xref: /openbmc/linux/include/crypto/hash.h (revision a2cce7a9)
1 /*
2  * Hash: Hash algorithms under the crypto API
3  *
4  * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  *
11  */
12 
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15 
16 #include <linux/crypto.h>
17 
18 struct crypto_ahash;
19 
20 /**
21  * DOC: Message Digest Algorithm Definitions
22  *
23  * These data structures define modular message digest algorithm
24  * implementations, managed via crypto_register_ahash(),
25  * crypto_register_shash(), crypto_unregister_ahash() and
26  * crypto_unregister_shash().
27  */
28 
29 /**
30  * struct hash_alg_common - define properties of message digest
31  * @digestsize: Size of the result of the transformation. A buffer of this size
32  *	        must be available to the @final and @finup calls, so they can
33  *	        store the resulting hash into it. For various predefined sizes,
34  *	        search include/crypto/ using
35  *	        git grep _DIGEST_SIZE include/crypto.
36  * @statesize: Size of the block for partial state of the transformation. A
37  *	       buffer of this size must be passed to the @export function as it
38  *	       will save the partial state of the transformation into it. On the
39  *	       other side, the @import function will load the state from a
40  *	       buffer of this size as well.
41  * @base: Start of data structure of cipher algorithm. The common data
42  *	  structure of crypto_alg contains information common to all ciphers.
43  *	  The hash_alg_common data structure now adds the hash-specific
44  *	  information.
45  */
46 struct hash_alg_common {
47 	unsigned int digestsize;
48 	unsigned int statesize;
49 
50 	struct crypto_alg base;
51 };
52 
53 struct ahash_request {
54 	struct crypto_async_request base;
55 
56 	unsigned int nbytes;
57 	struct scatterlist *src;
58 	u8 *result;
59 
60 	/* This field may only be used by the ahash API code. */
61 	void *priv;
62 
63 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
64 };
65 
66 #define AHASH_REQUEST_ON_STACK(name, ahash) \
67 	char __##name##_desc[sizeof(struct ahash_request) + \
68 		crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
69 	struct ahash_request *name = (void *)__##name##_desc
70 
71 /**
72  * struct ahash_alg - asynchronous message digest definition
73  * @init: Initialize the transformation context. Intended only to initialize the
74  *	  state of the HASH transformation at the beginning. This shall fill in
75  *	  the internal structures used during the entire duration of the whole
76  *	  transformation. No data processing happens at this point.
77  * @update: Push a chunk of data into the driver for transformation. This
78  *	   function actually pushes blocks of data from upper layers into the
79  *	   driver, which then passes those to the hardware as seen fit. This
80  *	   function must not finalize the HASH transformation by calculating the
81  *	   final message digest as this only adds more data into the
82  *	   transformation. This function shall not modify the transformation
83  *	   context, as this function may be called in parallel with the same
84  *	   transformation object. Data processing can happen synchronously
85  *	   [SHASH] or asynchronously [AHASH] at this point.
86  * @final: Retrieve result from the driver. This function finalizes the
87  *	   transformation and retrieves the resulting hash from the driver and
88  *	   pushes it back to upper layers. No data processing happens at this
89  *	   point.
90  * @finup: Combination of @update and @final. This function is effectively a
91  *	   combination of @update and @final calls issued in sequence. As some
92  *	   hardware cannot do @update and @final separately, this callback was
93  *	   added to allow such hardware to be used at least by IPsec. Data
94  *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
95  *	   at this point.
96  * @digest: Combination of @init and @update and @final. This function
97  *	    effectively behaves as the entire chain of operations, @init,
98  *	    @update and @final issued in sequence. Just like @finup, this was
99  *	    added for hardware which cannot do even the @finup, but can only do
100  *	    the whole transformation in one run. Data processing can happen
101  *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
102  * @setkey: Set optional key used by the hashing algorithm. Intended to push
103  *	    optional key used by the hashing algorithm from upper layers into
104  *	    the driver. This function can store the key in the transformation
105  *	    context or can outright program it into the hardware. In the former
106  *	    case, one must be careful to program the key into the hardware at
107  *	    appropriate time and one must be careful that .setkey() can be
108  *	    called multiple times during the existence of the transformation
109  *	    object. Not  all hashing algorithms do implement this function as it
110  *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
111  *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
112  *	    this function. This function must be called before any other of the
113  *	    @init, @update, @final, @finup, @digest is called. No data
114  *	    processing happens at this point.
115  * @export: Export partial state of the transformation. This function dumps the
116  *	    entire state of the ongoing transformation into a provided block of
117  *	    data so it can be @import 'ed back later on. This is useful in case
118  *	    you want to save partial result of the transformation after
119  *	    processing certain amount of data and reload this partial result
120  *	    multiple times later on for multiple re-use. No data processing
121  *	    happens at this point.
122  * @import: Import partial state of the transformation. This function loads the
123  *	    entire state of the ongoing transformation from a provided block of
124  *	    data so the transformation can continue from this point onward. No
125  *	    data processing happens at this point.
126  * @halg: see struct hash_alg_common
127  */
128 struct ahash_alg {
129 	int (*init)(struct ahash_request *req);
130 	int (*update)(struct ahash_request *req);
131 	int (*final)(struct ahash_request *req);
132 	int (*finup)(struct ahash_request *req);
133 	int (*digest)(struct ahash_request *req);
134 	int (*export)(struct ahash_request *req, void *out);
135 	int (*import)(struct ahash_request *req, const void *in);
136 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
137 		      unsigned int keylen);
138 
139 	struct hash_alg_common halg;
140 };
141 
142 struct shash_desc {
143 	struct crypto_shash *tfm;
144 	u32 flags;
145 
146 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
147 };
148 
149 #define SHASH_DESC_ON_STACK(shash, ctx)				  \
150 	char __##shash##_desc[sizeof(struct shash_desc) +	  \
151 		crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
152 	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
153 
154 /**
155  * struct shash_alg - synchronous message digest definition
156  * @init: see struct ahash_alg
157  * @update: see struct ahash_alg
158  * @final: see struct ahash_alg
159  * @finup: see struct ahash_alg
160  * @digest: see struct ahash_alg
161  * @export: see struct ahash_alg
162  * @import: see struct ahash_alg
163  * @setkey: see struct ahash_alg
164  * @digestsize: see struct ahash_alg
165  * @statesize: see struct ahash_alg
166  * @descsize: Size of the operational state for the message digest. This state
167  * 	      size is the memory size that needs to be allocated for
168  *	      shash_desc.__ctx
169  * @base: internally used
170  */
171 struct shash_alg {
172 	int (*init)(struct shash_desc *desc);
173 	int (*update)(struct shash_desc *desc, const u8 *data,
174 		      unsigned int len);
175 	int (*final)(struct shash_desc *desc, u8 *out);
176 	int (*finup)(struct shash_desc *desc, const u8 *data,
177 		     unsigned int len, u8 *out);
178 	int (*digest)(struct shash_desc *desc, const u8 *data,
179 		      unsigned int len, u8 *out);
180 	int (*export)(struct shash_desc *desc, void *out);
181 	int (*import)(struct shash_desc *desc, const void *in);
182 	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
183 		      unsigned int keylen);
184 
185 	unsigned int descsize;
186 
187 	/* These fields must match hash_alg_common. */
188 	unsigned int digestsize
189 		__attribute__ ((aligned(__alignof__(struct hash_alg_common))));
190 	unsigned int statesize;
191 
192 	struct crypto_alg base;
193 };
194 
195 struct crypto_ahash {
196 	int (*init)(struct ahash_request *req);
197 	int (*update)(struct ahash_request *req);
198 	int (*final)(struct ahash_request *req);
199 	int (*finup)(struct ahash_request *req);
200 	int (*digest)(struct ahash_request *req);
201 	int (*export)(struct ahash_request *req, void *out);
202 	int (*import)(struct ahash_request *req, const void *in);
203 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
204 		      unsigned int keylen);
205 
206 	unsigned int reqsize;
207 	struct crypto_tfm base;
208 };
209 
210 struct crypto_shash {
211 	unsigned int descsize;
212 	struct crypto_tfm base;
213 };
214 
215 /**
216  * DOC: Asynchronous Message Digest API
217  *
218  * The asynchronous message digest API is used with the ciphers of type
219  * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
220  *
221  * The asynchronous cipher operation discussion provided for the
222  * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
223  */
224 
225 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
226 {
227 	return container_of(tfm, struct crypto_ahash, base);
228 }
229 
230 /**
231  * crypto_alloc_ahash() - allocate ahash cipher handle
232  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
233  *	      ahash cipher
234  * @type: specifies the type of the cipher
235  * @mask: specifies the mask for the cipher
236  *
237  * Allocate a cipher handle for an ahash. The returned struct
238  * crypto_ahash is the cipher handle that is required for any subsequent
239  * API invocation for that ahash.
240  *
241  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
242  *	   of an error, PTR_ERR() returns the error code.
243  */
244 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
245 					u32 mask);
246 
247 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
248 {
249 	return &tfm->base;
250 }
251 
252 /**
253  * crypto_free_ahash() - zeroize and free the ahash handle
254  * @tfm: cipher handle to be freed
255  */
256 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
257 {
258 	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
259 }
260 
261 static inline unsigned int crypto_ahash_alignmask(
262 	struct crypto_ahash *tfm)
263 {
264 	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
265 }
266 
267 static inline struct hash_alg_common *__crypto_hash_alg_common(
268 	struct crypto_alg *alg)
269 {
270 	return container_of(alg, struct hash_alg_common, base);
271 }
272 
273 static inline struct hash_alg_common *crypto_hash_alg_common(
274 	struct crypto_ahash *tfm)
275 {
276 	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
277 }
278 
279 /**
280  * crypto_ahash_digestsize() - obtain message digest size
281  * @tfm: cipher handle
282  *
283  * The size for the message digest created by the message digest cipher
284  * referenced with the cipher handle is returned.
285  *
286  *
287  * Return: message digest size of cipher
288  */
289 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
290 {
291 	return crypto_hash_alg_common(tfm)->digestsize;
292 }
293 
294 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
295 {
296 	return crypto_hash_alg_common(tfm)->statesize;
297 }
298 
299 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
300 {
301 	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
302 }
303 
304 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
305 {
306 	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
307 }
308 
309 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
310 {
311 	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
312 }
313 
314 /**
315  * crypto_ahash_reqtfm() - obtain cipher handle from request
316  * @req: asynchronous request handle that contains the reference to the ahash
317  *	 cipher handle
318  *
319  * Return the ahash cipher handle that is registered with the asynchronous
320  * request handle ahash_request.
321  *
322  * Return: ahash cipher handle
323  */
324 static inline struct crypto_ahash *crypto_ahash_reqtfm(
325 	struct ahash_request *req)
326 {
327 	return __crypto_ahash_cast(req->base.tfm);
328 }
329 
330 /**
331  * crypto_ahash_reqsize() - obtain size of the request data structure
332  * @tfm: cipher handle
333  *
334  * Return the size of the ahash state size. With the crypto_ahash_export
335  * function, the caller can export the state into a buffer whose size is
336  * defined with this function.
337  *
338  * Return: size of the ahash state
339  */
340 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
341 {
342 	return tfm->reqsize;
343 }
344 
345 static inline void *ahash_request_ctx(struct ahash_request *req)
346 {
347 	return req->__ctx;
348 }
349 
350 /**
351  * crypto_ahash_setkey - set key for cipher handle
352  * @tfm: cipher handle
353  * @key: buffer holding the key
354  * @keylen: length of the key in bytes
355  *
356  * The caller provided key is set for the ahash cipher. The cipher
357  * handle must point to a keyed hash in order for this function to succeed.
358  *
359  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
360  */
361 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
362 			unsigned int keylen);
363 
364 /**
365  * crypto_ahash_finup() - update and finalize message digest
366  * @req: reference to the ahash_request handle that holds all information
367  *	 needed to perform the cipher operation
368  *
369  * This function is a "short-hand" for the function calls of
370  * crypto_ahash_update and crypto_shash_final. The parameters have the same
371  * meaning as discussed for those separate functions.
372  *
373  * Return: 0 if the message digest creation was successful; < 0 if an error
374  *	   occurred
375  */
376 int crypto_ahash_finup(struct ahash_request *req);
377 
378 /**
379  * crypto_ahash_final() - calculate message digest
380  * @req: reference to the ahash_request handle that holds all information
381  *	 needed to perform the cipher operation
382  *
383  * Finalize the message digest operation and create the message digest
384  * based on all data added to the cipher handle. The message digest is placed
385  * into the output buffer registered with the ahash_request handle.
386  *
387  * Return: 0 if the message digest creation was successful; < 0 if an error
388  *	   occurred
389  */
390 int crypto_ahash_final(struct ahash_request *req);
391 
392 /**
393  * crypto_ahash_digest() - calculate message digest for a buffer
394  * @req: reference to the ahash_request handle that holds all information
395  *	 needed to perform the cipher operation
396  *
397  * This function is a "short-hand" for the function calls of crypto_ahash_init,
398  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
399  * meaning as discussed for those separate three functions.
400  *
401  * Return: 0 if the message digest creation was successful; < 0 if an error
402  *	   occurred
403  */
404 int crypto_ahash_digest(struct ahash_request *req);
405 
406 /**
407  * crypto_ahash_export() - extract current message digest state
408  * @req: reference to the ahash_request handle whose state is exported
409  * @out: output buffer of sufficient size that can hold the hash state
410  *
411  * This function exports the hash state of the ahash_request handle into the
412  * caller-allocated output buffer out which must have sufficient size (e.g. by
413  * calling crypto_ahash_reqsize).
414  *
415  * Return: 0 if the export was successful; < 0 if an error occurred
416  */
417 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
418 {
419 	return crypto_ahash_reqtfm(req)->export(req, out);
420 }
421 
422 /**
423  * crypto_ahash_import() - import message digest state
424  * @req: reference to ahash_request handle the state is imported into
425  * @in: buffer holding the state
426  *
427  * This function imports the hash state into the ahash_request handle from the
428  * input buffer. That buffer should have been generated with the
429  * crypto_ahash_export function.
430  *
431  * Return: 0 if the import was successful; < 0 if an error occurred
432  */
433 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
434 {
435 	return crypto_ahash_reqtfm(req)->import(req, in);
436 }
437 
438 /**
439  * crypto_ahash_init() - (re)initialize message digest handle
440  * @req: ahash_request handle that already is initialized with all necessary
441  *	 data using the ahash_request_* API functions
442  *
443  * The call (re-)initializes the message digest referenced by the ahash_request
444  * handle. Any potentially existing state created by previous operations is
445  * discarded.
446  *
447  * Return: 0 if the message digest initialization was successful; < 0 if an
448  *	   error occurred
449  */
450 static inline int crypto_ahash_init(struct ahash_request *req)
451 {
452 	return crypto_ahash_reqtfm(req)->init(req);
453 }
454 
455 /**
456  * crypto_ahash_update() - add data to message digest for processing
457  * @req: ahash_request handle that was previously initialized with the
458  *	 crypto_ahash_init call.
459  *
460  * Updates the message digest state of the &ahash_request handle. The input data
461  * is pointed to by the scatter/gather list registered in the &ahash_request
462  * handle
463  *
464  * Return: 0 if the message digest update was successful; < 0 if an error
465  *	   occurred
466  */
467 static inline int crypto_ahash_update(struct ahash_request *req)
468 {
469 	return crypto_ahash_reqtfm(req)->update(req);
470 }
471 
472 /**
473  * DOC: Asynchronous Hash Request Handle
474  *
475  * The &ahash_request data structure contains all pointers to data
476  * required for the asynchronous cipher operation. This includes the cipher
477  * handle (which can be used by multiple &ahash_request instances), pointer
478  * to plaintext and the message digest output buffer, asynchronous callback
479  * function, etc. It acts as a handle to the ahash_request_* API calls in a
480  * similar way as ahash handle to the crypto_ahash_* API calls.
481  */
482 
483 /**
484  * ahash_request_set_tfm() - update cipher handle reference in request
485  * @req: request handle to be modified
486  * @tfm: cipher handle that shall be added to the request handle
487  *
488  * Allow the caller to replace the existing ahash handle in the request
489  * data structure with a different one.
490  */
491 static inline void ahash_request_set_tfm(struct ahash_request *req,
492 					 struct crypto_ahash *tfm)
493 {
494 	req->base.tfm = crypto_ahash_tfm(tfm);
495 }
496 
497 /**
498  * ahash_request_alloc() - allocate request data structure
499  * @tfm: cipher handle to be registered with the request
500  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
501  *
502  * Allocate the request data structure that must be used with the ahash
503  * message digest API calls. During
504  * the allocation, the provided ahash handle
505  * is registered in the request data structure.
506  *
507  * Return: allocated request handle in case of success; IS_ERR() is true in case
508  *	   of an error, PTR_ERR() returns the error code.
509  */
510 static inline struct ahash_request *ahash_request_alloc(
511 	struct crypto_ahash *tfm, gfp_t gfp)
512 {
513 	struct ahash_request *req;
514 
515 	req = kmalloc(sizeof(struct ahash_request) +
516 		      crypto_ahash_reqsize(tfm), gfp);
517 
518 	if (likely(req))
519 		ahash_request_set_tfm(req, tfm);
520 
521 	return req;
522 }
523 
524 /**
525  * ahash_request_free() - zeroize and free the request data structure
526  * @req: request data structure cipher handle to be freed
527  */
528 static inline void ahash_request_free(struct ahash_request *req)
529 {
530 	kzfree(req);
531 }
532 
533 static inline struct ahash_request *ahash_request_cast(
534 	struct crypto_async_request *req)
535 {
536 	return container_of(req, struct ahash_request, base);
537 }
538 
539 /**
540  * ahash_request_set_callback() - set asynchronous callback function
541  * @req: request handle
542  * @flags: specify zero or an ORing of the flags
543  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
544  *	   increase the wait queue beyond the initial maximum size;
545  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
546  * @compl: callback function pointer to be registered with the request handle
547  * @data: The data pointer refers to memory that is not used by the kernel
548  *	  crypto API, but provided to the callback function for it to use. Here,
549  *	  the caller can provide a reference to memory the callback function can
550  *	  operate on. As the callback function is invoked asynchronously to the
551  *	  related functionality, it may need to access data structures of the
552  *	  related functionality which can be referenced using this pointer. The
553  *	  callback function can access the memory via the "data" field in the
554  *	  &crypto_async_request data structure provided to the callback function.
555  *
556  * This function allows setting the callback function that is triggered once
557  * the cipher operation completes.
558  *
559  * The callback function is registered with the &ahash_request handle and
560  * must comply with the following template
561  *
562  *	void callback_function(struct crypto_async_request *req, int error)
563  */
564 static inline void ahash_request_set_callback(struct ahash_request *req,
565 					      u32 flags,
566 					      crypto_completion_t compl,
567 					      void *data)
568 {
569 	req->base.complete = compl;
570 	req->base.data = data;
571 	req->base.flags = flags;
572 }
573 
574 /**
575  * ahash_request_set_crypt() - set data buffers
576  * @req: ahash_request handle to be updated
577  * @src: source scatter/gather list
578  * @result: buffer that is filled with the message digest -- the caller must
579  *	    ensure that the buffer has sufficient space by, for example, calling
580  *	    crypto_ahash_digestsize()
581  * @nbytes: number of bytes to process from the source scatter/gather list
582  *
583  * By using this call, the caller references the source scatter/gather list.
584  * The source scatter/gather list points to the data the message digest is to
585  * be calculated for.
586  */
587 static inline void ahash_request_set_crypt(struct ahash_request *req,
588 					   struct scatterlist *src, u8 *result,
589 					   unsigned int nbytes)
590 {
591 	req->src = src;
592 	req->nbytes = nbytes;
593 	req->result = result;
594 }
595 
596 /**
597  * DOC: Synchronous Message Digest API
598  *
599  * The synchronous message digest API is used with the ciphers of type
600  * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
601  *
602  * The message digest API is able to maintain state information for the
603  * caller.
604  *
605  * The synchronous message digest API can store user-related context in in its
606  * shash_desc request data structure.
607  */
608 
609 /**
610  * crypto_alloc_shash() - allocate message digest handle
611  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
612  *	      message digest cipher
613  * @type: specifies the type of the cipher
614  * @mask: specifies the mask for the cipher
615  *
616  * Allocate a cipher handle for a message digest. The returned &struct
617  * crypto_shash is the cipher handle that is required for any subsequent
618  * API invocation for that message digest.
619  *
620  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
621  *	   of an error, PTR_ERR() returns the error code.
622  */
623 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
624 					u32 mask);
625 
626 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
627 {
628 	return &tfm->base;
629 }
630 
631 /**
632  * crypto_free_shash() - zeroize and free the message digest handle
633  * @tfm: cipher handle to be freed
634  */
635 static inline void crypto_free_shash(struct crypto_shash *tfm)
636 {
637 	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
638 }
639 
640 static inline unsigned int crypto_shash_alignmask(
641 	struct crypto_shash *tfm)
642 {
643 	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
644 }
645 
646 /**
647  * crypto_shash_blocksize() - obtain block size for cipher
648  * @tfm: cipher handle
649  *
650  * The block size for the message digest cipher referenced with the cipher
651  * handle is returned.
652  *
653  * Return: block size of cipher
654  */
655 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
656 {
657 	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
658 }
659 
660 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
661 {
662 	return container_of(alg, struct shash_alg, base);
663 }
664 
665 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
666 {
667 	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
668 }
669 
670 /**
671  * crypto_shash_digestsize() - obtain message digest size
672  * @tfm: cipher handle
673  *
674  * The size for the message digest created by the message digest cipher
675  * referenced with the cipher handle is returned.
676  *
677  * Return: digest size of cipher
678  */
679 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
680 {
681 	return crypto_shash_alg(tfm)->digestsize;
682 }
683 
684 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
685 {
686 	return crypto_shash_alg(tfm)->statesize;
687 }
688 
689 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
690 {
691 	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
692 }
693 
694 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
695 {
696 	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
697 }
698 
699 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
700 {
701 	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
702 }
703 
704 /**
705  * crypto_shash_descsize() - obtain the operational state size
706  * @tfm: cipher handle
707  *
708  * The size of the operational state the cipher needs during operation is
709  * returned for the hash referenced with the cipher handle. This size is
710  * required to calculate the memory requirements to allow the caller allocating
711  * sufficient memory for operational state.
712  *
713  * The operational state is defined with struct shash_desc where the size of
714  * that data structure is to be calculated as
715  * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
716  *
717  * Return: size of the operational state
718  */
719 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
720 {
721 	return tfm->descsize;
722 }
723 
724 static inline void *shash_desc_ctx(struct shash_desc *desc)
725 {
726 	return desc->__ctx;
727 }
728 
729 /**
730  * crypto_shash_setkey() - set key for message digest
731  * @tfm: cipher handle
732  * @key: buffer holding the key
733  * @keylen: length of the key in bytes
734  *
735  * The caller provided key is set for the keyed message digest cipher. The
736  * cipher handle must point to a keyed message digest cipher in order for this
737  * function to succeed.
738  *
739  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
740  */
741 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
742 			unsigned int keylen);
743 
744 /**
745  * crypto_shash_digest() - calculate message digest for buffer
746  * @desc: see crypto_shash_final()
747  * @data: see crypto_shash_update()
748  * @len: see crypto_shash_update()
749  * @out: see crypto_shash_final()
750  *
751  * This function is a "short-hand" for the function calls of crypto_shash_init,
752  * crypto_shash_update and crypto_shash_final. The parameters have the same
753  * meaning as discussed for those separate three functions.
754  *
755  * Return: 0 if the message digest creation was successful; < 0 if an error
756  *	   occurred
757  */
758 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
759 			unsigned int len, u8 *out);
760 
761 /**
762  * crypto_shash_export() - extract operational state for message digest
763  * @desc: reference to the operational state handle whose state is exported
764  * @out: output buffer of sufficient size that can hold the hash state
765  *
766  * This function exports the hash state of the operational state handle into the
767  * caller-allocated output buffer out which must have sufficient size (e.g. by
768  * calling crypto_shash_descsize).
769  *
770  * Return: 0 if the export creation was successful; < 0 if an error occurred
771  */
772 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
773 {
774 	return crypto_shash_alg(desc->tfm)->export(desc, out);
775 }
776 
777 /**
778  * crypto_shash_import() - import operational state
779  * @desc: reference to the operational state handle the state imported into
780  * @in: buffer holding the state
781  *
782  * This function imports the hash state into the operational state handle from
783  * the input buffer. That buffer should have been generated with the
784  * crypto_ahash_export function.
785  *
786  * Return: 0 if the import was successful; < 0 if an error occurred
787  */
788 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
789 {
790 	return crypto_shash_alg(desc->tfm)->import(desc, in);
791 }
792 
793 /**
794  * crypto_shash_init() - (re)initialize message digest
795  * @desc: operational state handle that is already filled
796  *
797  * The call (re-)initializes the message digest referenced by the
798  * operational state handle. Any potentially existing state created by
799  * previous operations is discarded.
800  *
801  * Return: 0 if the message digest initialization was successful; < 0 if an
802  *	   error occurred
803  */
804 static inline int crypto_shash_init(struct shash_desc *desc)
805 {
806 	return crypto_shash_alg(desc->tfm)->init(desc);
807 }
808 
809 /**
810  * crypto_shash_update() - add data to message digest for processing
811  * @desc: operational state handle that is already initialized
812  * @data: input data to be added to the message digest
813  * @len: length of the input data
814  *
815  * Updates the message digest state of the operational state handle.
816  *
817  * Return: 0 if the message digest update was successful; < 0 if an error
818  *	   occurred
819  */
820 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
821 			unsigned int len);
822 
823 /**
824  * crypto_shash_final() - calculate message digest
825  * @desc: operational state handle that is already filled with data
826  * @out: output buffer filled with the message digest
827  *
828  * Finalize the message digest operation and create the message digest
829  * based on all data added to the cipher handle. The message digest is placed
830  * into the output buffer. The caller must ensure that the output buffer is
831  * large enough by using crypto_shash_digestsize.
832  *
833  * Return: 0 if the message digest creation was successful; < 0 if an error
834  *	   occurred
835  */
836 int crypto_shash_final(struct shash_desc *desc, u8 *out);
837 
838 /**
839  * crypto_shash_finup() - calculate message digest of buffer
840  * @desc: see crypto_shash_final()
841  * @data: see crypto_shash_update()
842  * @len: see crypto_shash_update()
843  * @out: see crypto_shash_final()
844  *
845  * This function is a "short-hand" for the function calls of
846  * crypto_shash_update and crypto_shash_final. The parameters have the same
847  * meaning as discussed for those separate functions.
848  *
849  * Return: 0 if the message digest creation was successful; < 0 if an error
850  *	   occurred
851  */
852 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
853 		       unsigned int len, u8 *out);
854 
855 #endif	/* _CRYPTO_HASH_H */
856