xref: /openbmc/linux/include/crypto/skcipher.h (revision 2359ccdd)
1 /*
2  * Symmetric key ciphers.
3  *
4  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  *
11  */
12 
13 #ifndef _CRYPTO_SKCIPHER_H
14 #define _CRYPTO_SKCIPHER_H
15 
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 
20 /**
21  *	struct skcipher_request - Symmetric key cipher request
22  *	@cryptlen: Number of bytes to encrypt or decrypt
23  *	@iv: Initialisation Vector
24  *	@src: Source SG list
25  *	@dst: Destination SG list
26  *	@base: Underlying async request request
27  *	@__ctx: Start of private context data
28  */
29 struct skcipher_request {
30 	unsigned int cryptlen;
31 
32 	u8 *iv;
33 
34 	struct scatterlist *src;
35 	struct scatterlist *dst;
36 
37 	struct crypto_async_request base;
38 
39 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
40 };
41 
42 /**
43  *	struct skcipher_givcrypt_request - Crypto request with IV generation
44  *	@seq: Sequence number for IV generation
45  *	@giv: Space for generated IV
46  *	@creq: The crypto request itself
47  */
48 struct skcipher_givcrypt_request {
49 	u64 seq;
50 	u8 *giv;
51 
52 	struct ablkcipher_request creq;
53 };
54 
55 struct crypto_skcipher {
56 	int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
57 	              unsigned int keylen);
58 	int (*encrypt)(struct skcipher_request *req);
59 	int (*decrypt)(struct skcipher_request *req);
60 
61 	unsigned int ivsize;
62 	unsigned int reqsize;
63 	unsigned int keysize;
64 
65 	struct crypto_tfm base;
66 };
67 
68 /**
69  * struct skcipher_alg - symmetric key cipher definition
70  * @min_keysize: Minimum key size supported by the transformation. This is the
71  *		 smallest key length supported by this transformation algorithm.
72  *		 This must be set to one of the pre-defined values as this is
73  *		 not hardware specific. Possible values for this field can be
74  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
75  * @max_keysize: Maximum key size supported by the transformation. This is the
76  *		 largest key length supported by this transformation algorithm.
77  *		 This must be set to one of the pre-defined values as this is
78  *		 not hardware specific. Possible values for this field can be
79  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
80  * @setkey: Set key for the transformation. This function is used to either
81  *	    program a supplied key into the hardware or store the key in the
82  *	    transformation context for programming it later. Note that this
83  *	    function does modify the transformation context. This function can
84  *	    be called multiple times during the existence of the transformation
85  *	    object, so one must make sure the key is properly reprogrammed into
86  *	    the hardware. This function is also responsible for checking the key
87  *	    length for validity. In case a software fallback was put in place in
88  *	    the @cra_init call, this function might need to use the fallback if
89  *	    the algorithm doesn't support all of the key sizes.
90  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
91  *	     the supplied scatterlist containing the blocks of data. The crypto
92  *	     API consumer is responsible for aligning the entries of the
93  *	     scatterlist properly and making sure the chunks are correctly
94  *	     sized. In case a software fallback was put in place in the
95  *	     @cra_init call, this function might need to use the fallback if
96  *	     the algorithm doesn't support all of the key sizes. In case the
97  *	     key was stored in transformation context, the key might need to be
98  *	     re-programmed into the hardware in this function. This function
99  *	     shall not modify the transformation context, as this function may
100  *	     be called in parallel with the same transformation object.
101  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
102  *	     and the conditions are exactly the same.
103  * @init: Initialize the cryptographic transformation object. This function
104  *	  is used to initialize the cryptographic transformation object.
105  *	  This function is called only once at the instantiation time, right
106  *	  after the transformation context was allocated. In case the
107  *	  cryptographic hardware has some special requirements which need to
108  *	  be handled by software, this function shall check for the precise
109  *	  requirement of the transformation and put any software fallbacks
110  *	  in place.
111  * @exit: Deinitialize the cryptographic transformation object. This is a
112  *	  counterpart to @init, used to remove various changes set in
113  *	  @init.
114  * @ivsize: IV size applicable for transformation. The consumer must provide an
115  *	    IV of exactly that size to perform the encrypt or decrypt operation.
116  * @chunksize: Equal to the block size except for stream ciphers such as
117  *	       CTR where it is set to the underlying block size.
118  * @walksize: Equal to the chunk size except in cases where the algorithm is
119  * 	      considerably more efficient if it can operate on multiple chunks
120  * 	      in parallel. Should be a multiple of chunksize.
121  * @base: Definition of a generic crypto algorithm.
122  *
123  * All fields except @ivsize are mandatory and must be filled.
124  */
125 struct skcipher_alg {
126 	int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
127 	              unsigned int keylen);
128 	int (*encrypt)(struct skcipher_request *req);
129 	int (*decrypt)(struct skcipher_request *req);
130 	int (*init)(struct crypto_skcipher *tfm);
131 	void (*exit)(struct crypto_skcipher *tfm);
132 
133 	unsigned int min_keysize;
134 	unsigned int max_keysize;
135 	unsigned int ivsize;
136 	unsigned int chunksize;
137 	unsigned int walksize;
138 
139 	struct crypto_alg base;
140 };
141 
142 #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
143 	char __##name##_desc[sizeof(struct skcipher_request) + \
144 		crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
145 	struct skcipher_request *name = (void *)__##name##_desc
146 
147 /**
148  * DOC: Symmetric Key Cipher API
149  *
150  * Symmetric key cipher API is used with the ciphers of type
151  * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
152  *
153  * Asynchronous cipher operations imply that the function invocation for a
154  * cipher request returns immediately before the completion of the operation.
155  * The cipher request is scheduled as a separate kernel thread and therefore
156  * load-balanced on the different CPUs via the process scheduler. To allow
157  * the kernel crypto API to inform the caller about the completion of a cipher
158  * request, the caller must provide a callback function. That function is
159  * invoked with the cipher handle when the request completes.
160  *
161  * To support the asynchronous operation, additional information than just the
162  * cipher handle must be supplied to the kernel crypto API. That additional
163  * information is given by filling in the skcipher_request data structure.
164  *
165  * For the symmetric key cipher API, the state is maintained with the tfm
166  * cipher handle. A single tfm can be used across multiple calls and in
167  * parallel. For asynchronous block cipher calls, context data supplied and
168  * only used by the caller can be referenced the request data structure in
169  * addition to the IV used for the cipher request. The maintenance of such
170  * state information would be important for a crypto driver implementer to
171  * have, because when calling the callback function upon completion of the
172  * cipher operation, that callback function may need some information about
173  * which operation just finished if it invoked multiple in parallel. This
174  * state information is unused by the kernel crypto API.
175  */
176 
177 static inline struct crypto_skcipher *__crypto_skcipher_cast(
178 	struct crypto_tfm *tfm)
179 {
180 	return container_of(tfm, struct crypto_skcipher, base);
181 }
182 
183 /**
184  * crypto_alloc_skcipher() - allocate symmetric key cipher handle
185  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
186  *	      skcipher cipher
187  * @type: specifies the type of the cipher
188  * @mask: specifies the mask for the cipher
189  *
190  * Allocate a cipher handle for an skcipher. The returned struct
191  * crypto_skcipher is the cipher handle that is required for any subsequent
192  * API invocation for that skcipher.
193  *
194  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
195  *	   of an error, PTR_ERR() returns the error code.
196  */
197 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
198 					      u32 type, u32 mask);
199 
200 static inline struct crypto_tfm *crypto_skcipher_tfm(
201 	struct crypto_skcipher *tfm)
202 {
203 	return &tfm->base;
204 }
205 
206 /**
207  * crypto_free_skcipher() - zeroize and free cipher handle
208  * @tfm: cipher handle to be freed
209  */
210 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
211 {
212 	crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
213 }
214 
215 /**
216  * crypto_has_skcipher() - Search for the availability of an skcipher.
217  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
218  *	      skcipher
219  * @type: specifies the type of the cipher
220  * @mask: specifies the mask for the cipher
221  *
222  * Return: true when the skcipher is known to the kernel crypto API; false
223  *	   otherwise
224  */
225 static inline int crypto_has_skcipher(const char *alg_name, u32 type,
226 					u32 mask)
227 {
228 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
229 			      crypto_skcipher_mask(mask));
230 }
231 
232 /**
233  * crypto_has_skcipher2() - Search for the availability of an skcipher.
234  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
235  *	      skcipher
236  * @type: specifies the type of the skcipher
237  * @mask: specifies the mask for the skcipher
238  *
239  * Return: true when the skcipher is known to the kernel crypto API; false
240  *	   otherwise
241  */
242 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
243 
244 static inline const char *crypto_skcipher_driver_name(
245 	struct crypto_skcipher *tfm)
246 {
247 	return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
248 }
249 
250 static inline struct skcipher_alg *crypto_skcipher_alg(
251 	struct crypto_skcipher *tfm)
252 {
253 	return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
254 			    struct skcipher_alg, base);
255 }
256 
257 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
258 {
259 	if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
260 	    CRYPTO_ALG_TYPE_BLKCIPHER)
261 		return alg->base.cra_blkcipher.ivsize;
262 
263 	if (alg->base.cra_ablkcipher.encrypt)
264 		return alg->base.cra_ablkcipher.ivsize;
265 
266 	return alg->ivsize;
267 }
268 
269 /**
270  * crypto_skcipher_ivsize() - obtain IV size
271  * @tfm: cipher handle
272  *
273  * The size of the IV for the skcipher referenced by the cipher handle is
274  * returned. This IV size may be zero if the cipher does not need an IV.
275  *
276  * Return: IV size in bytes
277  */
278 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
279 {
280 	return tfm->ivsize;
281 }
282 
283 static inline unsigned int crypto_skcipher_alg_chunksize(
284 	struct skcipher_alg *alg)
285 {
286 	if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
287 	    CRYPTO_ALG_TYPE_BLKCIPHER)
288 		return alg->base.cra_blocksize;
289 
290 	if (alg->base.cra_ablkcipher.encrypt)
291 		return alg->base.cra_blocksize;
292 
293 	return alg->chunksize;
294 }
295 
296 static inline unsigned int crypto_skcipher_alg_walksize(
297 	struct skcipher_alg *alg)
298 {
299 	if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
300 	    CRYPTO_ALG_TYPE_BLKCIPHER)
301 		return alg->base.cra_blocksize;
302 
303 	if (alg->base.cra_ablkcipher.encrypt)
304 		return alg->base.cra_blocksize;
305 
306 	return alg->walksize;
307 }
308 
309 /**
310  * crypto_skcipher_chunksize() - obtain chunk size
311  * @tfm: cipher handle
312  *
313  * The block size is set to one for ciphers such as CTR.  However,
314  * you still need to provide incremental updates in multiples of
315  * the underlying block size as the IV does not have sub-block
316  * granularity.  This is known in this API as the chunk size.
317  *
318  * Return: chunk size in bytes
319  */
320 static inline unsigned int crypto_skcipher_chunksize(
321 	struct crypto_skcipher *tfm)
322 {
323 	return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
324 }
325 
326 /**
327  * crypto_skcipher_walksize() - obtain walk size
328  * @tfm: cipher handle
329  *
330  * In some cases, algorithms can only perform optimally when operating on
331  * multiple blocks in parallel. This is reflected by the walksize, which
332  * must be a multiple of the chunksize (or equal if the concern does not
333  * apply)
334  *
335  * Return: walk size in bytes
336  */
337 static inline unsigned int crypto_skcipher_walksize(
338 	struct crypto_skcipher *tfm)
339 {
340 	return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm));
341 }
342 
343 /**
344  * crypto_skcipher_blocksize() - obtain block size of cipher
345  * @tfm: cipher handle
346  *
347  * The block size for the skcipher referenced with the cipher handle is
348  * returned. The caller may use that information to allocate appropriate
349  * memory for the data returned by the encryption or decryption operation
350  *
351  * Return: block size of cipher
352  */
353 static inline unsigned int crypto_skcipher_blocksize(
354 	struct crypto_skcipher *tfm)
355 {
356 	return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
357 }
358 
359 static inline unsigned int crypto_skcipher_alignmask(
360 	struct crypto_skcipher *tfm)
361 {
362 	return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
363 }
364 
365 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
366 {
367 	return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
368 }
369 
370 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
371 					       u32 flags)
372 {
373 	crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
374 }
375 
376 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
377 						 u32 flags)
378 {
379 	crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
380 }
381 
382 /**
383  * crypto_skcipher_setkey() - set key for cipher
384  * @tfm: cipher handle
385  * @key: buffer holding the key
386  * @keylen: length of the key in bytes
387  *
388  * The caller provided key is set for the skcipher referenced by the cipher
389  * handle.
390  *
391  * Note, the key length determines the cipher type. Many block ciphers implement
392  * different cipher modes depending on the key size, such as AES-128 vs AES-192
393  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
394  * is performed.
395  *
396  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
397  */
398 static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
399 					 const u8 *key, unsigned int keylen)
400 {
401 	return tfm->setkey(tfm, key, keylen);
402 }
403 
404 static inline unsigned int crypto_skcipher_default_keysize(
405 	struct crypto_skcipher *tfm)
406 {
407 	return tfm->keysize;
408 }
409 
410 /**
411  * crypto_skcipher_reqtfm() - obtain cipher handle from request
412  * @req: skcipher_request out of which the cipher handle is to be obtained
413  *
414  * Return the crypto_skcipher handle when furnishing an skcipher_request
415  * data structure.
416  *
417  * Return: crypto_skcipher handle
418  */
419 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
420 	struct skcipher_request *req)
421 {
422 	return __crypto_skcipher_cast(req->base.tfm);
423 }
424 
425 /**
426  * crypto_skcipher_encrypt() - encrypt plaintext
427  * @req: reference to the skcipher_request handle that holds all information
428  *	 needed to perform the cipher operation
429  *
430  * Encrypt plaintext data using the skcipher_request handle. That data
431  * structure and how it is filled with data is discussed with the
432  * skcipher_request_* functions.
433  *
434  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
435  */
436 static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
437 {
438 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
439 
440 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
441 		return -ENOKEY;
442 
443 	return tfm->encrypt(req);
444 }
445 
446 /**
447  * crypto_skcipher_decrypt() - decrypt ciphertext
448  * @req: reference to the skcipher_request handle that holds all information
449  *	 needed to perform the cipher operation
450  *
451  * Decrypt ciphertext data using the skcipher_request handle. That data
452  * structure and how it is filled with data is discussed with the
453  * skcipher_request_* functions.
454  *
455  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
456  */
457 static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
458 {
459 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
460 
461 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
462 		return -ENOKEY;
463 
464 	return tfm->decrypt(req);
465 }
466 
467 /**
468  * DOC: Symmetric Key Cipher Request Handle
469  *
470  * The skcipher_request data structure contains all pointers to data
471  * required for the symmetric key cipher operation. This includes the cipher
472  * handle (which can be used by multiple skcipher_request instances), pointer
473  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
474  * as a handle to the skcipher_request_* API calls in a similar way as
475  * skcipher handle to the crypto_skcipher_* API calls.
476  */
477 
478 /**
479  * crypto_skcipher_reqsize() - obtain size of the request data structure
480  * @tfm: cipher handle
481  *
482  * Return: number of bytes
483  */
484 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
485 {
486 	return tfm->reqsize;
487 }
488 
489 /**
490  * skcipher_request_set_tfm() - update cipher handle reference in request
491  * @req: request handle to be modified
492  * @tfm: cipher handle that shall be added to the request handle
493  *
494  * Allow the caller to replace the existing skcipher handle in the request
495  * data structure with a different one.
496  */
497 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
498 					    struct crypto_skcipher *tfm)
499 {
500 	req->base.tfm = crypto_skcipher_tfm(tfm);
501 }
502 
503 static inline struct skcipher_request *skcipher_request_cast(
504 	struct crypto_async_request *req)
505 {
506 	return container_of(req, struct skcipher_request, base);
507 }
508 
509 /**
510  * skcipher_request_alloc() - allocate request data structure
511  * @tfm: cipher handle to be registered with the request
512  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
513  *
514  * Allocate the request data structure that must be used with the skcipher
515  * encrypt and decrypt API calls. During the allocation, the provided skcipher
516  * handle is registered in the request data structure.
517  *
518  * Return: allocated request handle in case of success, or NULL if out of memory
519  */
520 static inline struct skcipher_request *skcipher_request_alloc(
521 	struct crypto_skcipher *tfm, gfp_t gfp)
522 {
523 	struct skcipher_request *req;
524 
525 	req = kmalloc(sizeof(struct skcipher_request) +
526 		      crypto_skcipher_reqsize(tfm), gfp);
527 
528 	if (likely(req))
529 		skcipher_request_set_tfm(req, tfm);
530 
531 	return req;
532 }
533 
534 /**
535  * skcipher_request_free() - zeroize and free request data structure
536  * @req: request data structure cipher handle to be freed
537  */
538 static inline void skcipher_request_free(struct skcipher_request *req)
539 {
540 	kzfree(req);
541 }
542 
543 static inline void skcipher_request_zero(struct skcipher_request *req)
544 {
545 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
546 
547 	memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
548 }
549 
550 /**
551  * skcipher_request_set_callback() - set asynchronous callback function
552  * @req: request handle
553  * @flags: specify zero or an ORing of the flags
554  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
555  *	   increase the wait queue beyond the initial maximum size;
556  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
557  * @compl: callback function pointer to be registered with the request handle
558  * @data: The data pointer refers to memory that is not used by the kernel
559  *	  crypto API, but provided to the callback function for it to use. Here,
560  *	  the caller can provide a reference to memory the callback function can
561  *	  operate on. As the callback function is invoked asynchronously to the
562  *	  related functionality, it may need to access data structures of the
563  *	  related functionality which can be referenced using this pointer. The
564  *	  callback function can access the memory via the "data" field in the
565  *	  crypto_async_request data structure provided to the callback function.
566  *
567  * This function allows setting the callback function that is triggered once the
568  * cipher operation completes.
569  *
570  * The callback function is registered with the skcipher_request handle and
571  * must comply with the following template::
572  *
573  *	void callback_function(struct crypto_async_request *req, int error)
574  */
575 static inline void skcipher_request_set_callback(struct skcipher_request *req,
576 						 u32 flags,
577 						 crypto_completion_t compl,
578 						 void *data)
579 {
580 	req->base.complete = compl;
581 	req->base.data = data;
582 	req->base.flags = flags;
583 }
584 
585 /**
586  * skcipher_request_set_crypt() - set data buffers
587  * @req: request handle
588  * @src: source scatter / gather list
589  * @dst: destination scatter / gather list
590  * @cryptlen: number of bytes to process from @src
591  * @iv: IV for the cipher operation which must comply with the IV size defined
592  *      by crypto_skcipher_ivsize
593  *
594  * This function allows setting of the source data and destination data
595  * scatter / gather lists.
596  *
597  * For encryption, the source is treated as the plaintext and the
598  * destination is the ciphertext. For a decryption operation, the use is
599  * reversed - the source is the ciphertext and the destination is the plaintext.
600  */
601 static inline void skcipher_request_set_crypt(
602 	struct skcipher_request *req,
603 	struct scatterlist *src, struct scatterlist *dst,
604 	unsigned int cryptlen, void *iv)
605 {
606 	req->src = src;
607 	req->dst = dst;
608 	req->cryptlen = cryptlen;
609 	req->iv = iv;
610 }
611 
612 #endif	/* _CRYPTO_SKCIPHER_H */
613 
614