1 /* 2 * Symmetric key ciphers. 3 * 4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 * 11 */ 12 13 #ifndef _CRYPTO_SKCIPHER_H 14 #define _CRYPTO_SKCIPHER_H 15 16 #include <linux/crypto.h> 17 #include <linux/kernel.h> 18 #include <linux/slab.h> 19 20 /** 21 * struct skcipher_request - Symmetric key cipher request 22 * @cryptlen: Number of bytes to encrypt or decrypt 23 * @iv: Initialisation Vector 24 * @src: Source SG list 25 * @dst: Destination SG list 26 * @base: Underlying async request request 27 * @__ctx: Start of private context data 28 */ 29 struct skcipher_request { 30 unsigned int cryptlen; 31 32 u8 *iv; 33 34 struct scatterlist *src; 35 struct scatterlist *dst; 36 37 struct crypto_async_request base; 38 39 void *__ctx[] CRYPTO_MINALIGN_ATTR; 40 }; 41 42 /** 43 * struct skcipher_givcrypt_request - Crypto request with IV generation 44 * @seq: Sequence number for IV generation 45 * @giv: Space for generated IV 46 * @creq: The crypto request itself 47 */ 48 struct skcipher_givcrypt_request { 49 u64 seq; 50 u8 *giv; 51 52 struct ablkcipher_request creq; 53 }; 54 55 struct crypto_skcipher { 56 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key, 57 unsigned int keylen); 58 int (*encrypt)(struct skcipher_request *req); 59 int (*decrypt)(struct skcipher_request *req); 60 61 unsigned int ivsize; 62 unsigned int reqsize; 63 64 struct crypto_tfm base; 65 }; 66 67 #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \ 68 char __##name##_desc[sizeof(struct skcipher_request) + \ 69 crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \ 70 struct skcipher_request *name = (void *)__##name##_desc 71 72 static inline struct crypto_ablkcipher *skcipher_givcrypt_reqtfm( 73 struct skcipher_givcrypt_request *req) 74 { 75 return crypto_ablkcipher_reqtfm(&req->creq); 76 } 77 78 static inline int crypto_skcipher_givencrypt( 79 struct skcipher_givcrypt_request *req) 80 { 81 struct ablkcipher_tfm *crt = 82 crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req)); 83 return crt->givencrypt(req); 84 }; 85 86 static inline int crypto_skcipher_givdecrypt( 87 struct skcipher_givcrypt_request *req) 88 { 89 struct ablkcipher_tfm *crt = 90 crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req)); 91 return crt->givdecrypt(req); 92 }; 93 94 static inline void skcipher_givcrypt_set_tfm( 95 struct skcipher_givcrypt_request *req, struct crypto_ablkcipher *tfm) 96 { 97 req->creq.base.tfm = crypto_ablkcipher_tfm(tfm); 98 } 99 100 static inline struct skcipher_givcrypt_request *skcipher_givcrypt_cast( 101 struct crypto_async_request *req) 102 { 103 return container_of(ablkcipher_request_cast(req), 104 struct skcipher_givcrypt_request, creq); 105 } 106 107 static inline struct skcipher_givcrypt_request *skcipher_givcrypt_alloc( 108 struct crypto_ablkcipher *tfm, gfp_t gfp) 109 { 110 struct skcipher_givcrypt_request *req; 111 112 req = kmalloc(sizeof(struct skcipher_givcrypt_request) + 113 crypto_ablkcipher_reqsize(tfm), gfp); 114 115 if (likely(req)) 116 skcipher_givcrypt_set_tfm(req, tfm); 117 118 return req; 119 } 120 121 static inline void skcipher_givcrypt_free(struct skcipher_givcrypt_request *req) 122 { 123 kfree(req); 124 } 125 126 static inline void skcipher_givcrypt_set_callback( 127 struct skcipher_givcrypt_request *req, u32 flags, 128 crypto_completion_t compl, void *data) 129 { 130 ablkcipher_request_set_callback(&req->creq, flags, compl, data); 131 } 132 133 static inline void skcipher_givcrypt_set_crypt( 134 struct skcipher_givcrypt_request *req, 135 struct scatterlist *src, struct scatterlist *dst, 136 unsigned int nbytes, void *iv) 137 { 138 ablkcipher_request_set_crypt(&req->creq, src, dst, nbytes, iv); 139 } 140 141 static inline void skcipher_givcrypt_set_giv( 142 struct skcipher_givcrypt_request *req, u8 *giv, u64 seq) 143 { 144 req->giv = giv; 145 req->seq = seq; 146 } 147 148 /** 149 * DOC: Symmetric Key Cipher API 150 * 151 * Symmetric key cipher API is used with the ciphers of type 152 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto). 153 * 154 * Asynchronous cipher operations imply that the function invocation for a 155 * cipher request returns immediately before the completion of the operation. 156 * The cipher request is scheduled as a separate kernel thread and therefore 157 * load-balanced on the different CPUs via the process scheduler. To allow 158 * the kernel crypto API to inform the caller about the completion of a cipher 159 * request, the caller must provide a callback function. That function is 160 * invoked with the cipher handle when the request completes. 161 * 162 * To support the asynchronous operation, additional information than just the 163 * cipher handle must be supplied to the kernel crypto API. That additional 164 * information is given by filling in the skcipher_request data structure. 165 * 166 * For the symmetric key cipher API, the state is maintained with the tfm 167 * cipher handle. A single tfm can be used across multiple calls and in 168 * parallel. For asynchronous block cipher calls, context data supplied and 169 * only used by the caller can be referenced the request data structure in 170 * addition to the IV used for the cipher request. The maintenance of such 171 * state information would be important for a crypto driver implementer to 172 * have, because when calling the callback function upon completion of the 173 * cipher operation, that callback function may need some information about 174 * which operation just finished if it invoked multiple in parallel. This 175 * state information is unused by the kernel crypto API. 176 */ 177 178 static inline struct crypto_skcipher *__crypto_skcipher_cast( 179 struct crypto_tfm *tfm) 180 { 181 return container_of(tfm, struct crypto_skcipher, base); 182 } 183 184 /** 185 * crypto_alloc_skcipher() - allocate symmetric key cipher handle 186 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 187 * skcipher cipher 188 * @type: specifies the type of the cipher 189 * @mask: specifies the mask for the cipher 190 * 191 * Allocate a cipher handle for an skcipher. The returned struct 192 * crypto_skcipher is the cipher handle that is required for any subsequent 193 * API invocation for that skcipher. 194 * 195 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 196 * of an error, PTR_ERR() returns the error code. 197 */ 198 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, 199 u32 type, u32 mask); 200 201 static inline struct crypto_tfm *crypto_skcipher_tfm( 202 struct crypto_skcipher *tfm) 203 { 204 return &tfm->base; 205 } 206 207 /** 208 * crypto_free_skcipher() - zeroize and free cipher handle 209 * @tfm: cipher handle to be freed 210 */ 211 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm) 212 { 213 crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm)); 214 } 215 216 /** 217 * crypto_has_skcipher() - Search for the availability of an skcipher. 218 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 219 * skcipher 220 * @type: specifies the type of the cipher 221 * @mask: specifies the mask for the cipher 222 * 223 * Return: true when the skcipher is known to the kernel crypto API; false 224 * otherwise 225 */ 226 static inline int crypto_has_skcipher(const char *alg_name, u32 type, 227 u32 mask) 228 { 229 return crypto_has_alg(alg_name, crypto_skcipher_type(type), 230 crypto_skcipher_mask(mask)); 231 } 232 233 /** 234 * crypto_skcipher_ivsize() - obtain IV size 235 * @tfm: cipher handle 236 * 237 * The size of the IV for the skcipher referenced by the cipher handle is 238 * returned. This IV size may be zero if the cipher does not need an IV. 239 * 240 * Return: IV size in bytes 241 */ 242 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm) 243 { 244 return tfm->ivsize; 245 } 246 247 /** 248 * crypto_skcipher_blocksize() - obtain block size of cipher 249 * @tfm: cipher handle 250 * 251 * The block size for the skcipher referenced with the cipher handle is 252 * returned. The caller may use that information to allocate appropriate 253 * memory for the data returned by the encryption or decryption operation 254 * 255 * Return: block size of cipher 256 */ 257 static inline unsigned int crypto_skcipher_blocksize( 258 struct crypto_skcipher *tfm) 259 { 260 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm)); 261 } 262 263 static inline unsigned int crypto_skcipher_alignmask( 264 struct crypto_skcipher *tfm) 265 { 266 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm)); 267 } 268 269 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm) 270 { 271 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm)); 272 } 273 274 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm, 275 u32 flags) 276 { 277 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags); 278 } 279 280 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm, 281 u32 flags) 282 { 283 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags); 284 } 285 286 /** 287 * crypto_skcipher_setkey() - set key for cipher 288 * @tfm: cipher handle 289 * @key: buffer holding the key 290 * @keylen: length of the key in bytes 291 * 292 * The caller provided key is set for the skcipher referenced by the cipher 293 * handle. 294 * 295 * Note, the key length determines the cipher type. Many block ciphers implement 296 * different cipher modes depending on the key size, such as AES-128 vs AES-192 297 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 298 * is performed. 299 * 300 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 301 */ 302 static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm, 303 const u8 *key, unsigned int keylen) 304 { 305 return tfm->setkey(tfm, key, keylen); 306 } 307 308 /** 309 * crypto_skcipher_reqtfm() - obtain cipher handle from request 310 * @req: skcipher_request out of which the cipher handle is to be obtained 311 * 312 * Return the crypto_skcipher handle when furnishing an skcipher_request 313 * data structure. 314 * 315 * Return: crypto_skcipher handle 316 */ 317 static inline struct crypto_skcipher *crypto_skcipher_reqtfm( 318 struct skcipher_request *req) 319 { 320 return __crypto_skcipher_cast(req->base.tfm); 321 } 322 323 /** 324 * crypto_skcipher_encrypt() - encrypt plaintext 325 * @req: reference to the skcipher_request handle that holds all information 326 * needed to perform the cipher operation 327 * 328 * Encrypt plaintext data using the skcipher_request handle. That data 329 * structure and how it is filled with data is discussed with the 330 * skcipher_request_* functions. 331 * 332 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 333 */ 334 static inline int crypto_skcipher_encrypt(struct skcipher_request *req) 335 { 336 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 337 338 return tfm->encrypt(req); 339 } 340 341 /** 342 * crypto_skcipher_decrypt() - decrypt ciphertext 343 * @req: reference to the skcipher_request handle that holds all information 344 * needed to perform the cipher operation 345 * 346 * Decrypt ciphertext data using the skcipher_request handle. That data 347 * structure and how it is filled with data is discussed with the 348 * skcipher_request_* functions. 349 * 350 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 351 */ 352 static inline int crypto_skcipher_decrypt(struct skcipher_request *req) 353 { 354 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 355 356 return tfm->decrypt(req); 357 } 358 359 /** 360 * DOC: Symmetric Key Cipher Request Handle 361 * 362 * The skcipher_request data structure contains all pointers to data 363 * required for the symmetric key cipher operation. This includes the cipher 364 * handle (which can be used by multiple skcipher_request instances), pointer 365 * to plaintext and ciphertext, asynchronous callback function, etc. It acts 366 * as a handle to the skcipher_request_* API calls in a similar way as 367 * skcipher handle to the crypto_skcipher_* API calls. 368 */ 369 370 /** 371 * crypto_skcipher_reqsize() - obtain size of the request data structure 372 * @tfm: cipher handle 373 * 374 * Return: number of bytes 375 */ 376 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm) 377 { 378 return tfm->reqsize; 379 } 380 381 /** 382 * skcipher_request_set_tfm() - update cipher handle reference in request 383 * @req: request handle to be modified 384 * @tfm: cipher handle that shall be added to the request handle 385 * 386 * Allow the caller to replace the existing skcipher handle in the request 387 * data structure with a different one. 388 */ 389 static inline void skcipher_request_set_tfm(struct skcipher_request *req, 390 struct crypto_skcipher *tfm) 391 { 392 req->base.tfm = crypto_skcipher_tfm(tfm); 393 } 394 395 static inline struct skcipher_request *skcipher_request_cast( 396 struct crypto_async_request *req) 397 { 398 return container_of(req, struct skcipher_request, base); 399 } 400 401 /** 402 * skcipher_request_alloc() - allocate request data structure 403 * @tfm: cipher handle to be registered with the request 404 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 405 * 406 * Allocate the request data structure that must be used with the skcipher 407 * encrypt and decrypt API calls. During the allocation, the provided skcipher 408 * handle is registered in the request data structure. 409 * 410 * Return: allocated request handle in case of success; IS_ERR() is true in case 411 * of an error, PTR_ERR() returns the error code. 412 */ 413 static inline struct skcipher_request *skcipher_request_alloc( 414 struct crypto_skcipher *tfm, gfp_t gfp) 415 { 416 struct skcipher_request *req; 417 418 req = kmalloc(sizeof(struct skcipher_request) + 419 crypto_skcipher_reqsize(tfm), gfp); 420 421 if (likely(req)) 422 skcipher_request_set_tfm(req, tfm); 423 424 return req; 425 } 426 427 /** 428 * skcipher_request_free() - zeroize and free request data structure 429 * @req: request data structure cipher handle to be freed 430 */ 431 static inline void skcipher_request_free(struct skcipher_request *req) 432 { 433 kzfree(req); 434 } 435 436 /** 437 * skcipher_request_set_callback() - set asynchronous callback function 438 * @req: request handle 439 * @flags: specify zero or an ORing of the flags 440 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 441 * increase the wait queue beyond the initial maximum size; 442 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 443 * @compl: callback function pointer to be registered with the request handle 444 * @data: The data pointer refers to memory that is not used by the kernel 445 * crypto API, but provided to the callback function for it to use. Here, 446 * the caller can provide a reference to memory the callback function can 447 * operate on. As the callback function is invoked asynchronously to the 448 * related functionality, it may need to access data structures of the 449 * related functionality which can be referenced using this pointer. The 450 * callback function can access the memory via the "data" field in the 451 * crypto_async_request data structure provided to the callback function. 452 * 453 * This function allows setting the callback function that is triggered once the 454 * cipher operation completes. 455 * 456 * The callback function is registered with the skcipher_request handle and 457 * must comply with the following template 458 * 459 * void callback_function(struct crypto_async_request *req, int error) 460 */ 461 static inline void skcipher_request_set_callback(struct skcipher_request *req, 462 u32 flags, 463 crypto_completion_t compl, 464 void *data) 465 { 466 req->base.complete = compl; 467 req->base.data = data; 468 req->base.flags = flags; 469 } 470 471 /** 472 * skcipher_request_set_crypt() - set data buffers 473 * @req: request handle 474 * @src: source scatter / gather list 475 * @dst: destination scatter / gather list 476 * @cryptlen: number of bytes to process from @src 477 * @iv: IV for the cipher operation which must comply with the IV size defined 478 * by crypto_skcipher_ivsize 479 * 480 * This function allows setting of the source data and destination data 481 * scatter / gather lists. 482 * 483 * For encryption, the source is treated as the plaintext and the 484 * destination is the ciphertext. For a decryption operation, the use is 485 * reversed - the source is the ciphertext and the destination is the plaintext. 486 */ 487 static inline void skcipher_request_set_crypt( 488 struct skcipher_request *req, 489 struct scatterlist *src, struct scatterlist *dst, 490 unsigned int cryptlen, void *iv) 491 { 492 req->src = src; 493 req->dst = dst; 494 req->cryptlen = cryptlen; 495 req->iv = iv; 496 } 497 498 #endif /* _CRYPTO_SKCIPHER_H */ 499 500