xref: /openbmc/linux/include/crypto/skcipher.h (revision 4419617e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Symmetric key ciphers.
4  *
5  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7 
8 #ifndef _CRYPTO_SKCIPHER_H
9 #define _CRYPTO_SKCIPHER_H
10 
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 
15 /**
16  *	struct skcipher_request - Symmetric key cipher request
17  *	@cryptlen: Number of bytes to encrypt or decrypt
18  *	@iv: Initialisation Vector
19  *	@src: Source SG list
20  *	@dst: Destination SG list
21  *	@base: Underlying async request request
22  *	@__ctx: Start of private context data
23  */
24 struct skcipher_request {
25 	unsigned int cryptlen;
26 
27 	u8 *iv;
28 
29 	struct scatterlist *src;
30 	struct scatterlist *dst;
31 
32 	struct crypto_async_request base;
33 
34 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
35 };
36 
37 struct crypto_skcipher {
38 	int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
39 	              unsigned int keylen);
40 	int (*encrypt)(struct skcipher_request *req);
41 	int (*decrypt)(struct skcipher_request *req);
42 
43 	unsigned int ivsize;
44 	unsigned int reqsize;
45 	unsigned int keysize;
46 
47 	struct crypto_tfm base;
48 };
49 
50 struct crypto_sync_skcipher {
51 	struct crypto_skcipher base;
52 };
53 
54 /**
55  * struct skcipher_alg - symmetric key cipher definition
56  * @min_keysize: Minimum key size supported by the transformation. This is the
57  *		 smallest key length supported by this transformation algorithm.
58  *		 This must be set to one of the pre-defined values as this is
59  *		 not hardware specific. Possible values for this field can be
60  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
61  * @max_keysize: Maximum key size supported by the transformation. This is the
62  *		 largest key length supported by this transformation algorithm.
63  *		 This must be set to one of the pre-defined values as this is
64  *		 not hardware specific. Possible values for this field can be
65  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
66  * @setkey: Set key for the transformation. This function is used to either
67  *	    program a supplied key into the hardware or store the key in the
68  *	    transformation context for programming it later. Note that this
69  *	    function does modify the transformation context. This function can
70  *	    be called multiple times during the existence of the transformation
71  *	    object, so one must make sure the key is properly reprogrammed into
72  *	    the hardware. This function is also responsible for checking the key
73  *	    length for validity. In case a software fallback was put in place in
74  *	    the @cra_init call, this function might need to use the fallback if
75  *	    the algorithm doesn't support all of the key sizes.
76  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
77  *	     the supplied scatterlist containing the blocks of data. The crypto
78  *	     API consumer is responsible for aligning the entries of the
79  *	     scatterlist properly and making sure the chunks are correctly
80  *	     sized. In case a software fallback was put in place in the
81  *	     @cra_init call, this function might need to use the fallback if
82  *	     the algorithm doesn't support all of the key sizes. In case the
83  *	     key was stored in transformation context, the key might need to be
84  *	     re-programmed into the hardware in this function. This function
85  *	     shall not modify the transformation context, as this function may
86  *	     be called in parallel with the same transformation object.
87  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
88  *	     and the conditions are exactly the same.
89  * @init: Initialize the cryptographic transformation object. This function
90  *	  is used to initialize the cryptographic transformation object.
91  *	  This function is called only once at the instantiation time, right
92  *	  after the transformation context was allocated. In case the
93  *	  cryptographic hardware has some special requirements which need to
94  *	  be handled by software, this function shall check for the precise
95  *	  requirement of the transformation and put any software fallbacks
96  *	  in place.
97  * @exit: Deinitialize the cryptographic transformation object. This is a
98  *	  counterpart to @init, used to remove various changes set in
99  *	  @init.
100  * @ivsize: IV size applicable for transformation. The consumer must provide an
101  *	    IV of exactly that size to perform the encrypt or decrypt operation.
102  * @chunksize: Equal to the block size except for stream ciphers such as
103  *	       CTR where it is set to the underlying block size.
104  * @walksize: Equal to the chunk size except in cases where the algorithm is
105  * 	      considerably more efficient if it can operate on multiple chunks
106  * 	      in parallel. Should be a multiple of chunksize.
107  * @base: Definition of a generic crypto algorithm.
108  *
109  * All fields except @ivsize are mandatory and must be filled.
110  */
111 struct skcipher_alg {
112 	int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
113 	              unsigned int keylen);
114 	int (*encrypt)(struct skcipher_request *req);
115 	int (*decrypt)(struct skcipher_request *req);
116 	int (*init)(struct crypto_skcipher *tfm);
117 	void (*exit)(struct crypto_skcipher *tfm);
118 
119 	unsigned int min_keysize;
120 	unsigned int max_keysize;
121 	unsigned int ivsize;
122 	unsigned int chunksize;
123 	unsigned int walksize;
124 
125 	struct crypto_alg base;
126 };
127 
128 #define MAX_SYNC_SKCIPHER_REQSIZE      384
129 /*
130  * This performs a type-check against the "tfm" argument to make sure
131  * all users have the correct skcipher tfm for doing on-stack requests.
132  */
133 #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
134 	char __##name##_desc[sizeof(struct skcipher_request) + \
135 			     MAX_SYNC_SKCIPHER_REQSIZE + \
136 			     (!(sizeof((struct crypto_sync_skcipher *)1 == \
137 				       (typeof(tfm))1))) \
138 			    ] CRYPTO_MINALIGN_ATTR; \
139 	struct skcipher_request *name = (void *)__##name##_desc
140 
141 /**
142  * DOC: Symmetric Key Cipher API
143  *
144  * Symmetric key cipher API is used with the ciphers of type
145  * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
146  *
147  * Asynchronous cipher operations imply that the function invocation for a
148  * cipher request returns immediately before the completion of the operation.
149  * The cipher request is scheduled as a separate kernel thread and therefore
150  * load-balanced on the different CPUs via the process scheduler. To allow
151  * the kernel crypto API to inform the caller about the completion of a cipher
152  * request, the caller must provide a callback function. That function is
153  * invoked with the cipher handle when the request completes.
154  *
155  * To support the asynchronous operation, additional information than just the
156  * cipher handle must be supplied to the kernel crypto API. That additional
157  * information is given by filling in the skcipher_request data structure.
158  *
159  * For the symmetric key cipher API, the state is maintained with the tfm
160  * cipher handle. A single tfm can be used across multiple calls and in
161  * parallel. For asynchronous block cipher calls, context data supplied and
162  * only used by the caller can be referenced the request data structure in
163  * addition to the IV used for the cipher request. The maintenance of such
164  * state information would be important for a crypto driver implementer to
165  * have, because when calling the callback function upon completion of the
166  * cipher operation, that callback function may need some information about
167  * which operation just finished if it invoked multiple in parallel. This
168  * state information is unused by the kernel crypto API.
169  */
170 
171 static inline struct crypto_skcipher *__crypto_skcipher_cast(
172 	struct crypto_tfm *tfm)
173 {
174 	return container_of(tfm, struct crypto_skcipher, base);
175 }
176 
177 /**
178  * crypto_alloc_skcipher() - allocate symmetric key cipher handle
179  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
180  *	      skcipher cipher
181  * @type: specifies the type of the cipher
182  * @mask: specifies the mask for the cipher
183  *
184  * Allocate a cipher handle for an skcipher. The returned struct
185  * crypto_skcipher is the cipher handle that is required for any subsequent
186  * API invocation for that skcipher.
187  *
188  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
189  *	   of an error, PTR_ERR() returns the error code.
190  */
191 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
192 					      u32 type, u32 mask);
193 
194 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
195 					      u32 type, u32 mask);
196 
197 static inline struct crypto_tfm *crypto_skcipher_tfm(
198 	struct crypto_skcipher *tfm)
199 {
200 	return &tfm->base;
201 }
202 
203 /**
204  * crypto_free_skcipher() - zeroize and free cipher handle
205  * @tfm: cipher handle to be freed
206  */
207 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
208 {
209 	crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
210 }
211 
212 static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
213 {
214 	crypto_free_skcipher(&tfm->base);
215 }
216 
217 /**
218  * crypto_has_skcipher() - Search for the availability of an skcipher.
219  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
220  *	      skcipher
221  * @type: specifies the type of the cipher
222  * @mask: specifies the mask for the cipher
223  *
224  * Return: true when the skcipher is known to the kernel crypto API; false
225  *	   otherwise
226  */
227 static inline int crypto_has_skcipher(const char *alg_name, u32 type,
228 					u32 mask)
229 {
230 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
231 			      crypto_skcipher_mask(mask));
232 }
233 
234 /**
235  * crypto_has_skcipher2() - Search for the availability of an skcipher.
236  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
237  *	      skcipher
238  * @type: specifies the type of the skcipher
239  * @mask: specifies the mask for the skcipher
240  *
241  * Return: true when the skcipher is known to the kernel crypto API; false
242  *	   otherwise
243  */
244 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
245 
246 static inline const char *crypto_skcipher_driver_name(
247 	struct crypto_skcipher *tfm)
248 {
249 	return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
250 }
251 
252 static inline struct skcipher_alg *crypto_skcipher_alg(
253 	struct crypto_skcipher *tfm)
254 {
255 	return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
256 			    struct skcipher_alg, base);
257 }
258 
259 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
260 {
261 	if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
262 	    CRYPTO_ALG_TYPE_BLKCIPHER)
263 		return alg->base.cra_blkcipher.ivsize;
264 
265 	if (alg->base.cra_ablkcipher.encrypt)
266 		return alg->base.cra_ablkcipher.ivsize;
267 
268 	return alg->ivsize;
269 }
270 
271 /**
272  * crypto_skcipher_ivsize() - obtain IV size
273  * @tfm: cipher handle
274  *
275  * The size of the IV for the skcipher referenced by the cipher handle is
276  * returned. This IV size may be zero if the cipher does not need an IV.
277  *
278  * Return: IV size in bytes
279  */
280 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
281 {
282 	return tfm->ivsize;
283 }
284 
285 static inline unsigned int crypto_sync_skcipher_ivsize(
286 	struct crypto_sync_skcipher *tfm)
287 {
288 	return crypto_skcipher_ivsize(&tfm->base);
289 }
290 
291 static inline unsigned int crypto_skcipher_alg_chunksize(
292 	struct skcipher_alg *alg)
293 {
294 	if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
295 	    CRYPTO_ALG_TYPE_BLKCIPHER)
296 		return alg->base.cra_blocksize;
297 
298 	if (alg->base.cra_ablkcipher.encrypt)
299 		return alg->base.cra_blocksize;
300 
301 	return alg->chunksize;
302 }
303 
304 static inline unsigned int crypto_skcipher_alg_walksize(
305 	struct skcipher_alg *alg)
306 {
307 	if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
308 	    CRYPTO_ALG_TYPE_BLKCIPHER)
309 		return alg->base.cra_blocksize;
310 
311 	if (alg->base.cra_ablkcipher.encrypt)
312 		return alg->base.cra_blocksize;
313 
314 	return alg->walksize;
315 }
316 
317 /**
318  * crypto_skcipher_chunksize() - obtain chunk size
319  * @tfm: cipher handle
320  *
321  * The block size is set to one for ciphers such as CTR.  However,
322  * you still need to provide incremental updates in multiples of
323  * the underlying block size as the IV does not have sub-block
324  * granularity.  This is known in this API as the chunk size.
325  *
326  * Return: chunk size in bytes
327  */
328 static inline unsigned int crypto_skcipher_chunksize(
329 	struct crypto_skcipher *tfm)
330 {
331 	return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
332 }
333 
334 /**
335  * crypto_skcipher_walksize() - obtain walk size
336  * @tfm: cipher handle
337  *
338  * In some cases, algorithms can only perform optimally when operating on
339  * multiple blocks in parallel. This is reflected by the walksize, which
340  * must be a multiple of the chunksize (or equal if the concern does not
341  * apply)
342  *
343  * Return: walk size in bytes
344  */
345 static inline unsigned int crypto_skcipher_walksize(
346 	struct crypto_skcipher *tfm)
347 {
348 	return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm));
349 }
350 
351 /**
352  * crypto_skcipher_blocksize() - obtain block size of cipher
353  * @tfm: cipher handle
354  *
355  * The block size for the skcipher referenced with the cipher handle is
356  * returned. The caller may use that information to allocate appropriate
357  * memory for the data returned by the encryption or decryption operation
358  *
359  * Return: block size of cipher
360  */
361 static inline unsigned int crypto_skcipher_blocksize(
362 	struct crypto_skcipher *tfm)
363 {
364 	return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
365 }
366 
367 static inline unsigned int crypto_sync_skcipher_blocksize(
368 	struct crypto_sync_skcipher *tfm)
369 {
370 	return crypto_skcipher_blocksize(&tfm->base);
371 }
372 
373 static inline unsigned int crypto_skcipher_alignmask(
374 	struct crypto_skcipher *tfm)
375 {
376 	return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
377 }
378 
379 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
380 {
381 	return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
382 }
383 
384 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
385 					       u32 flags)
386 {
387 	crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
388 }
389 
390 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
391 						 u32 flags)
392 {
393 	crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
394 }
395 
396 static inline u32 crypto_sync_skcipher_get_flags(
397 	struct crypto_sync_skcipher *tfm)
398 {
399 	return crypto_skcipher_get_flags(&tfm->base);
400 }
401 
402 static inline void crypto_sync_skcipher_set_flags(
403 	struct crypto_sync_skcipher *tfm, u32 flags)
404 {
405 	crypto_skcipher_set_flags(&tfm->base, flags);
406 }
407 
408 static inline void crypto_sync_skcipher_clear_flags(
409 	struct crypto_sync_skcipher *tfm, u32 flags)
410 {
411 	crypto_skcipher_clear_flags(&tfm->base, flags);
412 }
413 
414 /**
415  * crypto_skcipher_setkey() - set key for cipher
416  * @tfm: cipher handle
417  * @key: buffer holding the key
418  * @keylen: length of the key in bytes
419  *
420  * The caller provided key is set for the skcipher referenced by the cipher
421  * handle.
422  *
423  * Note, the key length determines the cipher type. Many block ciphers implement
424  * different cipher modes depending on the key size, such as AES-128 vs AES-192
425  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
426  * is performed.
427  *
428  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
429  */
430 static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
431 					 const u8 *key, unsigned int keylen)
432 {
433 	return tfm->setkey(tfm, key, keylen);
434 }
435 
436 static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
437 					 const u8 *key, unsigned int keylen)
438 {
439 	return crypto_skcipher_setkey(&tfm->base, key, keylen);
440 }
441 
442 static inline unsigned int crypto_skcipher_default_keysize(
443 	struct crypto_skcipher *tfm)
444 {
445 	return tfm->keysize;
446 }
447 
448 /**
449  * crypto_skcipher_reqtfm() - obtain cipher handle from request
450  * @req: skcipher_request out of which the cipher handle is to be obtained
451  *
452  * Return the crypto_skcipher handle when furnishing an skcipher_request
453  * data structure.
454  *
455  * Return: crypto_skcipher handle
456  */
457 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
458 	struct skcipher_request *req)
459 {
460 	return __crypto_skcipher_cast(req->base.tfm);
461 }
462 
463 static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
464 	struct skcipher_request *req)
465 {
466 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
467 
468 	return container_of(tfm, struct crypto_sync_skcipher, base);
469 }
470 
471 /**
472  * crypto_skcipher_encrypt() - encrypt plaintext
473  * @req: reference to the skcipher_request handle that holds all information
474  *	 needed to perform the cipher operation
475  *
476  * Encrypt plaintext data using the skcipher_request handle. That data
477  * structure and how it is filled with data is discussed with the
478  * skcipher_request_* functions.
479  *
480  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
481  */
482 static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
483 {
484 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
485 	struct crypto_alg *alg = tfm->base.__crt_alg;
486 	unsigned int cryptlen = req->cryptlen;
487 	int ret;
488 
489 	crypto_stats_get(alg);
490 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
491 		ret = -ENOKEY;
492 	else
493 		ret = tfm->encrypt(req);
494 	crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
495 	return ret;
496 }
497 
498 /**
499  * crypto_skcipher_decrypt() - decrypt ciphertext
500  * @req: reference to the skcipher_request handle that holds all information
501  *	 needed to perform the cipher operation
502  *
503  * Decrypt ciphertext data using the skcipher_request handle. That data
504  * structure and how it is filled with data is discussed with the
505  * skcipher_request_* functions.
506  *
507  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
508  */
509 static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
510 {
511 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
512 	struct crypto_alg *alg = tfm->base.__crt_alg;
513 	unsigned int cryptlen = req->cryptlen;
514 	int ret;
515 
516 	crypto_stats_get(alg);
517 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
518 		ret = -ENOKEY;
519 	else
520 		ret = tfm->decrypt(req);
521 	crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
522 	return ret;
523 }
524 
525 /**
526  * DOC: Symmetric Key Cipher Request Handle
527  *
528  * The skcipher_request data structure contains all pointers to data
529  * required for the symmetric key cipher operation. This includes the cipher
530  * handle (which can be used by multiple skcipher_request instances), pointer
531  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
532  * as a handle to the skcipher_request_* API calls in a similar way as
533  * skcipher handle to the crypto_skcipher_* API calls.
534  */
535 
536 /**
537  * crypto_skcipher_reqsize() - obtain size of the request data structure
538  * @tfm: cipher handle
539  *
540  * Return: number of bytes
541  */
542 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
543 {
544 	return tfm->reqsize;
545 }
546 
547 /**
548  * skcipher_request_set_tfm() - update cipher handle reference in request
549  * @req: request handle to be modified
550  * @tfm: cipher handle that shall be added to the request handle
551  *
552  * Allow the caller to replace the existing skcipher handle in the request
553  * data structure with a different one.
554  */
555 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
556 					    struct crypto_skcipher *tfm)
557 {
558 	req->base.tfm = crypto_skcipher_tfm(tfm);
559 }
560 
561 static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
562 					    struct crypto_sync_skcipher *tfm)
563 {
564 	skcipher_request_set_tfm(req, &tfm->base);
565 }
566 
567 static inline struct skcipher_request *skcipher_request_cast(
568 	struct crypto_async_request *req)
569 {
570 	return container_of(req, struct skcipher_request, base);
571 }
572 
573 /**
574  * skcipher_request_alloc() - allocate request data structure
575  * @tfm: cipher handle to be registered with the request
576  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
577  *
578  * Allocate the request data structure that must be used with the skcipher
579  * encrypt and decrypt API calls. During the allocation, the provided skcipher
580  * handle is registered in the request data structure.
581  *
582  * Return: allocated request handle in case of success, or NULL if out of memory
583  */
584 static inline struct skcipher_request *skcipher_request_alloc(
585 	struct crypto_skcipher *tfm, gfp_t gfp)
586 {
587 	struct skcipher_request *req;
588 
589 	req = kmalloc(sizeof(struct skcipher_request) +
590 		      crypto_skcipher_reqsize(tfm), gfp);
591 
592 	if (likely(req))
593 		skcipher_request_set_tfm(req, tfm);
594 
595 	return req;
596 }
597 
598 /**
599  * skcipher_request_free() - zeroize and free request data structure
600  * @req: request data structure cipher handle to be freed
601  */
602 static inline void skcipher_request_free(struct skcipher_request *req)
603 {
604 	kzfree(req);
605 }
606 
607 static inline void skcipher_request_zero(struct skcipher_request *req)
608 {
609 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
610 
611 	memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
612 }
613 
614 /**
615  * skcipher_request_set_callback() - set asynchronous callback function
616  * @req: request handle
617  * @flags: specify zero or an ORing of the flags
618  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
619  *	   increase the wait queue beyond the initial maximum size;
620  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
621  * @compl: callback function pointer to be registered with the request handle
622  * @data: The data pointer refers to memory that is not used by the kernel
623  *	  crypto API, but provided to the callback function for it to use. Here,
624  *	  the caller can provide a reference to memory the callback function can
625  *	  operate on. As the callback function is invoked asynchronously to the
626  *	  related functionality, it may need to access data structures of the
627  *	  related functionality which can be referenced using this pointer. The
628  *	  callback function can access the memory via the "data" field in the
629  *	  crypto_async_request data structure provided to the callback function.
630  *
631  * This function allows setting the callback function that is triggered once the
632  * cipher operation completes.
633  *
634  * The callback function is registered with the skcipher_request handle and
635  * must comply with the following template::
636  *
637  *	void callback_function(struct crypto_async_request *req, int error)
638  */
639 static inline void skcipher_request_set_callback(struct skcipher_request *req,
640 						 u32 flags,
641 						 crypto_completion_t compl,
642 						 void *data)
643 {
644 	req->base.complete = compl;
645 	req->base.data = data;
646 	req->base.flags = flags;
647 }
648 
649 /**
650  * skcipher_request_set_crypt() - set data buffers
651  * @req: request handle
652  * @src: source scatter / gather list
653  * @dst: destination scatter / gather list
654  * @cryptlen: number of bytes to process from @src
655  * @iv: IV for the cipher operation which must comply with the IV size defined
656  *      by crypto_skcipher_ivsize
657  *
658  * This function allows setting of the source data and destination data
659  * scatter / gather lists.
660  *
661  * For encryption, the source is treated as the plaintext and the
662  * destination is the ciphertext. For a decryption operation, the use is
663  * reversed - the source is the ciphertext and the destination is the plaintext.
664  */
665 static inline void skcipher_request_set_crypt(
666 	struct skcipher_request *req,
667 	struct scatterlist *src, struct scatterlist *dst,
668 	unsigned int cryptlen, void *iv)
669 {
670 	req->src = src;
671 	req->dst = dst;
672 	req->cryptlen = cryptlen;
673 	req->iv = iv;
674 }
675 
676 #endif	/* _CRYPTO_SKCIPHER_H */
677 
678