1 /* 2 * Hash: Hash algorithms under the crypto API 3 * 4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 * 11 */ 12 13 #ifndef _CRYPTO_HASH_H 14 #define _CRYPTO_HASH_H 15 16 #include <linux/crypto.h> 17 #include <linux/string.h> 18 19 struct crypto_ahash; 20 21 /** 22 * DOC: Message Digest Algorithm Definitions 23 * 24 * These data structures define modular message digest algorithm 25 * implementations, managed via crypto_register_ahash(), 26 * crypto_register_shash(), crypto_unregister_ahash() and 27 * crypto_unregister_shash(). 28 */ 29 30 /** 31 * struct hash_alg_common - define properties of message digest 32 * @digestsize: Size of the result of the transformation. A buffer of this size 33 * must be available to the @final and @finup calls, so they can 34 * store the resulting hash into it. For various predefined sizes, 35 * search include/crypto/ using 36 * git grep _DIGEST_SIZE include/crypto. 37 * @statesize: Size of the block for partial state of the transformation. A 38 * buffer of this size must be passed to the @export function as it 39 * will save the partial state of the transformation into it. On the 40 * other side, the @import function will load the state from a 41 * buffer of this size as well. 42 * @base: Start of data structure of cipher algorithm. The common data 43 * structure of crypto_alg contains information common to all ciphers. 44 * The hash_alg_common data structure now adds the hash-specific 45 * information. 46 */ 47 struct hash_alg_common { 48 unsigned int digestsize; 49 unsigned int statesize; 50 51 struct crypto_alg base; 52 }; 53 54 struct ahash_request { 55 struct crypto_async_request base; 56 57 unsigned int nbytes; 58 struct scatterlist *src; 59 u8 *result; 60 61 /* This field may only be used by the ahash API code. */ 62 void *priv; 63 64 void *__ctx[] CRYPTO_MINALIGN_ATTR; 65 }; 66 67 #define AHASH_REQUEST_ON_STACK(name, ahash) \ 68 char __##name##_desc[sizeof(struct ahash_request) + \ 69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \ 70 struct ahash_request *name = (void *)__##name##_desc 71 72 /** 73 * struct ahash_alg - asynchronous message digest definition 74 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the 75 * state of the HASH transformation at the beginning. This shall fill in 76 * the internal structures used during the entire duration of the whole 77 * transformation. No data processing happens at this point. Driver code 78 * implementation must not use req->result. 79 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This 80 * function actually pushes blocks of data from upper layers into the 81 * driver, which then passes those to the hardware as seen fit. This 82 * function must not finalize the HASH transformation by calculating the 83 * final message digest as this only adds more data into the 84 * transformation. This function shall not modify the transformation 85 * context, as this function may be called in parallel with the same 86 * transformation object. Data processing can happen synchronously 87 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use 88 * req->result. 89 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the 90 * transformation and retrieves the resulting hash from the driver and 91 * pushes it back to upper layers. No data processing happens at this 92 * point unless hardware requires it to finish the transformation 93 * (then the data buffered by the device driver is processed). 94 * @finup: **[optional]** Combination of @update and @final. This function is effectively a 95 * combination of @update and @final calls issued in sequence. As some 96 * hardware cannot do @update and @final separately, this callback was 97 * added to allow such hardware to be used at least by IPsec. Data 98 * processing can happen synchronously [SHASH] or asynchronously [AHASH] 99 * at this point. 100 * @digest: Combination of @init and @update and @final. This function 101 * effectively behaves as the entire chain of operations, @init, 102 * @update and @final issued in sequence. Just like @finup, this was 103 * added for hardware which cannot do even the @finup, but can only do 104 * the whole transformation in one run. Data processing can happen 105 * synchronously [SHASH] or asynchronously [AHASH] at this point. 106 * @setkey: Set optional key used by the hashing algorithm. Intended to push 107 * optional key used by the hashing algorithm from upper layers into 108 * the driver. This function can store the key in the transformation 109 * context or can outright program it into the hardware. In the former 110 * case, one must be careful to program the key into the hardware at 111 * appropriate time and one must be careful that .setkey() can be 112 * called multiple times during the existence of the transformation 113 * object. Not all hashing algorithms do implement this function as it 114 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT 115 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement 116 * this function. This function must be called before any other of the 117 * @init, @update, @final, @finup, @digest is called. No data 118 * processing happens at this point. 119 * @export: Export partial state of the transformation. This function dumps the 120 * entire state of the ongoing transformation into a provided block of 121 * data so it can be @import 'ed back later on. This is useful in case 122 * you want to save partial result of the transformation after 123 * processing certain amount of data and reload this partial result 124 * multiple times later on for multiple re-use. No data processing 125 * happens at this point. Driver must not use req->result. 126 * @import: Import partial state of the transformation. This function loads the 127 * entire state of the ongoing transformation from a provided block of 128 * data so the transformation can continue from this point onward. No 129 * data processing happens at this point. Driver must not use 130 * req->result. 131 * @halg: see struct hash_alg_common 132 */ 133 struct ahash_alg { 134 int (*init)(struct ahash_request *req); 135 int (*update)(struct ahash_request *req); 136 int (*final)(struct ahash_request *req); 137 int (*finup)(struct ahash_request *req); 138 int (*digest)(struct ahash_request *req); 139 int (*export)(struct ahash_request *req, void *out); 140 int (*import)(struct ahash_request *req, const void *in); 141 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 142 unsigned int keylen); 143 144 struct hash_alg_common halg; 145 }; 146 147 struct shash_desc { 148 struct crypto_shash *tfm; 149 void *__ctx[] CRYPTO_MINALIGN_ATTR; 150 }; 151 152 #define HASH_MAX_DIGESTSIZE 64 153 #define HASH_MAX_DESCSIZE 360 154 #define HASH_MAX_STATESIZE 512 155 156 #define SHASH_DESC_ON_STACK(shash, ctx) \ 157 char __##shash##_desc[sizeof(struct shash_desc) + \ 158 HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \ 159 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc 160 161 /** 162 * struct shash_alg - synchronous message digest definition 163 * @init: see struct ahash_alg 164 * @update: see struct ahash_alg 165 * @final: see struct ahash_alg 166 * @finup: see struct ahash_alg 167 * @digest: see struct ahash_alg 168 * @export: see struct ahash_alg 169 * @import: see struct ahash_alg 170 * @setkey: see struct ahash_alg 171 * @digestsize: see struct ahash_alg 172 * @statesize: see struct ahash_alg 173 * @descsize: Size of the operational state for the message digest. This state 174 * size is the memory size that needs to be allocated for 175 * shash_desc.__ctx 176 * @base: internally used 177 */ 178 struct shash_alg { 179 int (*init)(struct shash_desc *desc); 180 int (*update)(struct shash_desc *desc, const u8 *data, 181 unsigned int len); 182 int (*final)(struct shash_desc *desc, u8 *out); 183 int (*finup)(struct shash_desc *desc, const u8 *data, 184 unsigned int len, u8 *out); 185 int (*digest)(struct shash_desc *desc, const u8 *data, 186 unsigned int len, u8 *out); 187 int (*export)(struct shash_desc *desc, void *out); 188 int (*import)(struct shash_desc *desc, const void *in); 189 int (*setkey)(struct crypto_shash *tfm, const u8 *key, 190 unsigned int keylen); 191 192 unsigned int descsize; 193 194 /* These fields must match hash_alg_common. */ 195 unsigned int digestsize 196 __attribute__ ((aligned(__alignof__(struct hash_alg_common)))); 197 unsigned int statesize; 198 199 struct crypto_alg base; 200 }; 201 202 struct crypto_ahash { 203 int (*init)(struct ahash_request *req); 204 int (*update)(struct ahash_request *req); 205 int (*final)(struct ahash_request *req); 206 int (*finup)(struct ahash_request *req); 207 int (*digest)(struct ahash_request *req); 208 int (*export)(struct ahash_request *req, void *out); 209 int (*import)(struct ahash_request *req, const void *in); 210 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 211 unsigned int keylen); 212 213 unsigned int reqsize; 214 struct crypto_tfm base; 215 }; 216 217 struct crypto_shash { 218 unsigned int descsize; 219 struct crypto_tfm base; 220 }; 221 222 /** 223 * DOC: Asynchronous Message Digest API 224 * 225 * The asynchronous message digest API is used with the ciphers of type 226 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) 227 * 228 * The asynchronous cipher operation discussion provided for the 229 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well. 230 */ 231 232 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) 233 { 234 return container_of(tfm, struct crypto_ahash, base); 235 } 236 237 /** 238 * crypto_alloc_ahash() - allocate ahash cipher handle 239 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 240 * ahash cipher 241 * @type: specifies the type of the cipher 242 * @mask: specifies the mask for the cipher 243 * 244 * Allocate a cipher handle for an ahash. The returned struct 245 * crypto_ahash is the cipher handle that is required for any subsequent 246 * API invocation for that ahash. 247 * 248 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 249 * of an error, PTR_ERR() returns the error code. 250 */ 251 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, 252 u32 mask); 253 254 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) 255 { 256 return &tfm->base; 257 } 258 259 /** 260 * crypto_free_ahash() - zeroize and free the ahash handle 261 * @tfm: cipher handle to be freed 262 */ 263 static inline void crypto_free_ahash(struct crypto_ahash *tfm) 264 { 265 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); 266 } 267 268 /** 269 * crypto_has_ahash() - Search for the availability of an ahash. 270 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 271 * ahash 272 * @type: specifies the type of the ahash 273 * @mask: specifies the mask for the ahash 274 * 275 * Return: true when the ahash is known to the kernel crypto API; false 276 * otherwise 277 */ 278 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); 279 280 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) 281 { 282 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 283 } 284 285 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) 286 { 287 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); 288 } 289 290 static inline unsigned int crypto_ahash_alignmask( 291 struct crypto_ahash *tfm) 292 { 293 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm)); 294 } 295 296 /** 297 * crypto_ahash_blocksize() - obtain block size for cipher 298 * @tfm: cipher handle 299 * 300 * The block size for the message digest cipher referenced with the cipher 301 * handle is returned. 302 * 303 * Return: block size of cipher 304 */ 305 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) 306 { 307 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 308 } 309 310 static inline struct hash_alg_common *__crypto_hash_alg_common( 311 struct crypto_alg *alg) 312 { 313 return container_of(alg, struct hash_alg_common, base); 314 } 315 316 static inline struct hash_alg_common *crypto_hash_alg_common( 317 struct crypto_ahash *tfm) 318 { 319 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); 320 } 321 322 /** 323 * crypto_ahash_digestsize() - obtain message digest size 324 * @tfm: cipher handle 325 * 326 * The size for the message digest created by the message digest cipher 327 * referenced with the cipher handle is returned. 328 * 329 * 330 * Return: message digest size of cipher 331 */ 332 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) 333 { 334 return crypto_hash_alg_common(tfm)->digestsize; 335 } 336 337 /** 338 * crypto_ahash_statesize() - obtain size of the ahash state 339 * @tfm: cipher handle 340 * 341 * Return the size of the ahash state. With the crypto_ahash_export() 342 * function, the caller can export the state into a buffer whose size is 343 * defined with this function. 344 * 345 * Return: size of the ahash state 346 */ 347 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) 348 { 349 return crypto_hash_alg_common(tfm)->statesize; 350 } 351 352 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) 353 { 354 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); 355 } 356 357 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) 358 { 359 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); 360 } 361 362 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) 363 { 364 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); 365 } 366 367 /** 368 * crypto_ahash_reqtfm() - obtain cipher handle from request 369 * @req: asynchronous request handle that contains the reference to the ahash 370 * cipher handle 371 * 372 * Return the ahash cipher handle that is registered with the asynchronous 373 * request handle ahash_request. 374 * 375 * Return: ahash cipher handle 376 */ 377 static inline struct crypto_ahash *crypto_ahash_reqtfm( 378 struct ahash_request *req) 379 { 380 return __crypto_ahash_cast(req->base.tfm); 381 } 382 383 /** 384 * crypto_ahash_reqsize() - obtain size of the request data structure 385 * @tfm: cipher handle 386 * 387 * Return: size of the request data 388 */ 389 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) 390 { 391 return tfm->reqsize; 392 } 393 394 static inline void *ahash_request_ctx(struct ahash_request *req) 395 { 396 return req->__ctx; 397 } 398 399 /** 400 * crypto_ahash_setkey - set key for cipher handle 401 * @tfm: cipher handle 402 * @key: buffer holding the key 403 * @keylen: length of the key in bytes 404 * 405 * The caller provided key is set for the ahash cipher. The cipher 406 * handle must point to a keyed hash in order for this function to succeed. 407 * 408 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 409 */ 410 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, 411 unsigned int keylen); 412 413 /** 414 * crypto_ahash_finup() - update and finalize message digest 415 * @req: reference to the ahash_request handle that holds all information 416 * needed to perform the cipher operation 417 * 418 * This function is a "short-hand" for the function calls of 419 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 420 * meaning as discussed for those separate functions. 421 * 422 * Return: see crypto_ahash_final() 423 */ 424 int crypto_ahash_finup(struct ahash_request *req); 425 426 /** 427 * crypto_ahash_final() - calculate message digest 428 * @req: reference to the ahash_request handle that holds all information 429 * needed to perform the cipher operation 430 * 431 * Finalize the message digest operation and create the message digest 432 * based on all data added to the cipher handle. The message digest is placed 433 * into the output buffer registered with the ahash_request handle. 434 * 435 * Return: 436 * 0 if the message digest was successfully calculated; 437 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later; 438 * -EBUSY if queue is full and request should be resubmitted later; 439 * other < 0 if an error occurred 440 */ 441 int crypto_ahash_final(struct ahash_request *req); 442 443 /** 444 * crypto_ahash_digest() - calculate message digest for a buffer 445 * @req: reference to the ahash_request handle that holds all information 446 * needed to perform the cipher operation 447 * 448 * This function is a "short-hand" for the function calls of crypto_ahash_init, 449 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 450 * meaning as discussed for those separate three functions. 451 * 452 * Return: see crypto_ahash_final() 453 */ 454 int crypto_ahash_digest(struct ahash_request *req); 455 456 /** 457 * crypto_ahash_export() - extract current message digest state 458 * @req: reference to the ahash_request handle whose state is exported 459 * @out: output buffer of sufficient size that can hold the hash state 460 * 461 * This function exports the hash state of the ahash_request handle into the 462 * caller-allocated output buffer out which must have sufficient size (e.g. by 463 * calling crypto_ahash_statesize()). 464 * 465 * Return: 0 if the export was successful; < 0 if an error occurred 466 */ 467 static inline int crypto_ahash_export(struct ahash_request *req, void *out) 468 { 469 return crypto_ahash_reqtfm(req)->export(req, out); 470 } 471 472 /** 473 * crypto_ahash_import() - import message digest state 474 * @req: reference to ahash_request handle the state is imported into 475 * @in: buffer holding the state 476 * 477 * This function imports the hash state into the ahash_request handle from the 478 * input buffer. That buffer should have been generated with the 479 * crypto_ahash_export function. 480 * 481 * Return: 0 if the import was successful; < 0 if an error occurred 482 */ 483 static inline int crypto_ahash_import(struct ahash_request *req, const void *in) 484 { 485 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 486 487 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 488 return -ENOKEY; 489 490 return tfm->import(req, in); 491 } 492 493 /** 494 * crypto_ahash_init() - (re)initialize message digest handle 495 * @req: ahash_request handle that already is initialized with all necessary 496 * data using the ahash_request_* API functions 497 * 498 * The call (re-)initializes the message digest referenced by the ahash_request 499 * handle. Any potentially existing state created by previous operations is 500 * discarded. 501 * 502 * Return: see crypto_ahash_final() 503 */ 504 static inline int crypto_ahash_init(struct ahash_request *req) 505 { 506 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 507 508 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 509 return -ENOKEY; 510 511 return tfm->init(req); 512 } 513 514 /** 515 * crypto_ahash_update() - add data to message digest for processing 516 * @req: ahash_request handle that was previously initialized with the 517 * crypto_ahash_init call. 518 * 519 * Updates the message digest state of the &ahash_request handle. The input data 520 * is pointed to by the scatter/gather list registered in the &ahash_request 521 * handle 522 * 523 * Return: see crypto_ahash_final() 524 */ 525 static inline int crypto_ahash_update(struct ahash_request *req) 526 { 527 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 528 struct crypto_alg *alg = tfm->base.__crt_alg; 529 unsigned int nbytes = req->nbytes; 530 int ret; 531 532 crypto_stats_get(alg); 533 ret = crypto_ahash_reqtfm(req)->update(req); 534 crypto_stats_ahash_update(nbytes, ret, alg); 535 return ret; 536 } 537 538 /** 539 * DOC: Asynchronous Hash Request Handle 540 * 541 * The &ahash_request data structure contains all pointers to data 542 * required for the asynchronous cipher operation. This includes the cipher 543 * handle (which can be used by multiple &ahash_request instances), pointer 544 * to plaintext and the message digest output buffer, asynchronous callback 545 * function, etc. It acts as a handle to the ahash_request_* API calls in a 546 * similar way as ahash handle to the crypto_ahash_* API calls. 547 */ 548 549 /** 550 * ahash_request_set_tfm() - update cipher handle reference in request 551 * @req: request handle to be modified 552 * @tfm: cipher handle that shall be added to the request handle 553 * 554 * Allow the caller to replace the existing ahash handle in the request 555 * data structure with a different one. 556 */ 557 static inline void ahash_request_set_tfm(struct ahash_request *req, 558 struct crypto_ahash *tfm) 559 { 560 req->base.tfm = crypto_ahash_tfm(tfm); 561 } 562 563 /** 564 * ahash_request_alloc() - allocate request data structure 565 * @tfm: cipher handle to be registered with the request 566 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 567 * 568 * Allocate the request data structure that must be used with the ahash 569 * message digest API calls. During 570 * the allocation, the provided ahash handle 571 * is registered in the request data structure. 572 * 573 * Return: allocated request handle in case of success, or NULL if out of memory 574 */ 575 static inline struct ahash_request *ahash_request_alloc( 576 struct crypto_ahash *tfm, gfp_t gfp) 577 { 578 struct ahash_request *req; 579 580 req = kmalloc(sizeof(struct ahash_request) + 581 crypto_ahash_reqsize(tfm), gfp); 582 583 if (likely(req)) 584 ahash_request_set_tfm(req, tfm); 585 586 return req; 587 } 588 589 /** 590 * ahash_request_free() - zeroize and free the request data structure 591 * @req: request data structure cipher handle to be freed 592 */ 593 static inline void ahash_request_free(struct ahash_request *req) 594 { 595 kzfree(req); 596 } 597 598 static inline void ahash_request_zero(struct ahash_request *req) 599 { 600 memzero_explicit(req, sizeof(*req) + 601 crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); 602 } 603 604 static inline struct ahash_request *ahash_request_cast( 605 struct crypto_async_request *req) 606 { 607 return container_of(req, struct ahash_request, base); 608 } 609 610 /** 611 * ahash_request_set_callback() - set asynchronous callback function 612 * @req: request handle 613 * @flags: specify zero or an ORing of the flags 614 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 615 * increase the wait queue beyond the initial maximum size; 616 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 617 * @compl: callback function pointer to be registered with the request handle 618 * @data: The data pointer refers to memory that is not used by the kernel 619 * crypto API, but provided to the callback function for it to use. Here, 620 * the caller can provide a reference to memory the callback function can 621 * operate on. As the callback function is invoked asynchronously to the 622 * related functionality, it may need to access data structures of the 623 * related functionality which can be referenced using this pointer. The 624 * callback function can access the memory via the "data" field in the 625 * &crypto_async_request data structure provided to the callback function. 626 * 627 * This function allows setting the callback function that is triggered once 628 * the cipher operation completes. 629 * 630 * The callback function is registered with the &ahash_request handle and 631 * must comply with the following template:: 632 * 633 * void callback_function(struct crypto_async_request *req, int error) 634 */ 635 static inline void ahash_request_set_callback(struct ahash_request *req, 636 u32 flags, 637 crypto_completion_t compl, 638 void *data) 639 { 640 req->base.complete = compl; 641 req->base.data = data; 642 req->base.flags = flags; 643 } 644 645 /** 646 * ahash_request_set_crypt() - set data buffers 647 * @req: ahash_request handle to be updated 648 * @src: source scatter/gather list 649 * @result: buffer that is filled with the message digest -- the caller must 650 * ensure that the buffer has sufficient space by, for example, calling 651 * crypto_ahash_digestsize() 652 * @nbytes: number of bytes to process from the source scatter/gather list 653 * 654 * By using this call, the caller references the source scatter/gather list. 655 * The source scatter/gather list points to the data the message digest is to 656 * be calculated for. 657 */ 658 static inline void ahash_request_set_crypt(struct ahash_request *req, 659 struct scatterlist *src, u8 *result, 660 unsigned int nbytes) 661 { 662 req->src = src; 663 req->nbytes = nbytes; 664 req->result = result; 665 } 666 667 /** 668 * DOC: Synchronous Message Digest API 669 * 670 * The synchronous message digest API is used with the ciphers of type 671 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) 672 * 673 * The message digest API is able to maintain state information for the 674 * caller. 675 * 676 * The synchronous message digest API can store user-related context in in its 677 * shash_desc request data structure. 678 */ 679 680 /** 681 * crypto_alloc_shash() - allocate message digest handle 682 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 683 * message digest cipher 684 * @type: specifies the type of the cipher 685 * @mask: specifies the mask for the cipher 686 * 687 * Allocate a cipher handle for a message digest. The returned &struct 688 * crypto_shash is the cipher handle that is required for any subsequent 689 * API invocation for that message digest. 690 * 691 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 692 * of an error, PTR_ERR() returns the error code. 693 */ 694 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, 695 u32 mask); 696 697 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) 698 { 699 return &tfm->base; 700 } 701 702 /** 703 * crypto_free_shash() - zeroize and free the message digest handle 704 * @tfm: cipher handle to be freed 705 */ 706 static inline void crypto_free_shash(struct crypto_shash *tfm) 707 { 708 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); 709 } 710 711 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) 712 { 713 return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); 714 } 715 716 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) 717 { 718 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); 719 } 720 721 static inline unsigned int crypto_shash_alignmask( 722 struct crypto_shash *tfm) 723 { 724 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); 725 } 726 727 /** 728 * crypto_shash_blocksize() - obtain block size for cipher 729 * @tfm: cipher handle 730 * 731 * The block size for the message digest cipher referenced with the cipher 732 * handle is returned. 733 * 734 * Return: block size of cipher 735 */ 736 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) 737 { 738 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); 739 } 740 741 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) 742 { 743 return container_of(alg, struct shash_alg, base); 744 } 745 746 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) 747 { 748 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); 749 } 750 751 /** 752 * crypto_shash_digestsize() - obtain message digest size 753 * @tfm: cipher handle 754 * 755 * The size for the message digest created by the message digest cipher 756 * referenced with the cipher handle is returned. 757 * 758 * Return: digest size of cipher 759 */ 760 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) 761 { 762 return crypto_shash_alg(tfm)->digestsize; 763 } 764 765 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) 766 { 767 return crypto_shash_alg(tfm)->statesize; 768 } 769 770 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) 771 { 772 return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); 773 } 774 775 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) 776 { 777 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); 778 } 779 780 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) 781 { 782 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); 783 } 784 785 /** 786 * crypto_shash_descsize() - obtain the operational state size 787 * @tfm: cipher handle 788 * 789 * The size of the operational state the cipher needs during operation is 790 * returned for the hash referenced with the cipher handle. This size is 791 * required to calculate the memory requirements to allow the caller allocating 792 * sufficient memory for operational state. 793 * 794 * The operational state is defined with struct shash_desc where the size of 795 * that data structure is to be calculated as 796 * sizeof(struct shash_desc) + crypto_shash_descsize(alg) 797 * 798 * Return: size of the operational state 799 */ 800 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) 801 { 802 return tfm->descsize; 803 } 804 805 static inline void *shash_desc_ctx(struct shash_desc *desc) 806 { 807 return desc->__ctx; 808 } 809 810 /** 811 * crypto_shash_setkey() - set key for message digest 812 * @tfm: cipher handle 813 * @key: buffer holding the key 814 * @keylen: length of the key in bytes 815 * 816 * The caller provided key is set for the keyed message digest cipher. The 817 * cipher handle must point to a keyed message digest cipher in order for this 818 * function to succeed. 819 * 820 * Context: Any context. 821 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 822 */ 823 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, 824 unsigned int keylen); 825 826 /** 827 * crypto_shash_digest() - calculate message digest for buffer 828 * @desc: see crypto_shash_final() 829 * @data: see crypto_shash_update() 830 * @len: see crypto_shash_update() 831 * @out: see crypto_shash_final() 832 * 833 * This function is a "short-hand" for the function calls of crypto_shash_init, 834 * crypto_shash_update and crypto_shash_final. The parameters have the same 835 * meaning as discussed for those separate three functions. 836 * 837 * Context: Any context. 838 * Return: 0 if the message digest creation was successful; < 0 if an error 839 * occurred 840 */ 841 int crypto_shash_digest(struct shash_desc *desc, const u8 *data, 842 unsigned int len, u8 *out); 843 844 /** 845 * crypto_shash_export() - extract operational state for message digest 846 * @desc: reference to the operational state handle whose state is exported 847 * @out: output buffer of sufficient size that can hold the hash state 848 * 849 * This function exports the hash state of the operational state handle into the 850 * caller-allocated output buffer out which must have sufficient size (e.g. by 851 * calling crypto_shash_descsize). 852 * 853 * Context: Any context. 854 * Return: 0 if the export creation was successful; < 0 if an error occurred 855 */ 856 static inline int crypto_shash_export(struct shash_desc *desc, void *out) 857 { 858 return crypto_shash_alg(desc->tfm)->export(desc, out); 859 } 860 861 /** 862 * crypto_shash_import() - import operational state 863 * @desc: reference to the operational state handle the state imported into 864 * @in: buffer holding the state 865 * 866 * This function imports the hash state into the operational state handle from 867 * the input buffer. That buffer should have been generated with the 868 * crypto_ahash_export function. 869 * 870 * Context: Any context. 871 * Return: 0 if the import was successful; < 0 if an error occurred 872 */ 873 static inline int crypto_shash_import(struct shash_desc *desc, const void *in) 874 { 875 struct crypto_shash *tfm = desc->tfm; 876 877 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 878 return -ENOKEY; 879 880 return crypto_shash_alg(tfm)->import(desc, in); 881 } 882 883 /** 884 * crypto_shash_init() - (re)initialize message digest 885 * @desc: operational state handle that is already filled 886 * 887 * The call (re-)initializes the message digest referenced by the 888 * operational state handle. Any potentially existing state created by 889 * previous operations is discarded. 890 * 891 * Context: Any context. 892 * Return: 0 if the message digest initialization was successful; < 0 if an 893 * error occurred 894 */ 895 static inline int crypto_shash_init(struct shash_desc *desc) 896 { 897 struct crypto_shash *tfm = desc->tfm; 898 899 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 900 return -ENOKEY; 901 902 return crypto_shash_alg(tfm)->init(desc); 903 } 904 905 /** 906 * crypto_shash_update() - add data to message digest for processing 907 * @desc: operational state handle that is already initialized 908 * @data: input data to be added to the message digest 909 * @len: length of the input data 910 * 911 * Updates the message digest state of the operational state handle. 912 * 913 * Context: Any context. 914 * Return: 0 if the message digest update was successful; < 0 if an error 915 * occurred 916 */ 917 int crypto_shash_update(struct shash_desc *desc, const u8 *data, 918 unsigned int len); 919 920 /** 921 * crypto_shash_final() - calculate message digest 922 * @desc: operational state handle that is already filled with data 923 * @out: output buffer filled with the message digest 924 * 925 * Finalize the message digest operation and create the message digest 926 * based on all data added to the cipher handle. The message digest is placed 927 * into the output buffer. The caller must ensure that the output buffer is 928 * large enough by using crypto_shash_digestsize. 929 * 930 * Context: Any context. 931 * Return: 0 if the message digest creation was successful; < 0 if an error 932 * occurred 933 */ 934 int crypto_shash_final(struct shash_desc *desc, u8 *out); 935 936 /** 937 * crypto_shash_finup() - calculate message digest of buffer 938 * @desc: see crypto_shash_final() 939 * @data: see crypto_shash_update() 940 * @len: see crypto_shash_update() 941 * @out: see crypto_shash_final() 942 * 943 * This function is a "short-hand" for the function calls of 944 * crypto_shash_update and crypto_shash_final. The parameters have the same 945 * meaning as discussed for those separate functions. 946 * 947 * Context: Any context. 948 * Return: 0 if the message digest creation was successful; < 0 if an error 949 * occurred 950 */ 951 int crypto_shash_finup(struct shash_desc *desc, const u8 *data, 952 unsigned int len, u8 *out); 953 954 static inline void shash_desc_zero(struct shash_desc *desc) 955 { 956 memzero_explicit(desc, 957 sizeof(*desc) + crypto_shash_descsize(desc->tfm)); 958 } 959 960 #endif /* _CRYPTO_HASH_H */ 961