xref: /openbmc/linux/include/crypto/hash.h (revision 64ba3d59)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Hash: Hash algorithms under the crypto API
4  *
5  * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7 
8 #ifndef _CRYPTO_HASH_H
9 #define _CRYPTO_HASH_H
10 
11 #include <linux/crypto.h>
12 #include <linux/string.h>
13 
14 struct crypto_ahash;
15 
16 /**
17  * DOC: Message Digest Algorithm Definitions
18  *
19  * These data structures define modular message digest algorithm
20  * implementations, managed via crypto_register_ahash(),
21  * crypto_register_shash(), crypto_unregister_ahash() and
22  * crypto_unregister_shash().
23  */
24 
25 /**
26  * struct hash_alg_common - define properties of message digest
27  * @digestsize: Size of the result of the transformation. A buffer of this size
28  *	        must be available to the @final and @finup calls, so they can
29  *	        store the resulting hash into it. For various predefined sizes,
30  *	        search include/crypto/ using
31  *	        git grep _DIGEST_SIZE include/crypto.
32  * @statesize: Size of the block for partial state of the transformation. A
33  *	       buffer of this size must be passed to the @export function as it
34  *	       will save the partial state of the transformation into it. On the
35  *	       other side, the @import function will load the state from a
36  *	       buffer of this size as well.
37  * @base: Start of data structure of cipher algorithm. The common data
38  *	  structure of crypto_alg contains information common to all ciphers.
39  *	  The hash_alg_common data structure now adds the hash-specific
40  *	  information.
41  */
42 struct hash_alg_common {
43 	unsigned int digestsize;
44 	unsigned int statesize;
45 
46 	struct crypto_alg base;
47 };
48 
49 struct ahash_request {
50 	struct crypto_async_request base;
51 
52 	unsigned int nbytes;
53 	struct scatterlist *src;
54 	u8 *result;
55 
56 	/* This field may only be used by the ahash API code. */
57 	void *priv;
58 
59 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
60 };
61 
62 /**
63  * struct ahash_alg - asynchronous message digest definition
64  * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
65  *	  state of the HASH transformation at the beginning. This shall fill in
66  *	  the internal structures used during the entire duration of the whole
67  *	  transformation. No data processing happens at this point. Driver code
68  *	  implementation must not use req->result.
69  * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
70  *	   function actually pushes blocks of data from upper layers into the
71  *	   driver, which then passes those to the hardware as seen fit. This
72  *	   function must not finalize the HASH transformation by calculating the
73  *	   final message digest as this only adds more data into the
74  *	   transformation. This function shall not modify the transformation
75  *	   context, as this function may be called in parallel with the same
76  *	   transformation object. Data processing can happen synchronously
77  *	   [SHASH] or asynchronously [AHASH] at this point. Driver must not use
78  *	   req->result.
79  * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
80  *	   transformation and retrieves the resulting hash from the driver and
81  *	   pushes it back to upper layers. No data processing happens at this
82  *	   point unless hardware requires it to finish the transformation
83  *	   (then the data buffered by the device driver is processed).
84  * @finup: **[optional]** Combination of @update and @final. This function is effectively a
85  *	   combination of @update and @final calls issued in sequence. As some
86  *	   hardware cannot do @update and @final separately, this callback was
87  *	   added to allow such hardware to be used at least by IPsec. Data
88  *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
89  *	   at this point.
90  * @digest: Combination of @init and @update and @final. This function
91  *	    effectively behaves as the entire chain of operations, @init,
92  *	    @update and @final issued in sequence. Just like @finup, this was
93  *	    added for hardware which cannot do even the @finup, but can only do
94  *	    the whole transformation in one run. Data processing can happen
95  *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
96  * @setkey: Set optional key used by the hashing algorithm. Intended to push
97  *	    optional key used by the hashing algorithm from upper layers into
98  *	    the driver. This function can store the key in the transformation
99  *	    context or can outright program it into the hardware. In the former
100  *	    case, one must be careful to program the key into the hardware at
101  *	    appropriate time and one must be careful that .setkey() can be
102  *	    called multiple times during the existence of the transformation
103  *	    object. Not  all hashing algorithms do implement this function as it
104  *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
105  *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
106  *	    this function. This function must be called before any other of the
107  *	    @init, @update, @final, @finup, @digest is called. No data
108  *	    processing happens at this point.
109  * @export: Export partial state of the transformation. This function dumps the
110  *	    entire state of the ongoing transformation into a provided block of
111  *	    data so it can be @import 'ed back later on. This is useful in case
112  *	    you want to save partial result of the transformation after
113  *	    processing certain amount of data and reload this partial result
114  *	    multiple times later on for multiple re-use. No data processing
115  *	    happens at this point. Driver must not use req->result.
116  * @import: Import partial state of the transformation. This function loads the
117  *	    entire state of the ongoing transformation from a provided block of
118  *	    data so the transformation can continue from this point onward. No
119  *	    data processing happens at this point. Driver must not use
120  *	    req->result.
121  * @init_tfm: Initialize the cryptographic transformation object.
122  *	      This function is called only once at the instantiation
123  *	      time, right after the transformation context was
124  *	      allocated. In case the cryptographic hardware has
125  *	      some special requirements which need to be handled
126  *	      by software, this function shall check for the precise
127  *	      requirement of the transformation and put any software
128  *	      fallbacks in place.
129  * @exit_tfm: Deinitialize the cryptographic transformation object.
130  *	      This is a counterpart to @init_tfm, used to remove
131  *	      various changes set in @init_tfm.
132  * @halg: see struct hash_alg_common
133  */
134 struct ahash_alg {
135 	int (*init)(struct ahash_request *req);
136 	int (*update)(struct ahash_request *req);
137 	int (*final)(struct ahash_request *req);
138 	int (*finup)(struct ahash_request *req);
139 	int (*digest)(struct ahash_request *req);
140 	int (*export)(struct ahash_request *req, void *out);
141 	int (*import)(struct ahash_request *req, const void *in);
142 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
143 		      unsigned int keylen);
144 	int (*init_tfm)(struct crypto_ahash *tfm);
145 	void (*exit_tfm)(struct crypto_ahash *tfm);
146 
147 	struct hash_alg_common halg;
148 };
149 
150 struct shash_desc {
151 	struct crypto_shash *tfm;
152 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
153 };
154 
155 #define HASH_MAX_DIGESTSIZE	 64
156 
157 /*
158  * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
159  * containing a 'struct sha3_state'.
160  */
161 #define HASH_MAX_DESCSIZE	(sizeof(struct shash_desc) + 360)
162 
163 #define HASH_MAX_STATESIZE	512
164 
165 #define SHASH_DESC_ON_STACK(shash, ctx)				  \
166 	char __##shash##_desc[sizeof(struct shash_desc) +	  \
167 		HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
168 	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
169 
170 /**
171  * struct shash_alg - synchronous message digest definition
172  * @init: see struct ahash_alg
173  * @update: see struct ahash_alg
174  * @final: see struct ahash_alg
175  * @finup: see struct ahash_alg
176  * @digest: see struct ahash_alg
177  * @export: see struct ahash_alg
178  * @import: see struct ahash_alg
179  * @setkey: see struct ahash_alg
180  * @init_tfm: Initialize the cryptographic transformation object.
181  *	      This function is called only once at the instantiation
182  *	      time, right after the transformation context was
183  *	      allocated. In case the cryptographic hardware has
184  *	      some special requirements which need to be handled
185  *	      by software, this function shall check for the precise
186  *	      requirement of the transformation and put any software
187  *	      fallbacks in place.
188  * @exit_tfm: Deinitialize the cryptographic transformation object.
189  *	      This is a counterpart to @init_tfm, used to remove
190  *	      various changes set in @init_tfm.
191  * @digestsize: see struct ahash_alg
192  * @statesize: see struct ahash_alg
193  * @descsize: Size of the operational state for the message digest. This state
194  * 	      size is the memory size that needs to be allocated for
195  *	      shash_desc.__ctx
196  * @base: internally used
197  */
198 struct shash_alg {
199 	int (*init)(struct shash_desc *desc);
200 	int (*update)(struct shash_desc *desc, const u8 *data,
201 		      unsigned int len);
202 	int (*final)(struct shash_desc *desc, u8 *out);
203 	int (*finup)(struct shash_desc *desc, const u8 *data,
204 		     unsigned int len, u8 *out);
205 	int (*digest)(struct shash_desc *desc, const u8 *data,
206 		      unsigned int len, u8 *out);
207 	int (*export)(struct shash_desc *desc, void *out);
208 	int (*import)(struct shash_desc *desc, const void *in);
209 	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
210 		      unsigned int keylen);
211 	int (*init_tfm)(struct crypto_shash *tfm);
212 	void (*exit_tfm)(struct crypto_shash *tfm);
213 
214 	unsigned int descsize;
215 
216 	/* These fields must match hash_alg_common. */
217 	unsigned int digestsize
218 		__attribute__ ((aligned(__alignof__(struct hash_alg_common))));
219 	unsigned int statesize;
220 
221 	struct crypto_alg base;
222 };
223 
224 struct crypto_ahash {
225 	int (*init)(struct ahash_request *req);
226 	int (*update)(struct ahash_request *req);
227 	int (*final)(struct ahash_request *req);
228 	int (*finup)(struct ahash_request *req);
229 	int (*digest)(struct ahash_request *req);
230 	int (*export)(struct ahash_request *req, void *out);
231 	int (*import)(struct ahash_request *req, const void *in);
232 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
233 		      unsigned int keylen);
234 
235 	unsigned int reqsize;
236 	struct crypto_tfm base;
237 };
238 
239 struct crypto_shash {
240 	unsigned int descsize;
241 	struct crypto_tfm base;
242 };
243 
244 /**
245  * DOC: Asynchronous Message Digest API
246  *
247  * The asynchronous message digest API is used with the ciphers of type
248  * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
249  *
250  * The asynchronous cipher operation discussion provided for the
251  * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
252  */
253 
254 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
255 {
256 	return container_of(tfm, struct crypto_ahash, base);
257 }
258 
259 /**
260  * crypto_alloc_ahash() - allocate ahash cipher handle
261  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
262  *	      ahash cipher
263  * @type: specifies the type of the cipher
264  * @mask: specifies the mask for the cipher
265  *
266  * Allocate a cipher handle for an ahash. The returned struct
267  * crypto_ahash is the cipher handle that is required for any subsequent
268  * API invocation for that ahash.
269  *
270  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
271  *	   of an error, PTR_ERR() returns the error code.
272  */
273 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
274 					u32 mask);
275 
276 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
277 {
278 	return &tfm->base;
279 }
280 
281 /**
282  * crypto_free_ahash() - zeroize and free the ahash handle
283  * @tfm: cipher handle to be freed
284  */
285 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
286 {
287 	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
288 }
289 
290 /**
291  * crypto_has_ahash() - Search for the availability of an ahash.
292  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
293  *	      ahash
294  * @type: specifies the type of the ahash
295  * @mask: specifies the mask for the ahash
296  *
297  * Return: true when the ahash is known to the kernel crypto API; false
298  *	   otherwise
299  */
300 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
301 
302 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
303 {
304 	return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
305 }
306 
307 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
308 {
309 	return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
310 }
311 
312 static inline unsigned int crypto_ahash_alignmask(
313 	struct crypto_ahash *tfm)
314 {
315 	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
316 }
317 
318 /**
319  * crypto_ahash_blocksize() - obtain block size for cipher
320  * @tfm: cipher handle
321  *
322  * The block size for the message digest cipher referenced with the cipher
323  * handle is returned.
324  *
325  * Return: block size of cipher
326  */
327 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
328 {
329 	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
330 }
331 
332 static inline struct hash_alg_common *__crypto_hash_alg_common(
333 	struct crypto_alg *alg)
334 {
335 	return container_of(alg, struct hash_alg_common, base);
336 }
337 
338 static inline struct hash_alg_common *crypto_hash_alg_common(
339 	struct crypto_ahash *tfm)
340 {
341 	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
342 }
343 
344 /**
345  * crypto_ahash_digestsize() - obtain message digest size
346  * @tfm: cipher handle
347  *
348  * The size for the message digest created by the message digest cipher
349  * referenced with the cipher handle is returned.
350  *
351  *
352  * Return: message digest size of cipher
353  */
354 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
355 {
356 	return crypto_hash_alg_common(tfm)->digestsize;
357 }
358 
359 /**
360  * crypto_ahash_statesize() - obtain size of the ahash state
361  * @tfm: cipher handle
362  *
363  * Return the size of the ahash state. With the crypto_ahash_export()
364  * function, the caller can export the state into a buffer whose size is
365  * defined with this function.
366  *
367  * Return: size of the ahash state
368  */
369 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
370 {
371 	return crypto_hash_alg_common(tfm)->statesize;
372 }
373 
374 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
375 {
376 	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
377 }
378 
379 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
380 {
381 	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
382 }
383 
384 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
385 {
386 	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
387 }
388 
389 /**
390  * crypto_ahash_reqtfm() - obtain cipher handle from request
391  * @req: asynchronous request handle that contains the reference to the ahash
392  *	 cipher handle
393  *
394  * Return the ahash cipher handle that is registered with the asynchronous
395  * request handle ahash_request.
396  *
397  * Return: ahash cipher handle
398  */
399 static inline struct crypto_ahash *crypto_ahash_reqtfm(
400 	struct ahash_request *req)
401 {
402 	return __crypto_ahash_cast(req->base.tfm);
403 }
404 
405 /**
406  * crypto_ahash_reqsize() - obtain size of the request data structure
407  * @tfm: cipher handle
408  *
409  * Return: size of the request data
410  */
411 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
412 {
413 	return tfm->reqsize;
414 }
415 
416 static inline void *ahash_request_ctx(struct ahash_request *req)
417 {
418 	return req->__ctx;
419 }
420 
421 /**
422  * crypto_ahash_setkey - set key for cipher handle
423  * @tfm: cipher handle
424  * @key: buffer holding the key
425  * @keylen: length of the key in bytes
426  *
427  * The caller provided key is set for the ahash cipher. The cipher
428  * handle must point to a keyed hash in order for this function to succeed.
429  *
430  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
431  */
432 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
433 			unsigned int keylen);
434 
435 /**
436  * crypto_ahash_finup() - update and finalize message digest
437  * @req: reference to the ahash_request handle that holds all information
438  *	 needed to perform the cipher operation
439  *
440  * This function is a "short-hand" for the function calls of
441  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
442  * meaning as discussed for those separate functions.
443  *
444  * Return: see crypto_ahash_final()
445  */
446 int crypto_ahash_finup(struct ahash_request *req);
447 
448 /**
449  * crypto_ahash_final() - calculate message digest
450  * @req: reference to the ahash_request handle that holds all information
451  *	 needed to perform the cipher operation
452  *
453  * Finalize the message digest operation and create the message digest
454  * based on all data added to the cipher handle. The message digest is placed
455  * into the output buffer registered with the ahash_request handle.
456  *
457  * Return:
458  * 0		if the message digest was successfully calculated;
459  * -EINPROGRESS	if data is feeded into hardware (DMA) or queued for later;
460  * -EBUSY	if queue is full and request should be resubmitted later;
461  * other < 0	if an error occurred
462  */
463 int crypto_ahash_final(struct ahash_request *req);
464 
465 /**
466  * crypto_ahash_digest() - calculate message digest for a buffer
467  * @req: reference to the ahash_request handle that holds all information
468  *	 needed to perform the cipher operation
469  *
470  * This function is a "short-hand" for the function calls of crypto_ahash_init,
471  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
472  * meaning as discussed for those separate three functions.
473  *
474  * Return: see crypto_ahash_final()
475  */
476 int crypto_ahash_digest(struct ahash_request *req);
477 
478 /**
479  * crypto_ahash_export() - extract current message digest state
480  * @req: reference to the ahash_request handle whose state is exported
481  * @out: output buffer of sufficient size that can hold the hash state
482  *
483  * This function exports the hash state of the ahash_request handle into the
484  * caller-allocated output buffer out which must have sufficient size (e.g. by
485  * calling crypto_ahash_statesize()).
486  *
487  * Return: 0 if the export was successful; < 0 if an error occurred
488  */
489 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
490 {
491 	return crypto_ahash_reqtfm(req)->export(req, out);
492 }
493 
494 /**
495  * crypto_ahash_import() - import message digest state
496  * @req: reference to ahash_request handle the state is imported into
497  * @in: buffer holding the state
498  *
499  * This function imports the hash state into the ahash_request handle from the
500  * input buffer. That buffer should have been generated with the
501  * crypto_ahash_export function.
502  *
503  * Return: 0 if the import was successful; < 0 if an error occurred
504  */
505 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
506 {
507 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
508 
509 	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
510 		return -ENOKEY;
511 
512 	return tfm->import(req, in);
513 }
514 
515 /**
516  * crypto_ahash_init() - (re)initialize message digest handle
517  * @req: ahash_request handle that already is initialized with all necessary
518  *	 data using the ahash_request_* API functions
519  *
520  * The call (re-)initializes the message digest referenced by the ahash_request
521  * handle. Any potentially existing state created by previous operations is
522  * discarded.
523  *
524  * Return: see crypto_ahash_final()
525  */
526 static inline int crypto_ahash_init(struct ahash_request *req)
527 {
528 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
529 
530 	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
531 		return -ENOKEY;
532 
533 	return tfm->init(req);
534 }
535 
536 /**
537  * crypto_ahash_update() - add data to message digest for processing
538  * @req: ahash_request handle that was previously initialized with the
539  *	 crypto_ahash_init call.
540  *
541  * Updates the message digest state of the &ahash_request handle. The input data
542  * is pointed to by the scatter/gather list registered in the &ahash_request
543  * handle
544  *
545  * Return: see crypto_ahash_final()
546  */
547 static inline int crypto_ahash_update(struct ahash_request *req)
548 {
549 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
550 	struct crypto_alg *alg = tfm->base.__crt_alg;
551 	unsigned int nbytes = req->nbytes;
552 	int ret;
553 
554 	crypto_stats_get(alg);
555 	ret = crypto_ahash_reqtfm(req)->update(req);
556 	crypto_stats_ahash_update(nbytes, ret, alg);
557 	return ret;
558 }
559 
560 /**
561  * DOC: Asynchronous Hash Request Handle
562  *
563  * The &ahash_request data structure contains all pointers to data
564  * required for the asynchronous cipher operation. This includes the cipher
565  * handle (which can be used by multiple &ahash_request instances), pointer
566  * to plaintext and the message digest output buffer, asynchronous callback
567  * function, etc. It acts as a handle to the ahash_request_* API calls in a
568  * similar way as ahash handle to the crypto_ahash_* API calls.
569  */
570 
571 /**
572  * ahash_request_set_tfm() - update cipher handle reference in request
573  * @req: request handle to be modified
574  * @tfm: cipher handle that shall be added to the request handle
575  *
576  * Allow the caller to replace the existing ahash handle in the request
577  * data structure with a different one.
578  */
579 static inline void ahash_request_set_tfm(struct ahash_request *req,
580 					 struct crypto_ahash *tfm)
581 {
582 	req->base.tfm = crypto_ahash_tfm(tfm);
583 }
584 
585 /**
586  * ahash_request_alloc() - allocate request data structure
587  * @tfm: cipher handle to be registered with the request
588  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
589  *
590  * Allocate the request data structure that must be used with the ahash
591  * message digest API calls. During
592  * the allocation, the provided ahash handle
593  * is registered in the request data structure.
594  *
595  * Return: allocated request handle in case of success, or NULL if out of memory
596  */
597 static inline struct ahash_request *ahash_request_alloc(
598 	struct crypto_ahash *tfm, gfp_t gfp)
599 {
600 	struct ahash_request *req;
601 
602 	req = kmalloc(sizeof(struct ahash_request) +
603 		      crypto_ahash_reqsize(tfm), gfp);
604 
605 	if (likely(req))
606 		ahash_request_set_tfm(req, tfm);
607 
608 	return req;
609 }
610 
611 /**
612  * ahash_request_free() - zeroize and free the request data structure
613  * @req: request data structure cipher handle to be freed
614  */
615 static inline void ahash_request_free(struct ahash_request *req)
616 {
617 	kfree_sensitive(req);
618 }
619 
620 static inline void ahash_request_zero(struct ahash_request *req)
621 {
622 	memzero_explicit(req, sizeof(*req) +
623 			      crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
624 }
625 
626 static inline struct ahash_request *ahash_request_cast(
627 	struct crypto_async_request *req)
628 {
629 	return container_of(req, struct ahash_request, base);
630 }
631 
632 /**
633  * ahash_request_set_callback() - set asynchronous callback function
634  * @req: request handle
635  * @flags: specify zero or an ORing of the flags
636  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
637  *	   increase the wait queue beyond the initial maximum size;
638  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
639  * @compl: callback function pointer to be registered with the request handle
640  * @data: The data pointer refers to memory that is not used by the kernel
641  *	  crypto API, but provided to the callback function for it to use. Here,
642  *	  the caller can provide a reference to memory the callback function can
643  *	  operate on. As the callback function is invoked asynchronously to the
644  *	  related functionality, it may need to access data structures of the
645  *	  related functionality which can be referenced using this pointer. The
646  *	  callback function can access the memory via the "data" field in the
647  *	  &crypto_async_request data structure provided to the callback function.
648  *
649  * This function allows setting the callback function that is triggered once
650  * the cipher operation completes.
651  *
652  * The callback function is registered with the &ahash_request handle and
653  * must comply with the following template::
654  *
655  *	void callback_function(struct crypto_async_request *req, int error)
656  */
657 static inline void ahash_request_set_callback(struct ahash_request *req,
658 					      u32 flags,
659 					      crypto_completion_t compl,
660 					      void *data)
661 {
662 	req->base.complete = compl;
663 	req->base.data = data;
664 	req->base.flags = flags;
665 }
666 
667 /**
668  * ahash_request_set_crypt() - set data buffers
669  * @req: ahash_request handle to be updated
670  * @src: source scatter/gather list
671  * @result: buffer that is filled with the message digest -- the caller must
672  *	    ensure that the buffer has sufficient space by, for example, calling
673  *	    crypto_ahash_digestsize()
674  * @nbytes: number of bytes to process from the source scatter/gather list
675  *
676  * By using this call, the caller references the source scatter/gather list.
677  * The source scatter/gather list points to the data the message digest is to
678  * be calculated for.
679  */
680 static inline void ahash_request_set_crypt(struct ahash_request *req,
681 					   struct scatterlist *src, u8 *result,
682 					   unsigned int nbytes)
683 {
684 	req->src = src;
685 	req->nbytes = nbytes;
686 	req->result = result;
687 }
688 
689 /**
690  * DOC: Synchronous Message Digest API
691  *
692  * The synchronous message digest API is used with the ciphers of type
693  * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
694  *
695  * The message digest API is able to maintain state information for the
696  * caller.
697  *
698  * The synchronous message digest API can store user-related context in its
699  * shash_desc request data structure.
700  */
701 
702 /**
703  * crypto_alloc_shash() - allocate message digest handle
704  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
705  *	      message digest cipher
706  * @type: specifies the type of the cipher
707  * @mask: specifies the mask for the cipher
708  *
709  * Allocate a cipher handle for a message digest. The returned &struct
710  * crypto_shash is the cipher handle that is required for any subsequent
711  * API invocation for that message digest.
712  *
713  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
714  *	   of an error, PTR_ERR() returns the error code.
715  */
716 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
717 					u32 mask);
718 
719 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
720 {
721 	return &tfm->base;
722 }
723 
724 /**
725  * crypto_free_shash() - zeroize and free the message digest handle
726  * @tfm: cipher handle to be freed
727  */
728 static inline void crypto_free_shash(struct crypto_shash *tfm)
729 {
730 	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
731 }
732 
733 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
734 {
735 	return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
736 }
737 
738 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
739 {
740 	return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
741 }
742 
743 static inline unsigned int crypto_shash_alignmask(
744 	struct crypto_shash *tfm)
745 {
746 	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
747 }
748 
749 /**
750  * crypto_shash_blocksize() - obtain block size for cipher
751  * @tfm: cipher handle
752  *
753  * The block size for the message digest cipher referenced with the cipher
754  * handle is returned.
755  *
756  * Return: block size of cipher
757  */
758 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
759 {
760 	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
761 }
762 
763 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
764 {
765 	return container_of(alg, struct shash_alg, base);
766 }
767 
768 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
769 {
770 	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
771 }
772 
773 /**
774  * crypto_shash_digestsize() - obtain message digest size
775  * @tfm: cipher handle
776  *
777  * The size for the message digest created by the message digest cipher
778  * referenced with the cipher handle is returned.
779  *
780  * Return: digest size of cipher
781  */
782 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
783 {
784 	return crypto_shash_alg(tfm)->digestsize;
785 }
786 
787 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
788 {
789 	return crypto_shash_alg(tfm)->statesize;
790 }
791 
792 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
793 {
794 	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
795 }
796 
797 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
798 {
799 	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
800 }
801 
802 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
803 {
804 	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
805 }
806 
807 /**
808  * crypto_shash_descsize() - obtain the operational state size
809  * @tfm: cipher handle
810  *
811  * The size of the operational state the cipher needs during operation is
812  * returned for the hash referenced with the cipher handle. This size is
813  * required to calculate the memory requirements to allow the caller allocating
814  * sufficient memory for operational state.
815  *
816  * The operational state is defined with struct shash_desc where the size of
817  * that data structure is to be calculated as
818  * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
819  *
820  * Return: size of the operational state
821  */
822 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
823 {
824 	return tfm->descsize;
825 }
826 
827 static inline void *shash_desc_ctx(struct shash_desc *desc)
828 {
829 	return desc->__ctx;
830 }
831 
832 /**
833  * crypto_shash_setkey() - set key for message digest
834  * @tfm: cipher handle
835  * @key: buffer holding the key
836  * @keylen: length of the key in bytes
837  *
838  * The caller provided key is set for the keyed message digest cipher. The
839  * cipher handle must point to a keyed message digest cipher in order for this
840  * function to succeed.
841  *
842  * Context: Any context.
843  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
844  */
845 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
846 			unsigned int keylen);
847 
848 /**
849  * crypto_shash_digest() - calculate message digest for buffer
850  * @desc: see crypto_shash_final()
851  * @data: see crypto_shash_update()
852  * @len: see crypto_shash_update()
853  * @out: see crypto_shash_final()
854  *
855  * This function is a "short-hand" for the function calls of crypto_shash_init,
856  * crypto_shash_update and crypto_shash_final. The parameters have the same
857  * meaning as discussed for those separate three functions.
858  *
859  * Context: Any context.
860  * Return: 0 if the message digest creation was successful; < 0 if an error
861  *	   occurred
862  */
863 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
864 			unsigned int len, u8 *out);
865 
866 /**
867  * crypto_shash_tfm_digest() - calculate message digest for buffer
868  * @tfm: hash transformation object
869  * @data: see crypto_shash_update()
870  * @len: see crypto_shash_update()
871  * @out: see crypto_shash_final()
872  *
873  * This is a simplified version of crypto_shash_digest() for users who don't
874  * want to allocate their own hash descriptor (shash_desc).  Instead,
875  * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
876  * directly, and it allocates a hash descriptor on the stack internally.
877  * Note that this stack allocation may be fairly large.
878  *
879  * Context: Any context.
880  * Return: 0 on success; < 0 if an error occurred.
881  */
882 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
883 			    unsigned int len, u8 *out);
884 
885 /**
886  * crypto_shash_export() - extract operational state for message digest
887  * @desc: reference to the operational state handle whose state is exported
888  * @out: output buffer of sufficient size that can hold the hash state
889  *
890  * This function exports the hash state of the operational state handle into the
891  * caller-allocated output buffer out which must have sufficient size (e.g. by
892  * calling crypto_shash_descsize).
893  *
894  * Context: Any context.
895  * Return: 0 if the export creation was successful; < 0 if an error occurred
896  */
897 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
898 {
899 	return crypto_shash_alg(desc->tfm)->export(desc, out);
900 }
901 
902 /**
903  * crypto_shash_import() - import operational state
904  * @desc: reference to the operational state handle the state imported into
905  * @in: buffer holding the state
906  *
907  * This function imports the hash state into the operational state handle from
908  * the input buffer. That buffer should have been generated with the
909  * crypto_ahash_export function.
910  *
911  * Context: Any context.
912  * Return: 0 if the import was successful; < 0 if an error occurred
913  */
914 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
915 {
916 	struct crypto_shash *tfm = desc->tfm;
917 
918 	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
919 		return -ENOKEY;
920 
921 	return crypto_shash_alg(tfm)->import(desc, in);
922 }
923 
924 /**
925  * crypto_shash_init() - (re)initialize message digest
926  * @desc: operational state handle that is already filled
927  *
928  * The call (re-)initializes the message digest referenced by the
929  * operational state handle. Any potentially existing state created by
930  * previous operations is discarded.
931  *
932  * Context: Any context.
933  * Return: 0 if the message digest initialization was successful; < 0 if an
934  *	   error occurred
935  */
936 static inline int crypto_shash_init(struct shash_desc *desc)
937 {
938 	struct crypto_shash *tfm = desc->tfm;
939 
940 	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
941 		return -ENOKEY;
942 
943 	return crypto_shash_alg(tfm)->init(desc);
944 }
945 
946 /**
947  * crypto_shash_update() - add data to message digest for processing
948  * @desc: operational state handle that is already initialized
949  * @data: input data to be added to the message digest
950  * @len: length of the input data
951  *
952  * Updates the message digest state of the operational state handle.
953  *
954  * Context: Any context.
955  * Return: 0 if the message digest update was successful; < 0 if an error
956  *	   occurred
957  */
958 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
959 			unsigned int len);
960 
961 /**
962  * crypto_shash_final() - calculate message digest
963  * @desc: operational state handle that is already filled with data
964  * @out: output buffer filled with the message digest
965  *
966  * Finalize the message digest operation and create the message digest
967  * based on all data added to the cipher handle. The message digest is placed
968  * into the output buffer. The caller must ensure that the output buffer is
969  * large enough by using crypto_shash_digestsize.
970  *
971  * Context: Any context.
972  * Return: 0 if the message digest creation was successful; < 0 if an error
973  *	   occurred
974  */
975 int crypto_shash_final(struct shash_desc *desc, u8 *out);
976 
977 /**
978  * crypto_shash_finup() - calculate message digest of buffer
979  * @desc: see crypto_shash_final()
980  * @data: see crypto_shash_update()
981  * @len: see crypto_shash_update()
982  * @out: see crypto_shash_final()
983  *
984  * This function is a "short-hand" for the function calls of
985  * crypto_shash_update and crypto_shash_final. The parameters have the same
986  * meaning as discussed for those separate functions.
987  *
988  * Context: Any context.
989  * Return: 0 if the message digest creation was successful; < 0 if an error
990  *	   occurred
991  */
992 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
993 		       unsigned int len, u8 *out);
994 
995 static inline void shash_desc_zero(struct shash_desc *desc)
996 {
997 	memzero_explicit(desc,
998 			 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
999 }
1000 
1001 #endif	/* _CRYPTO_HASH_H */
1002