xref: /openbmc/linux/include/crypto/hash.h (revision 752beb5e)
1 /*
2  * Hash: Hash algorithms under the crypto API
3  *
4  * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  *
11  */
12 
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15 
16 #include <linux/crypto.h>
17 #include <linux/string.h>
18 
19 struct crypto_ahash;
20 
21 /**
22  * DOC: Message Digest Algorithm Definitions
23  *
24  * These data structures define modular message digest algorithm
25  * implementations, managed via crypto_register_ahash(),
26  * crypto_register_shash(), crypto_unregister_ahash() and
27  * crypto_unregister_shash().
28  */
29 
30 /**
31  * struct hash_alg_common - define properties of message digest
32  * @digestsize: Size of the result of the transformation. A buffer of this size
33  *	        must be available to the @final and @finup calls, so they can
34  *	        store the resulting hash into it. For various predefined sizes,
35  *	        search include/crypto/ using
36  *	        git grep _DIGEST_SIZE include/crypto.
37  * @statesize: Size of the block for partial state of the transformation. A
38  *	       buffer of this size must be passed to the @export function as it
39  *	       will save the partial state of the transformation into it. On the
40  *	       other side, the @import function will load the state from a
41  *	       buffer of this size as well.
42  * @base: Start of data structure of cipher algorithm. The common data
43  *	  structure of crypto_alg contains information common to all ciphers.
44  *	  The hash_alg_common data structure now adds the hash-specific
45  *	  information.
46  */
47 struct hash_alg_common {
48 	unsigned int digestsize;
49 	unsigned int statesize;
50 
51 	struct crypto_alg base;
52 };
53 
54 struct ahash_request {
55 	struct crypto_async_request base;
56 
57 	unsigned int nbytes;
58 	struct scatterlist *src;
59 	u8 *result;
60 
61 	/* This field may only be used by the ahash API code. */
62 	void *priv;
63 
64 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
65 };
66 
67 #define AHASH_REQUEST_ON_STACK(name, ahash) \
68 	char __##name##_desc[sizeof(struct ahash_request) + \
69 		crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70 	struct ahash_request *name = (void *)__##name##_desc
71 
72 /**
73  * struct ahash_alg - asynchronous message digest definition
74  * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
75  *	  state of the HASH transformation at the beginning. This shall fill in
76  *	  the internal structures used during the entire duration of the whole
77  *	  transformation. No data processing happens at this point. Driver code
78  *	  implementation must not use req->result.
79  * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
80  *	   function actually pushes blocks of data from upper layers into the
81  *	   driver, which then passes those to the hardware as seen fit. This
82  *	   function must not finalize the HASH transformation by calculating the
83  *	   final message digest as this only adds more data into the
84  *	   transformation. This function shall not modify the transformation
85  *	   context, as this function may be called in parallel with the same
86  *	   transformation object. Data processing can happen synchronously
87  *	   [SHASH] or asynchronously [AHASH] at this point. Driver must not use
88  *	   req->result.
89  * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
90  *	   transformation and retrieves the resulting hash from the driver and
91  *	   pushes it back to upper layers. No data processing happens at this
92  *	   point unless hardware requires it to finish the transformation
93  *	   (then the data buffered by the device driver is processed).
94  * @finup: **[optional]** Combination of @update and @final. This function is effectively a
95  *	   combination of @update and @final calls issued in sequence. As some
96  *	   hardware cannot do @update and @final separately, this callback was
97  *	   added to allow such hardware to be used at least by IPsec. Data
98  *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
99  *	   at this point.
100  * @digest: Combination of @init and @update and @final. This function
101  *	    effectively behaves as the entire chain of operations, @init,
102  *	    @update and @final issued in sequence. Just like @finup, this was
103  *	    added for hardware which cannot do even the @finup, but can only do
104  *	    the whole transformation in one run. Data processing can happen
105  *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
106  * @setkey: Set optional key used by the hashing algorithm. Intended to push
107  *	    optional key used by the hashing algorithm from upper layers into
108  *	    the driver. This function can store the key in the transformation
109  *	    context or can outright program it into the hardware. In the former
110  *	    case, one must be careful to program the key into the hardware at
111  *	    appropriate time and one must be careful that .setkey() can be
112  *	    called multiple times during the existence of the transformation
113  *	    object. Not  all hashing algorithms do implement this function as it
114  *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
115  *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
116  *	    this function. This function must be called before any other of the
117  *	    @init, @update, @final, @finup, @digest is called. No data
118  *	    processing happens at this point.
119  * @export: Export partial state of the transformation. This function dumps the
120  *	    entire state of the ongoing transformation into a provided block of
121  *	    data so it can be @import 'ed back later on. This is useful in case
122  *	    you want to save partial result of the transformation after
123  *	    processing certain amount of data and reload this partial result
124  *	    multiple times later on for multiple re-use. No data processing
125  *	    happens at this point. Driver must not use req->result.
126  * @import: Import partial state of the transformation. This function loads the
127  *	    entire state of the ongoing transformation from a provided block of
128  *	    data so the transformation can continue from this point onward. No
129  *	    data processing happens at this point. Driver must not use
130  *	    req->result.
131  * @halg: see struct hash_alg_common
132  */
133 struct ahash_alg {
134 	int (*init)(struct ahash_request *req);
135 	int (*update)(struct ahash_request *req);
136 	int (*final)(struct ahash_request *req);
137 	int (*finup)(struct ahash_request *req);
138 	int (*digest)(struct ahash_request *req);
139 	int (*export)(struct ahash_request *req, void *out);
140 	int (*import)(struct ahash_request *req, const void *in);
141 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
142 		      unsigned int keylen);
143 
144 	struct hash_alg_common halg;
145 };
146 
147 struct shash_desc {
148 	struct crypto_shash *tfm;
149 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
150 };
151 
152 #define HASH_MAX_DIGESTSIZE	 64
153 #define HASH_MAX_DESCSIZE	360
154 #define HASH_MAX_STATESIZE	512
155 
156 #define SHASH_DESC_ON_STACK(shash, ctx)				  \
157 	char __##shash##_desc[sizeof(struct shash_desc) +	  \
158 		HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
159 	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
160 
161 /**
162  * struct shash_alg - synchronous message digest definition
163  * @init: see struct ahash_alg
164  * @update: see struct ahash_alg
165  * @final: see struct ahash_alg
166  * @finup: see struct ahash_alg
167  * @digest: see struct ahash_alg
168  * @export: see struct ahash_alg
169  * @import: see struct ahash_alg
170  * @setkey: see struct ahash_alg
171  * @digestsize: see struct ahash_alg
172  * @statesize: see struct ahash_alg
173  * @descsize: Size of the operational state for the message digest. This state
174  * 	      size is the memory size that needs to be allocated for
175  *	      shash_desc.__ctx
176  * @base: internally used
177  */
178 struct shash_alg {
179 	int (*init)(struct shash_desc *desc);
180 	int (*update)(struct shash_desc *desc, const u8 *data,
181 		      unsigned int len);
182 	int (*final)(struct shash_desc *desc, u8 *out);
183 	int (*finup)(struct shash_desc *desc, const u8 *data,
184 		     unsigned int len, u8 *out);
185 	int (*digest)(struct shash_desc *desc, const u8 *data,
186 		      unsigned int len, u8 *out);
187 	int (*export)(struct shash_desc *desc, void *out);
188 	int (*import)(struct shash_desc *desc, const void *in);
189 	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
190 		      unsigned int keylen);
191 
192 	unsigned int descsize;
193 
194 	/* These fields must match hash_alg_common. */
195 	unsigned int digestsize
196 		__attribute__ ((aligned(__alignof__(struct hash_alg_common))));
197 	unsigned int statesize;
198 
199 	struct crypto_alg base;
200 };
201 
202 struct crypto_ahash {
203 	int (*init)(struct ahash_request *req);
204 	int (*update)(struct ahash_request *req);
205 	int (*final)(struct ahash_request *req);
206 	int (*finup)(struct ahash_request *req);
207 	int (*digest)(struct ahash_request *req);
208 	int (*export)(struct ahash_request *req, void *out);
209 	int (*import)(struct ahash_request *req, const void *in);
210 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
211 		      unsigned int keylen);
212 
213 	unsigned int reqsize;
214 	struct crypto_tfm base;
215 };
216 
217 struct crypto_shash {
218 	unsigned int descsize;
219 	struct crypto_tfm base;
220 };
221 
222 /**
223  * DOC: Asynchronous Message Digest API
224  *
225  * The asynchronous message digest API is used with the ciphers of type
226  * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
227  *
228  * The asynchronous cipher operation discussion provided for the
229  * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
230  */
231 
232 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
233 {
234 	return container_of(tfm, struct crypto_ahash, base);
235 }
236 
237 /**
238  * crypto_alloc_ahash() - allocate ahash cipher handle
239  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
240  *	      ahash cipher
241  * @type: specifies the type of the cipher
242  * @mask: specifies the mask for the cipher
243  *
244  * Allocate a cipher handle for an ahash. The returned struct
245  * crypto_ahash is the cipher handle that is required for any subsequent
246  * API invocation for that ahash.
247  *
248  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
249  *	   of an error, PTR_ERR() returns the error code.
250  */
251 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
252 					u32 mask);
253 
254 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
255 {
256 	return &tfm->base;
257 }
258 
259 /**
260  * crypto_free_ahash() - zeroize and free the ahash handle
261  * @tfm: cipher handle to be freed
262  */
263 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
264 {
265 	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
266 }
267 
268 /**
269  * crypto_has_ahash() - Search for the availability of an ahash.
270  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
271  *	      ahash
272  * @type: specifies the type of the ahash
273  * @mask: specifies the mask for the ahash
274  *
275  * Return: true when the ahash is known to the kernel crypto API; false
276  *	   otherwise
277  */
278 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
279 
280 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
281 {
282 	return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
283 }
284 
285 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
286 {
287 	return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
288 }
289 
290 static inline unsigned int crypto_ahash_alignmask(
291 	struct crypto_ahash *tfm)
292 {
293 	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
294 }
295 
296 /**
297  * crypto_ahash_blocksize() - obtain block size for cipher
298  * @tfm: cipher handle
299  *
300  * The block size for the message digest cipher referenced with the cipher
301  * handle is returned.
302  *
303  * Return: block size of cipher
304  */
305 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
306 {
307 	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
308 }
309 
310 static inline struct hash_alg_common *__crypto_hash_alg_common(
311 	struct crypto_alg *alg)
312 {
313 	return container_of(alg, struct hash_alg_common, base);
314 }
315 
316 static inline struct hash_alg_common *crypto_hash_alg_common(
317 	struct crypto_ahash *tfm)
318 {
319 	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
320 }
321 
322 /**
323  * crypto_ahash_digestsize() - obtain message digest size
324  * @tfm: cipher handle
325  *
326  * The size for the message digest created by the message digest cipher
327  * referenced with the cipher handle is returned.
328  *
329  *
330  * Return: message digest size of cipher
331  */
332 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
333 {
334 	return crypto_hash_alg_common(tfm)->digestsize;
335 }
336 
337 /**
338  * crypto_ahash_statesize() - obtain size of the ahash state
339  * @tfm: cipher handle
340  *
341  * Return the size of the ahash state. With the crypto_ahash_export()
342  * function, the caller can export the state into a buffer whose size is
343  * defined with this function.
344  *
345  * Return: size of the ahash state
346  */
347 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
348 {
349 	return crypto_hash_alg_common(tfm)->statesize;
350 }
351 
352 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
353 {
354 	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
355 }
356 
357 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
358 {
359 	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
360 }
361 
362 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
363 {
364 	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
365 }
366 
367 /**
368  * crypto_ahash_reqtfm() - obtain cipher handle from request
369  * @req: asynchronous request handle that contains the reference to the ahash
370  *	 cipher handle
371  *
372  * Return the ahash cipher handle that is registered with the asynchronous
373  * request handle ahash_request.
374  *
375  * Return: ahash cipher handle
376  */
377 static inline struct crypto_ahash *crypto_ahash_reqtfm(
378 	struct ahash_request *req)
379 {
380 	return __crypto_ahash_cast(req->base.tfm);
381 }
382 
383 /**
384  * crypto_ahash_reqsize() - obtain size of the request data structure
385  * @tfm: cipher handle
386  *
387  * Return: size of the request data
388  */
389 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
390 {
391 	return tfm->reqsize;
392 }
393 
394 static inline void *ahash_request_ctx(struct ahash_request *req)
395 {
396 	return req->__ctx;
397 }
398 
399 /**
400  * crypto_ahash_setkey - set key for cipher handle
401  * @tfm: cipher handle
402  * @key: buffer holding the key
403  * @keylen: length of the key in bytes
404  *
405  * The caller provided key is set for the ahash cipher. The cipher
406  * handle must point to a keyed hash in order for this function to succeed.
407  *
408  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
409  */
410 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
411 			unsigned int keylen);
412 
413 /**
414  * crypto_ahash_finup() - update and finalize message digest
415  * @req: reference to the ahash_request handle that holds all information
416  *	 needed to perform the cipher operation
417  *
418  * This function is a "short-hand" for the function calls of
419  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
420  * meaning as discussed for those separate functions.
421  *
422  * Return: see crypto_ahash_final()
423  */
424 int crypto_ahash_finup(struct ahash_request *req);
425 
426 /**
427  * crypto_ahash_final() - calculate message digest
428  * @req: reference to the ahash_request handle that holds all information
429  *	 needed to perform the cipher operation
430  *
431  * Finalize the message digest operation and create the message digest
432  * based on all data added to the cipher handle. The message digest is placed
433  * into the output buffer registered with the ahash_request handle.
434  *
435  * Return:
436  * 0		if the message digest was successfully calculated;
437  * -EINPROGRESS	if data is feeded into hardware (DMA) or queued for later;
438  * -EBUSY	if queue is full and request should be resubmitted later;
439  * other < 0	if an error occurred
440  */
441 int crypto_ahash_final(struct ahash_request *req);
442 
443 /**
444  * crypto_ahash_digest() - calculate message digest for a buffer
445  * @req: reference to the ahash_request handle that holds all information
446  *	 needed to perform the cipher operation
447  *
448  * This function is a "short-hand" for the function calls of crypto_ahash_init,
449  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
450  * meaning as discussed for those separate three functions.
451  *
452  * Return: see crypto_ahash_final()
453  */
454 int crypto_ahash_digest(struct ahash_request *req);
455 
456 /**
457  * crypto_ahash_export() - extract current message digest state
458  * @req: reference to the ahash_request handle whose state is exported
459  * @out: output buffer of sufficient size that can hold the hash state
460  *
461  * This function exports the hash state of the ahash_request handle into the
462  * caller-allocated output buffer out which must have sufficient size (e.g. by
463  * calling crypto_ahash_statesize()).
464  *
465  * Return: 0 if the export was successful; < 0 if an error occurred
466  */
467 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
468 {
469 	return crypto_ahash_reqtfm(req)->export(req, out);
470 }
471 
472 /**
473  * crypto_ahash_import() - import message digest state
474  * @req: reference to ahash_request handle the state is imported into
475  * @in: buffer holding the state
476  *
477  * This function imports the hash state into the ahash_request handle from the
478  * input buffer. That buffer should have been generated with the
479  * crypto_ahash_export function.
480  *
481  * Return: 0 if the import was successful; < 0 if an error occurred
482  */
483 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
484 {
485 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
486 
487 	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
488 		return -ENOKEY;
489 
490 	return tfm->import(req, in);
491 }
492 
493 /**
494  * crypto_ahash_init() - (re)initialize message digest handle
495  * @req: ahash_request handle that already is initialized with all necessary
496  *	 data using the ahash_request_* API functions
497  *
498  * The call (re-)initializes the message digest referenced by the ahash_request
499  * handle. Any potentially existing state created by previous operations is
500  * discarded.
501  *
502  * Return: see crypto_ahash_final()
503  */
504 static inline int crypto_ahash_init(struct ahash_request *req)
505 {
506 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
507 
508 	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
509 		return -ENOKEY;
510 
511 	return tfm->init(req);
512 }
513 
514 /**
515  * crypto_ahash_update() - add data to message digest for processing
516  * @req: ahash_request handle that was previously initialized with the
517  *	 crypto_ahash_init call.
518  *
519  * Updates the message digest state of the &ahash_request handle. The input data
520  * is pointed to by the scatter/gather list registered in the &ahash_request
521  * handle
522  *
523  * Return: see crypto_ahash_final()
524  */
525 static inline int crypto_ahash_update(struct ahash_request *req)
526 {
527 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
528 	struct crypto_alg *alg = tfm->base.__crt_alg;
529 	unsigned int nbytes = req->nbytes;
530 	int ret;
531 
532 	crypto_stats_get(alg);
533 	ret = crypto_ahash_reqtfm(req)->update(req);
534 	crypto_stats_ahash_update(nbytes, ret, alg);
535 	return ret;
536 }
537 
538 /**
539  * DOC: Asynchronous Hash Request Handle
540  *
541  * The &ahash_request data structure contains all pointers to data
542  * required for the asynchronous cipher operation. This includes the cipher
543  * handle (which can be used by multiple &ahash_request instances), pointer
544  * to plaintext and the message digest output buffer, asynchronous callback
545  * function, etc. It acts as a handle to the ahash_request_* API calls in a
546  * similar way as ahash handle to the crypto_ahash_* API calls.
547  */
548 
549 /**
550  * ahash_request_set_tfm() - update cipher handle reference in request
551  * @req: request handle to be modified
552  * @tfm: cipher handle that shall be added to the request handle
553  *
554  * Allow the caller to replace the existing ahash handle in the request
555  * data structure with a different one.
556  */
557 static inline void ahash_request_set_tfm(struct ahash_request *req,
558 					 struct crypto_ahash *tfm)
559 {
560 	req->base.tfm = crypto_ahash_tfm(tfm);
561 }
562 
563 /**
564  * ahash_request_alloc() - allocate request data structure
565  * @tfm: cipher handle to be registered with the request
566  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
567  *
568  * Allocate the request data structure that must be used with the ahash
569  * message digest API calls. During
570  * the allocation, the provided ahash handle
571  * is registered in the request data structure.
572  *
573  * Return: allocated request handle in case of success, or NULL if out of memory
574  */
575 static inline struct ahash_request *ahash_request_alloc(
576 	struct crypto_ahash *tfm, gfp_t gfp)
577 {
578 	struct ahash_request *req;
579 
580 	req = kmalloc(sizeof(struct ahash_request) +
581 		      crypto_ahash_reqsize(tfm), gfp);
582 
583 	if (likely(req))
584 		ahash_request_set_tfm(req, tfm);
585 
586 	return req;
587 }
588 
589 /**
590  * ahash_request_free() - zeroize and free the request data structure
591  * @req: request data structure cipher handle to be freed
592  */
593 static inline void ahash_request_free(struct ahash_request *req)
594 {
595 	kzfree(req);
596 }
597 
598 static inline void ahash_request_zero(struct ahash_request *req)
599 {
600 	memzero_explicit(req, sizeof(*req) +
601 			      crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
602 }
603 
604 static inline struct ahash_request *ahash_request_cast(
605 	struct crypto_async_request *req)
606 {
607 	return container_of(req, struct ahash_request, base);
608 }
609 
610 /**
611  * ahash_request_set_callback() - set asynchronous callback function
612  * @req: request handle
613  * @flags: specify zero or an ORing of the flags
614  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
615  *	   increase the wait queue beyond the initial maximum size;
616  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
617  * @compl: callback function pointer to be registered with the request handle
618  * @data: The data pointer refers to memory that is not used by the kernel
619  *	  crypto API, but provided to the callback function for it to use. Here,
620  *	  the caller can provide a reference to memory the callback function can
621  *	  operate on. As the callback function is invoked asynchronously to the
622  *	  related functionality, it may need to access data structures of the
623  *	  related functionality which can be referenced using this pointer. The
624  *	  callback function can access the memory via the "data" field in the
625  *	  &crypto_async_request data structure provided to the callback function.
626  *
627  * This function allows setting the callback function that is triggered once
628  * the cipher operation completes.
629  *
630  * The callback function is registered with the &ahash_request handle and
631  * must comply with the following template::
632  *
633  *	void callback_function(struct crypto_async_request *req, int error)
634  */
635 static inline void ahash_request_set_callback(struct ahash_request *req,
636 					      u32 flags,
637 					      crypto_completion_t compl,
638 					      void *data)
639 {
640 	req->base.complete = compl;
641 	req->base.data = data;
642 	req->base.flags = flags;
643 }
644 
645 /**
646  * ahash_request_set_crypt() - set data buffers
647  * @req: ahash_request handle to be updated
648  * @src: source scatter/gather list
649  * @result: buffer that is filled with the message digest -- the caller must
650  *	    ensure that the buffer has sufficient space by, for example, calling
651  *	    crypto_ahash_digestsize()
652  * @nbytes: number of bytes to process from the source scatter/gather list
653  *
654  * By using this call, the caller references the source scatter/gather list.
655  * The source scatter/gather list points to the data the message digest is to
656  * be calculated for.
657  */
658 static inline void ahash_request_set_crypt(struct ahash_request *req,
659 					   struct scatterlist *src, u8 *result,
660 					   unsigned int nbytes)
661 {
662 	req->src = src;
663 	req->nbytes = nbytes;
664 	req->result = result;
665 }
666 
667 /**
668  * DOC: Synchronous Message Digest API
669  *
670  * The synchronous message digest API is used with the ciphers of type
671  * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
672  *
673  * The message digest API is able to maintain state information for the
674  * caller.
675  *
676  * The synchronous message digest API can store user-related context in in its
677  * shash_desc request data structure.
678  */
679 
680 /**
681  * crypto_alloc_shash() - allocate message digest handle
682  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
683  *	      message digest cipher
684  * @type: specifies the type of the cipher
685  * @mask: specifies the mask for the cipher
686  *
687  * Allocate a cipher handle for a message digest. The returned &struct
688  * crypto_shash is the cipher handle that is required for any subsequent
689  * API invocation for that message digest.
690  *
691  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
692  *	   of an error, PTR_ERR() returns the error code.
693  */
694 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
695 					u32 mask);
696 
697 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
698 {
699 	return &tfm->base;
700 }
701 
702 /**
703  * crypto_free_shash() - zeroize and free the message digest handle
704  * @tfm: cipher handle to be freed
705  */
706 static inline void crypto_free_shash(struct crypto_shash *tfm)
707 {
708 	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
709 }
710 
711 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
712 {
713 	return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
714 }
715 
716 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
717 {
718 	return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
719 }
720 
721 static inline unsigned int crypto_shash_alignmask(
722 	struct crypto_shash *tfm)
723 {
724 	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
725 }
726 
727 /**
728  * crypto_shash_blocksize() - obtain block size for cipher
729  * @tfm: cipher handle
730  *
731  * The block size for the message digest cipher referenced with the cipher
732  * handle is returned.
733  *
734  * Return: block size of cipher
735  */
736 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
737 {
738 	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
739 }
740 
741 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
742 {
743 	return container_of(alg, struct shash_alg, base);
744 }
745 
746 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
747 {
748 	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
749 }
750 
751 /**
752  * crypto_shash_digestsize() - obtain message digest size
753  * @tfm: cipher handle
754  *
755  * The size for the message digest created by the message digest cipher
756  * referenced with the cipher handle is returned.
757  *
758  * Return: digest size of cipher
759  */
760 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
761 {
762 	return crypto_shash_alg(tfm)->digestsize;
763 }
764 
765 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
766 {
767 	return crypto_shash_alg(tfm)->statesize;
768 }
769 
770 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
771 {
772 	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
773 }
774 
775 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
776 {
777 	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
778 }
779 
780 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
781 {
782 	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
783 }
784 
785 /**
786  * crypto_shash_descsize() - obtain the operational state size
787  * @tfm: cipher handle
788  *
789  * The size of the operational state the cipher needs during operation is
790  * returned for the hash referenced with the cipher handle. This size is
791  * required to calculate the memory requirements to allow the caller allocating
792  * sufficient memory for operational state.
793  *
794  * The operational state is defined with struct shash_desc where the size of
795  * that data structure is to be calculated as
796  * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
797  *
798  * Return: size of the operational state
799  */
800 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
801 {
802 	return tfm->descsize;
803 }
804 
805 static inline void *shash_desc_ctx(struct shash_desc *desc)
806 {
807 	return desc->__ctx;
808 }
809 
810 /**
811  * crypto_shash_setkey() - set key for message digest
812  * @tfm: cipher handle
813  * @key: buffer holding the key
814  * @keylen: length of the key in bytes
815  *
816  * The caller provided key is set for the keyed message digest cipher. The
817  * cipher handle must point to a keyed message digest cipher in order for this
818  * function to succeed.
819  *
820  * Context: Any context.
821  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
822  */
823 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
824 			unsigned int keylen);
825 
826 /**
827  * crypto_shash_digest() - calculate message digest for buffer
828  * @desc: see crypto_shash_final()
829  * @data: see crypto_shash_update()
830  * @len: see crypto_shash_update()
831  * @out: see crypto_shash_final()
832  *
833  * This function is a "short-hand" for the function calls of crypto_shash_init,
834  * crypto_shash_update and crypto_shash_final. The parameters have the same
835  * meaning as discussed for those separate three functions.
836  *
837  * Context: Any context.
838  * Return: 0 if the message digest creation was successful; < 0 if an error
839  *	   occurred
840  */
841 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
842 			unsigned int len, u8 *out);
843 
844 /**
845  * crypto_shash_export() - extract operational state for message digest
846  * @desc: reference to the operational state handle whose state is exported
847  * @out: output buffer of sufficient size that can hold the hash state
848  *
849  * This function exports the hash state of the operational state handle into the
850  * caller-allocated output buffer out which must have sufficient size (e.g. by
851  * calling crypto_shash_descsize).
852  *
853  * Context: Any context.
854  * Return: 0 if the export creation was successful; < 0 if an error occurred
855  */
856 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
857 {
858 	return crypto_shash_alg(desc->tfm)->export(desc, out);
859 }
860 
861 /**
862  * crypto_shash_import() - import operational state
863  * @desc: reference to the operational state handle the state imported into
864  * @in: buffer holding the state
865  *
866  * This function imports the hash state into the operational state handle from
867  * the input buffer. That buffer should have been generated with the
868  * crypto_ahash_export function.
869  *
870  * Context: Any context.
871  * Return: 0 if the import was successful; < 0 if an error occurred
872  */
873 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
874 {
875 	struct crypto_shash *tfm = desc->tfm;
876 
877 	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
878 		return -ENOKEY;
879 
880 	return crypto_shash_alg(tfm)->import(desc, in);
881 }
882 
883 /**
884  * crypto_shash_init() - (re)initialize message digest
885  * @desc: operational state handle that is already filled
886  *
887  * The call (re-)initializes the message digest referenced by the
888  * operational state handle. Any potentially existing state created by
889  * previous operations is discarded.
890  *
891  * Context: Any context.
892  * Return: 0 if the message digest initialization was successful; < 0 if an
893  *	   error occurred
894  */
895 static inline int crypto_shash_init(struct shash_desc *desc)
896 {
897 	struct crypto_shash *tfm = desc->tfm;
898 
899 	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
900 		return -ENOKEY;
901 
902 	return crypto_shash_alg(tfm)->init(desc);
903 }
904 
905 /**
906  * crypto_shash_update() - add data to message digest for processing
907  * @desc: operational state handle that is already initialized
908  * @data: input data to be added to the message digest
909  * @len: length of the input data
910  *
911  * Updates the message digest state of the operational state handle.
912  *
913  * Context: Any context.
914  * Return: 0 if the message digest update was successful; < 0 if an error
915  *	   occurred
916  */
917 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
918 			unsigned int len);
919 
920 /**
921  * crypto_shash_final() - calculate message digest
922  * @desc: operational state handle that is already filled with data
923  * @out: output buffer filled with the message digest
924  *
925  * Finalize the message digest operation and create the message digest
926  * based on all data added to the cipher handle. The message digest is placed
927  * into the output buffer. The caller must ensure that the output buffer is
928  * large enough by using crypto_shash_digestsize.
929  *
930  * Context: Any context.
931  * Return: 0 if the message digest creation was successful; < 0 if an error
932  *	   occurred
933  */
934 int crypto_shash_final(struct shash_desc *desc, u8 *out);
935 
936 /**
937  * crypto_shash_finup() - calculate message digest of buffer
938  * @desc: see crypto_shash_final()
939  * @data: see crypto_shash_update()
940  * @len: see crypto_shash_update()
941  * @out: see crypto_shash_final()
942  *
943  * This function is a "short-hand" for the function calls of
944  * crypto_shash_update and crypto_shash_final. The parameters have the same
945  * meaning as discussed for those separate functions.
946  *
947  * Context: Any context.
948  * Return: 0 if the message digest creation was successful; < 0 if an error
949  *	   occurred
950  */
951 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
952 		       unsigned int len, u8 *out);
953 
954 static inline void shash_desc_zero(struct shash_desc *desc)
955 {
956 	memzero_explicit(desc,
957 			 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
958 }
959 
960 #endif	/* _CRYPTO_HASH_H */
961