xref: /openbmc/linux/include/crypto/skcipher.h (revision 2eb5f31b)
1 /*
2  * Symmetric key ciphers.
3  *
4  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  *
11  */
12 
13 #ifndef _CRYPTO_SKCIPHER_H
14 #define _CRYPTO_SKCIPHER_H
15 
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 
20 /**
21  *	struct skcipher_request - Symmetric key cipher request
22  *	@cryptlen: Number of bytes to encrypt or decrypt
23  *	@iv: Initialisation Vector
24  *	@src: Source SG list
25  *	@dst: Destination SG list
26  *	@base: Underlying async request request
27  *	@__ctx: Start of private context data
28  */
29 struct skcipher_request {
30 	unsigned int cryptlen;
31 
32 	u8 *iv;
33 
34 	struct scatterlist *src;
35 	struct scatterlist *dst;
36 
37 	struct crypto_async_request base;
38 
39 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
40 };
41 
42 /**
43  *	struct skcipher_givcrypt_request - Crypto request with IV generation
44  *	@seq: Sequence number for IV generation
45  *	@giv: Space for generated IV
46  *	@creq: The crypto request itself
47  */
48 struct skcipher_givcrypt_request {
49 	u64 seq;
50 	u8 *giv;
51 
52 	struct ablkcipher_request creq;
53 };
54 
55 struct crypto_skcipher {
56 	int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
57 	              unsigned int keylen);
58 	int (*encrypt)(struct skcipher_request *req);
59 	int (*decrypt)(struct skcipher_request *req);
60 
61 	unsigned int ivsize;
62 	unsigned int reqsize;
63 
64 	struct crypto_tfm base;
65 };
66 
67 #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
68 	char __##name##_desc[sizeof(struct skcipher_request) + \
69 		crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
70 	struct skcipher_request *name = (void *)__##name##_desc
71 
72 static inline struct crypto_ablkcipher *skcipher_givcrypt_reqtfm(
73 	struct skcipher_givcrypt_request *req)
74 {
75 	return crypto_ablkcipher_reqtfm(&req->creq);
76 }
77 
78 static inline int crypto_skcipher_givencrypt(
79 	struct skcipher_givcrypt_request *req)
80 {
81 	struct ablkcipher_tfm *crt =
82 		crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req));
83 	return crt->givencrypt(req);
84 };
85 
86 static inline int crypto_skcipher_givdecrypt(
87 	struct skcipher_givcrypt_request *req)
88 {
89 	struct ablkcipher_tfm *crt =
90 		crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req));
91 	return crt->givdecrypt(req);
92 };
93 
94 static inline void skcipher_givcrypt_set_tfm(
95 	struct skcipher_givcrypt_request *req, struct crypto_ablkcipher *tfm)
96 {
97 	req->creq.base.tfm = crypto_ablkcipher_tfm(tfm);
98 }
99 
100 static inline struct skcipher_givcrypt_request *skcipher_givcrypt_cast(
101 	struct crypto_async_request *req)
102 {
103 	return container_of(ablkcipher_request_cast(req),
104 			    struct skcipher_givcrypt_request, creq);
105 }
106 
107 static inline struct skcipher_givcrypt_request *skcipher_givcrypt_alloc(
108 	struct crypto_ablkcipher *tfm, gfp_t gfp)
109 {
110 	struct skcipher_givcrypt_request *req;
111 
112 	req = kmalloc(sizeof(struct skcipher_givcrypt_request) +
113 		      crypto_ablkcipher_reqsize(tfm), gfp);
114 
115 	if (likely(req))
116 		skcipher_givcrypt_set_tfm(req, tfm);
117 
118 	return req;
119 }
120 
121 static inline void skcipher_givcrypt_free(struct skcipher_givcrypt_request *req)
122 {
123 	kfree(req);
124 }
125 
126 static inline void skcipher_givcrypt_set_callback(
127 	struct skcipher_givcrypt_request *req, u32 flags,
128 	crypto_completion_t compl, void *data)
129 {
130 	ablkcipher_request_set_callback(&req->creq, flags, compl, data);
131 }
132 
133 static inline void skcipher_givcrypt_set_crypt(
134 	struct skcipher_givcrypt_request *req,
135 	struct scatterlist *src, struct scatterlist *dst,
136 	unsigned int nbytes, void *iv)
137 {
138 	ablkcipher_request_set_crypt(&req->creq, src, dst, nbytes, iv);
139 }
140 
141 static inline void skcipher_givcrypt_set_giv(
142 	struct skcipher_givcrypt_request *req, u8 *giv, u64 seq)
143 {
144 	req->giv = giv;
145 	req->seq = seq;
146 }
147 
148 /**
149  * DOC: Symmetric Key Cipher API
150  *
151  * Symmetric key cipher API is used with the ciphers of type
152  * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
153  *
154  * Asynchronous cipher operations imply that the function invocation for a
155  * cipher request returns immediately before the completion of the operation.
156  * The cipher request is scheduled as a separate kernel thread and therefore
157  * load-balanced on the different CPUs via the process scheduler. To allow
158  * the kernel crypto API to inform the caller about the completion of a cipher
159  * request, the caller must provide a callback function. That function is
160  * invoked with the cipher handle when the request completes.
161  *
162  * To support the asynchronous operation, additional information than just the
163  * cipher handle must be supplied to the kernel crypto API. That additional
164  * information is given by filling in the skcipher_request data structure.
165  *
166  * For the symmetric key cipher API, the state is maintained with the tfm
167  * cipher handle. A single tfm can be used across multiple calls and in
168  * parallel. For asynchronous block cipher calls, context data supplied and
169  * only used by the caller can be referenced the request data structure in
170  * addition to the IV used for the cipher request. The maintenance of such
171  * state information would be important for a crypto driver implementer to
172  * have, because when calling the callback function upon completion of the
173  * cipher operation, that callback function may need some information about
174  * which operation just finished if it invoked multiple in parallel. This
175  * state information is unused by the kernel crypto API.
176  */
177 
178 static inline struct crypto_skcipher *__crypto_skcipher_cast(
179 	struct crypto_tfm *tfm)
180 {
181 	return container_of(tfm, struct crypto_skcipher, base);
182 }
183 
184 /**
185  * crypto_alloc_skcipher() - allocate symmetric key cipher handle
186  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
187  *	      skcipher cipher
188  * @type: specifies the type of the cipher
189  * @mask: specifies the mask for the cipher
190  *
191  * Allocate a cipher handle for an skcipher. The returned struct
192  * crypto_skcipher is the cipher handle that is required for any subsequent
193  * API invocation for that skcipher.
194  *
195  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
196  *	   of an error, PTR_ERR() returns the error code.
197  */
198 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
199 					      u32 type, u32 mask);
200 
201 static inline struct crypto_tfm *crypto_skcipher_tfm(
202 	struct crypto_skcipher *tfm)
203 {
204 	return &tfm->base;
205 }
206 
207 /**
208  * crypto_free_skcipher() - zeroize and free cipher handle
209  * @tfm: cipher handle to be freed
210  */
211 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
212 {
213 	crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
214 }
215 
216 /**
217  * crypto_has_skcipher() - Search for the availability of an skcipher.
218  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
219  *	      skcipher
220  * @type: specifies the type of the cipher
221  * @mask: specifies the mask for the cipher
222  *
223  * Return: true when the skcipher is known to the kernel crypto API; false
224  *	   otherwise
225  */
226 static inline int crypto_has_skcipher(const char *alg_name, u32 type,
227 					u32 mask)
228 {
229 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
230 			      crypto_skcipher_mask(mask));
231 }
232 
233 /**
234  * crypto_skcipher_ivsize() - obtain IV size
235  * @tfm: cipher handle
236  *
237  * The size of the IV for the skcipher referenced by the cipher handle is
238  * returned. This IV size may be zero if the cipher does not need an IV.
239  *
240  * Return: IV size in bytes
241  */
242 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
243 {
244 	return tfm->ivsize;
245 }
246 
247 /**
248  * crypto_skcipher_blocksize() - obtain block size of cipher
249  * @tfm: cipher handle
250  *
251  * The block size for the skcipher referenced with the cipher handle is
252  * returned. The caller may use that information to allocate appropriate
253  * memory for the data returned by the encryption or decryption operation
254  *
255  * Return: block size of cipher
256  */
257 static inline unsigned int crypto_skcipher_blocksize(
258 	struct crypto_skcipher *tfm)
259 {
260 	return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
261 }
262 
263 static inline unsigned int crypto_skcipher_alignmask(
264 	struct crypto_skcipher *tfm)
265 {
266 	return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
267 }
268 
269 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
270 {
271 	return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
272 }
273 
274 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
275 					       u32 flags)
276 {
277 	crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
278 }
279 
280 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
281 						 u32 flags)
282 {
283 	crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
284 }
285 
286 /**
287  * crypto_skcipher_setkey() - set key for cipher
288  * @tfm: cipher handle
289  * @key: buffer holding the key
290  * @keylen: length of the key in bytes
291  *
292  * The caller provided key is set for the skcipher referenced by the cipher
293  * handle.
294  *
295  * Note, the key length determines the cipher type. Many block ciphers implement
296  * different cipher modes depending on the key size, such as AES-128 vs AES-192
297  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
298  * is performed.
299  *
300  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
301  */
302 static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
303 					 const u8 *key, unsigned int keylen)
304 {
305 	return tfm->setkey(tfm, key, keylen);
306 }
307 
308 /**
309  * crypto_skcipher_reqtfm() - obtain cipher handle from request
310  * @req: skcipher_request out of which the cipher handle is to be obtained
311  *
312  * Return the crypto_skcipher handle when furnishing an skcipher_request
313  * data structure.
314  *
315  * Return: crypto_skcipher handle
316  */
317 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
318 	struct skcipher_request *req)
319 {
320 	return __crypto_skcipher_cast(req->base.tfm);
321 }
322 
323 /**
324  * crypto_skcipher_encrypt() - encrypt plaintext
325  * @req: reference to the skcipher_request handle that holds all information
326  *	 needed to perform the cipher operation
327  *
328  * Encrypt plaintext data using the skcipher_request handle. That data
329  * structure and how it is filled with data is discussed with the
330  * skcipher_request_* functions.
331  *
332  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
333  */
334 static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
335 {
336 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
337 
338 	return tfm->encrypt(req);
339 }
340 
341 /**
342  * crypto_skcipher_decrypt() - decrypt ciphertext
343  * @req: reference to the skcipher_request handle that holds all information
344  *	 needed to perform the cipher operation
345  *
346  * Decrypt ciphertext data using the skcipher_request handle. That data
347  * structure and how it is filled with data is discussed with the
348  * skcipher_request_* functions.
349  *
350  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
351  */
352 static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
353 {
354 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
355 
356 	return tfm->decrypt(req);
357 }
358 
359 /**
360  * DOC: Symmetric Key Cipher Request Handle
361  *
362  * The skcipher_request data structure contains all pointers to data
363  * required for the symmetric key cipher operation. This includes the cipher
364  * handle (which can be used by multiple skcipher_request instances), pointer
365  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
366  * as a handle to the skcipher_request_* API calls in a similar way as
367  * skcipher handle to the crypto_skcipher_* API calls.
368  */
369 
370 /**
371  * crypto_skcipher_reqsize() - obtain size of the request data structure
372  * @tfm: cipher handle
373  *
374  * Return: number of bytes
375  */
376 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
377 {
378 	return tfm->reqsize;
379 }
380 
381 /**
382  * skcipher_request_set_tfm() - update cipher handle reference in request
383  * @req: request handle to be modified
384  * @tfm: cipher handle that shall be added to the request handle
385  *
386  * Allow the caller to replace the existing skcipher handle in the request
387  * data structure with a different one.
388  */
389 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
390 					    struct crypto_skcipher *tfm)
391 {
392 	req->base.tfm = crypto_skcipher_tfm(tfm);
393 }
394 
395 static inline struct skcipher_request *skcipher_request_cast(
396 	struct crypto_async_request *req)
397 {
398 	return container_of(req, struct skcipher_request, base);
399 }
400 
401 /**
402  * skcipher_request_alloc() - allocate request data structure
403  * @tfm: cipher handle to be registered with the request
404  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
405  *
406  * Allocate the request data structure that must be used with the skcipher
407  * encrypt and decrypt API calls. During the allocation, the provided skcipher
408  * handle is registered in the request data structure.
409  *
410  * Return: allocated request handle in case of success; IS_ERR() is true in case
411  *	   of an error, PTR_ERR() returns the error code.
412  */
413 static inline struct skcipher_request *skcipher_request_alloc(
414 	struct crypto_skcipher *tfm, gfp_t gfp)
415 {
416 	struct skcipher_request *req;
417 
418 	req = kmalloc(sizeof(struct skcipher_request) +
419 		      crypto_skcipher_reqsize(tfm), gfp);
420 
421 	if (likely(req))
422 		skcipher_request_set_tfm(req, tfm);
423 
424 	return req;
425 }
426 
427 /**
428  * skcipher_request_free() - zeroize and free request data structure
429  * @req: request data structure cipher handle to be freed
430  */
431 static inline void skcipher_request_free(struct skcipher_request *req)
432 {
433 	kzfree(req);
434 }
435 
436 /**
437  * skcipher_request_set_callback() - set asynchronous callback function
438  * @req: request handle
439  * @flags: specify zero or an ORing of the flags
440  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
441  *	   increase the wait queue beyond the initial maximum size;
442  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
443  * @compl: callback function pointer to be registered with the request handle
444  * @data: The data pointer refers to memory that is not used by the kernel
445  *	  crypto API, but provided to the callback function for it to use. Here,
446  *	  the caller can provide a reference to memory the callback function can
447  *	  operate on. As the callback function is invoked asynchronously to the
448  *	  related functionality, it may need to access data structures of the
449  *	  related functionality which can be referenced using this pointer. The
450  *	  callback function can access the memory via the "data" field in the
451  *	  crypto_async_request data structure provided to the callback function.
452  *
453  * This function allows setting the callback function that is triggered once the
454  * cipher operation completes.
455  *
456  * The callback function is registered with the skcipher_request handle and
457  * must comply with the following template
458  *
459  *	void callback_function(struct crypto_async_request *req, int error)
460  */
461 static inline void skcipher_request_set_callback(struct skcipher_request *req,
462 						 u32 flags,
463 						 crypto_completion_t compl,
464 						 void *data)
465 {
466 	req->base.complete = compl;
467 	req->base.data = data;
468 	req->base.flags = flags;
469 }
470 
471 /**
472  * skcipher_request_set_crypt() - set data buffers
473  * @req: request handle
474  * @src: source scatter / gather list
475  * @dst: destination scatter / gather list
476  * @cryptlen: number of bytes to process from @src
477  * @iv: IV for the cipher operation which must comply with the IV size defined
478  *      by crypto_skcipher_ivsize
479  *
480  * This function allows setting of the source data and destination data
481  * scatter / gather lists.
482  *
483  * For encryption, the source is treated as the plaintext and the
484  * destination is the ciphertext. For a decryption operation, the use is
485  * reversed - the source is the ciphertext and the destination is the plaintext.
486  */
487 static inline void skcipher_request_set_crypt(
488 	struct skcipher_request *req,
489 	struct scatterlist *src, struct scatterlist *dst,
490 	unsigned int cryptlen, void *iv)
491 {
492 	req->src = src;
493 	req->dst = dst;
494 	req->cryptlen = cryptlen;
495 	req->iv = iv;
496 }
497 
498 #endif	/* _CRYPTO_SKCIPHER_H */
499 
500