.tfm);
466 }
467 
468 static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
469 	struct skcipher_request *req)
470 {
471 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
472 
473 	return container_of(tfm, struct crypto_sync_skcipher, base);
474 }
475 
476 /**
477  * crypto_skcipher_encrypt() - encrypt plaintext
478  * @req: reference to the skcipher_request handle that holds all information
479  *	 needed to perform the cipher operation
480  *
481  * Encrypt plaintext data using the skcipher_request handle. That data
482  * structure and how it is filled with data is discussed with the
483  * skcipher_request_* functions.
484  *
485  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
486  */
487 static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
488 {
489 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
490 	struct crypto_alg *alg = tfm->base.__crt_alg;
491 	unsigned int cryptlen = req->cryptlen;
492 	int ret;
493 
494 	crypto_stats_get(alg);
495 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
496 		ret = -ENOKEY;
497 	else
498 		ret = tfm->encrypt(req);
499 	crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
500 	return ret;
501 }
502 
503 /**
504  * crypto_skcipher_decrypt() - decrypt ciphertext
505  * @req: reference to the skcipher_request handle that holds all information
506  *	 needed to perform the cipher operation
507  *
508  * Decrypt ciphertext data using the skcipher_request handle. That data
509  * structure and how it is filled with data is discussed with the
510  * skcipher_request_* functions.
511  *
512  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
513  */
514 static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
515 {
516 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
517 	struct crypto_alg *alg = tfm->base.__crt_alg;
518 	unsigned int cryptlen = req->cryptlen;
519 	int ret;
520 
521 	crypto_stats_get(alg);
522 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
523 		ret = -ENOKEY;
524 	else
525 		ret = tfm->decrypt(req);
526 	crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
527 	return ret;
528 }
529 
530 /**
531  * DOC: Symmetric Key Cipher Request Handle
532  *
533  * The skcipher_request data structure contains all pointers to data
534  * required for the symmetric key cipher operation. This includes the cipher
535  * handle (which can be used by multiple skcipher_request instances), pointer
536  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
537  * as a handle to the skcipher_request_* API calls in a similar way as
538  * skcipher handle to the crypto_skcipher_* API calls.
539  */
540 
541 /**
542  * crypto_skcipher_reqsize() - obtain size of the request data structure
543  * @tfm: cipher handle
544  *
545  * Return: number of bytes
546  */
547 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
548 {
549 	return tfm->reqsize;
550 }
551 
552 /**
553  * skcipher_request_set_tfm() - update cipher handle reference in request
554  * @req: request handle to be modified
555  * @tfm: cipher handle that shall be added to the request handle
556  *
557  * Allow the caller to replace the existing skcipher handle in the request
558  * data structure with a different one.
559  */
560 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
561 					    struct crypto_skcipher *tfm)
562 {
563 	req->base.tfm = crypto_skcipher_tfm(tfm);
564 }
565 
566 static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
567 					    struct crypto_sync_skcipher *tfm)
568 {
569 	skcipher_request_set_tfm(req, &tfm->base);
570 }
571 
572 static inline struct skcipher_request *skcipher_request_cast(
573 	struct crypto_async_request *req)
574 {
575 	return container_of(req, struct skcipher_request, base);
576 }
577 
578 /**
579  * skcipher_request_alloc() - allocate request data structure
580  * @tfm: cipher handle to be registered with the request
581  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
582  *
583  * Allocate the request data structure that must be used with the skcipher
584  * encrypt and decrypt API calls. During the allocation, the provided skcipher
585  * handle is registered in the request data structure.
586  *
587  * Return: allocated request handle in case of success, or NULL if out of memory
588  */
589 static inline struct skcipher_request *skcipher_request_alloc(
590 	struct crypto_skcipher *tfm, gfp_t gfp)
591 {
592 	struct skcipher_request *req;
593 
594 	req = kmalloc(sizeof(struct skcipher_request) +
595 		      crypto_skcipher_reqsize(tfm), gfp);
596 
597 	if (likely(req))
598 		skcipher_request_set_tfm(req, tfm);
599 
600 	return req;
601 }
602 
603 /**
604  * skcipher_request_free() - zeroize and free request data structure
605  * @req: request data structure cipher handle to be freed
606  */
607 static inline void skcipher_request_free(struct skcipher_request *req)
608 {
609 	kzfree(req);
610 }
611 
612 static inline void skcipher_request_zero(struct skcipher_request *req)
613 {
614 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
615 
616 	memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
617 }
618 
619 /**
620  * skcipher_request_set_callback() - set asynchronous callback function
621  * @req: request handle
622  * @flags: specify zero or an ORing of the flags
623  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
624  *	   increase the wait queue beyond the initial maximum size;
625  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
626  * @compl: callback function pointer to be registered with the request handle
627  * @data: The data pointer refers to memory that is not used by the kernel
628  *	  crypto API, but provided to the callback function for it to use. Here,
629  *	  the caller can provide a reference to memory the callback function can
630  *	  operate on. As the callback function is invoked asynchronously to the
631  *	  related functionality, it may need to access data structures of the
632  *	  related functionality which can be referenced using this pointer. The
633  *	  callback function can access the memory via the "data" field in the
634  *	  crypto_async_request data structure provided to the callback function.
635  *
636  * This function allows setting the callback function that is triggered once the
637  * cipher operation completes.
638  *
639  * The callback function is registered with the skcipher_request handle and
640  * must comply with the following template::
641  *
642  *	void callback_function(struct crypto_async_request *req, int error)
643  */
644 static inline void skcipher_request_set_callback(struct skcipher_request *req,
645 						 u32 flags,
646 						 crypto_completion_t compl,
647 						 void *data)
648 {
649 	req->base.complete = compl;
650 	req->base.data = data;
651 	req->base.flags = flags;
652 }
653 
654 /**
655  * skcipher_request_set_crypt() - set data buffers
656  * @req: request handle
657  * @src: source scatter / gather list
658  * @dst: destination scatter / gather list
659  * @cryptlen: number of bytes to process from @src
660  * @iv: IV for the cipher operation which must comply with the IV size defined
661  *      by crypto_skcipher_ivsize
662  *
663  * This function allows setting of the source data and destination data
664  * scatter / gather lists.
665  *
666  * For encryption, the source is treated as the plaintext and the
667  * destination is the ciphertext. For a decryption operation, the use is
668  * reversed - the source is the ciphertext and the destination is the plaintext.
669  */
670 static inline void skcipher_request_set_crypt(
671 	struct skcipher_request *req,
672 	struct scatterlist *src, struct scatterlist *dst,
673 	unsigned int cryptlen, void *iv)
674 {
675 	req->src = src;
676 	req->dst = dst;
677 	req->cryptlen = cryptlen;
678 	req->iv = iv;
679 }
680 
681 #endif	/* _CRYPTO_SKCIPHER_H */
682 
683