xref: /openbmc/linux/include/crypto/hash.h (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Hash: Hash algorithms under the crypto API
4  *
5  * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7 
8 #ifndef _CRYPTO_HASH_H
9 #define _CRYPTO_HASH_H
10 
11 #include <linux/crypto.h>
12 #include <linux/string.h>
13 
14 struct crypto_ahash;
15 
16 /**
17  * DOC: Message Digest Algorithm Definitions
18  *
19  * These data structures define modular message digest algorithm
20  * implementations, managed via crypto_register_ahash(),
21  * crypto_register_shash(), crypto_unregister_ahash() and
22  * crypto_unregister_shash().
23  */
24 
25 /**
26  * struct hash_alg_common - define properties of message digest
27  * @digestsize: Size of the result of the transformation. A buffer of this size
28  *	        must be available to the @final and @finup calls, so they can
29  *	        store the resulting hash into it. For various predefined sizes,
30  *	        search include/crypto/ using
31  *	        git grep _DIGEST_SIZE include/crypto.
32  * @statesize: Size of the block for partial state of the transformation. A
33  *	       buffer of this size must be passed to the @export function as it
34  *	       will save the partial state of the transformation into it. On the
35  *	       other side, the @import function will load the state from a
36  *	       buffer of this size as well.
37  * @base: Start of data structure of cipher algorithm. The common data
38  *	  structure of crypto_alg contains information common to all ciphers.
39  *	  The hash_alg_common data structure now adds the hash-specific
40  *	  information.
41  */
42 struct hash_alg_common {
43 	unsigned int digestsize;
44 	unsigned int statesize;
45 
46 	struct crypto_alg base;
47 };
48 
49 struct ahash_request {
50 	struct crypto_async_request base;
51 
52 	unsigned int nbytes;
53 	struct scatterlist *src;
54 	u8 *result;
55 
56 	/* This field may only be used by the ahash API code. */
57 	void *priv;
58 
59 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
60 };
61 
62 #define AHASH_REQUEST_ON_STACK(name, ahash) \
63 	char __##name##_desc[sizeof(struct ahash_request) + \
64 		crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
65 	struct ahash_request *name = (void *)__##name##_desc
66 
67 /**
68  * struct ahash_alg - asynchronous message digest definition
69  * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
70  *	  state of the HASH transformation at the beginning. This shall fill in
71  *	  the internal structures used during the entire duration of the whole
72  *	  transformation. No data processing happens at this point. Driver code
73  *	  implementation must not use req->result.
74  * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
75  *	   function actually pushes blocks of data from upper layers into the
76  *	   driver, which then passes those to the hardware as seen fit. This
77  *	   function must not finalize the HASH transformation by calculating the
78  *	   final message digest as this only adds more data into the
79  *	   transformation. This function shall not modify the transformation
80  *	   context, as this function may be called in parallel with the same
81  *	   transformation object. Data processing can happen synchronously
82  *	   [SHASH] or asynchronously [AHASH] at this point. Driver must not use
83  *	   req->result.
84  * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
85  *	   transformation and retrieves the resulting hash from the driver and
86  *	   pushes it back to upper layers. No data processing happens at this
87  *	   point unless hardware requires it to finish the transformation
88  *	   (then the data buffered by the device driver is processed).
89  * @finup: **[optional]** Combination of @update and @final. This function is effectively a
90  *	   combination of @update and @final calls issued in sequence. As some
91  *	   hardware cannot do @update and @final separately, this callback was
92  *	   added to allow such hardware to be used at least by IPsec. Data
93  *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
94  *	   at this point.
95  * @digest: Combination of @init and @update and @final. This function
96  *	    effectively behaves as the entire chain of operations, @init,
97  *	    @update and @final issued in sequence. Just like @finup, this was
98  *	    added for hardware which cannot do even the @finup, but can only do
99  *	    the whole transformation in one run. Data processing can happen
100  *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
101  * @setkey: Set optional key used by the hashing algorithm. Intended to push
102  *	    optional key used by the hashing algorithm from upper layers into
103  *	    the driver. This function can store the key in the transformation
104  *	    context or can outright program it into the hardware. In the former
105  *	    case, one must be careful to program the key into the hardware at
106  *	    appropriate time and one must be careful that .setkey() can be
107  *	    called multiple times during the existence of the transformation
108  *	    object. Not  all hashing algorithms do implement this function as it
109  *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
110  *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
111  *	    this function. This function must be called before any other of the
112  *	    @init, @update, @final, @finup, @digest is called. No data
113  *	    processing happens at this point.
114  * @export: Export partial state of the transformation. This function dumps the
115  *	    entire state of the ongoing transformation into a provided block of
116  *	    data so it can be @import 'ed back later on. This is useful in case
117  *	    you want to save partial result of the transformation after
118  *	    processing certain amount of data and reload this partial result
119  *	    multiple times later on for multiple re-use. No data processing
120  *	    happens at this point. Driver must not use req->result.
121  * @import: Import partial state of the transformation. This function loads the
122  *	    entire state of the ongoing transformation from a provided block of
123  *	    data so the transformation can continue from this point onward. No
124  *	    data processing happens at this point. Driver must not use
125  *	    req->result.
126  * @halg: see struct hash_alg_common
127  */
128 struct ahash_alg {
129 	int (*init)(struct ahash_request *req);
130 	int (*update)(struct ahash_request *req);
131 	int (*final)(struct ahash_request *req);
132 	int (*finup)(struct ahash_request *req);
133 	int (*digest)(struct ahash_request *req);
134 	int (*export)(struct ahash_request *req, void *out);
135 	int (*import)(struct ahash_request *req, const void *in);
136 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
137 		      unsigned int keylen);
138 
139 	struct hash_alg_common halg;
140 };
141 
142 struct shash_desc {
143 	struct crypto_shash *tfm;
144 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
145 };
146 
147 #define HASH_MAX_DIGESTSIZE	 64
148 
149 /*
150  * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
151  * containing a 'struct sha3_state'.
152  */
153 #define HASH_MAX_DESCSIZE	(sizeof(struct shash_desc) + 360)
154 
155 #define HASH_MAX_STATESIZE	512
156 
157 #define SHASH_DESC_ON_STACK(shash, ctx)				  \
158 	char __##shash##_desc[sizeof(struct shash_desc) +	  \
159 		HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
160 	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
161 
162 /**
163  * struct shash_alg - synchronous message digest definition
164  * @init: see struct ahash_alg
165  * @update: see struct ahash_alg
166  * @final: see struct ahash_alg
167  * @finup: see struct ahash_alg
168  * @digest: see struct ahash_alg
169  * @export: see struct ahash_alg
170  * @import: see struct ahash_alg
171  * @setkey: see struct ahash_alg
172  * @digestsize: see struct ahash_alg
173  * @statesize: see struct ahash_alg
174  * @descsize: Size of the operational state for the message digest. This state
175  * 	      size is the memory size that needs to be allocated for
176  *	      shash_desc.__ctx
177  * @base: internally used
178  */
179 struct shash_alg {
180 	int (*init)(struct shash_desc *desc);
181 	int (*update)(struct shash_desc *desc, const u8 *data,
182 		      unsigned int len);
183 	int (*final)(struct shash_desc *desc, u8 *out);
184 	int (*finup)(struct shash_desc *desc, const u8 *data,
185 		     unsigned int len, u8 *out);
186 	int (*digest)(struct shash_desc *desc, const u8 *data,
187 		      unsigned int len, u8 *out);
188 	int (*export)(struct shash_desc *desc, void *out);
189 	int (*import)(struct shash_desc *desc, const void *in);
190 	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
191 		      unsigned int keylen);
192 
193 	unsigned int descsize;
194 
195 	/* These fields must match hash_alg_common. */
196 	unsigned int digestsize
197 		__attribute__ ((aligned(__alignof__(struct hash_alg_common))));
198 	unsigned int statesize;
199 
200 	struct crypto_alg base;
201 };
202 
203 struct crypto_ahash {
204 	int (*init)(struct ahash_request *req);
205 	int (*update)(struct ahash_request *req);
206 	int (*final)(struct ahash_request *req);
207 	int (*finup)(struct ahash_request *req);
208 	int (*digest)(struct ahash_request *req);
209 	int (*export)(struct ahash_request *req, void *out);
210 	int (*import)(struct ahash_request *req, const void *in);
211 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
212 		      unsigned int keylen);
213 
214 	unsigned int reqsize;
215 	struct crypto_tfm base;
216 };
217 
218 struct crypto_shash {
219 	unsigned int descsize;
220 	struct crypto_tfm base;
221 };
222 
223 /**
224  * DOC: Asynchronous Message Digest API
225  *
226  * The asynchronous message digest API is used with the ciphers of type
227  * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
228  *
229  * The asynchronous cipher operation discussion provided for the
230  * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
231  */
232 
233 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
234 {
235 	return container_of(tfm, struct crypto_ahash, base);
236 }
237 
238 /**
239  * crypto_alloc_ahash() - allocate ahash cipher handle
240  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
241  *	      ahash cipher
242  * @type: specifies the type of the cipher
243  * @mask: specifies the mask for the cipher
244  *
245  * Allocate a cipher handle for an ahash. The returned struct
246  * crypto_ahash is the cipher handle that is required for any subsequent
247  * API invocation for that ahash.
248  *
249  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
250  *	   of an error, PTR_ERR() returns the error code.
251  */
252 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
253 					u32 mask);
254 
255 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
256 {
257 	return &tfm->base;
258 }
259 
260 /**
261  * crypto_free_ahash() - zeroize and free the ahash handle
262  * @tfm: cipher handle to be freed
263  */
264 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
265 {
266 	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
267 }
268 
269 /**
270  * crypto_has_ahash() - Search for the availability of an ahash.
271  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
272  *	      ahash
273  * @type: specifies the type of the ahash
274  * @mask: specifies the mask for the ahash
275  *
276  * Return: true when the ahash is known to the kernel crypto API; false
277  *	   otherwise
278  */
279 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
280 
281 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
282 {
283 	return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
284 }
285 
286 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
287 {
288 	return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
289 }
290 
291 static inline unsigned int crypto_ahash_alignmask(
292 	struct crypto_ahash *tfm)
293 {
294 	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
295 }
296 
297 /**
298  * crypto_ahash_blocksize() - obtain block size for cipher
299  * @tfm: cipher handle
300  *
301  * The block size for the message digest cipher referenced with the cipher
302  * handle is returned.
303  *
304  * Return: block size of cipher
305  */
306 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
307 {
308 	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
309 }
310 
311 static inline struct hash_alg_common *__crypto_hash_alg_common(
312 	struct crypto_alg *alg)
313 {
314 	return container_of(alg, struct hash_alg_common, base);
315 }
316 
317 static inline struct hash_alg_common *crypto_hash_alg_common(
318 	struct crypto_ahash *tfm)
319 {
320 	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
321 }
322 
323 /**
324  * crypto_ahash_digestsize() - obtain message digest size
325  * @tfm: cipher handle
326  *
327  * The size for the message digest created by the message digest cipher
328  * referenced with the cipher handle is returned.
329  *
330  *
331  * Return: message digest size of cipher
332  */
333 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
334 {
335 	return crypto_hash_alg_common(tfm)->digestsize;
336 }
337 
338 /**
339  * crypto_ahash_statesize() - obtain size of the ahash state
340  * @tfm: cipher handle
341  *
342  * Return the size of the ahash state. With the crypto_ahash_export()
343  * function, the caller can export the state into a buffer whose size is
344  * defined with this function.
345  *
346  * Return: size of the ahash state
347  */
348 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
349 {
350 	return crypto_hash_alg_common(tfm)->statesize;
351 }
352 
353 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
354 {
355 	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
356 }
357 
358 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
359 {
360 	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
361 }
362 
363 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
364 {
365 	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
366 }
367 
368 /**
369  * crypto_ahash_reqtfm() - obtain cipher handle from request
370  * @req: asynchronous request handle that contains the reference to the ahash
371  *	 cipher handle
372  *
373  * Return the ahash cipher handle that is registered with the asynchronous
374  * request handle ahash_request.
375  *
376  * Return: ahash cipher handle
377  */
378 static inline struct crypto_ahash *crypto_ahash_reqtfm(
379 	struct ahash_request *req)
380 {
381 	return __crypto_ahash_cast(req->base.tfm);
382 }
383 
384 /**
385  * crypto_ahash_reqsize() - obtain size of the request data structure
386  * @tfm: cipher handle
387  *
388  * Return: size of the request data
389  */
390 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
391 {
392 	return tfm->reqsize;
393 }
394 
395 static inline void *ahash_request_ctx(struct ahash_request *req)
396 {
397 	return req->__ctx;
398 }
399 
400 /**
401  * crypto_ahash_setkey - set key for cipher handle
402  * @tfm: cipher handle
403  * @key: buffer holding the key
404  * @keylen: length of the key in bytes
405  *
406  * The caller provided key is set for the ahash cipher. The cipher
407  * handle must point to a keyed hash in order for this function to succeed.
408  *
409  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
410  */
411 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
412 			unsigned int keylen);
413 
414 /**
415  * crypto_ahash_finup() - update and finalize message digest
416  * @req: reference to the ahash_request handle that holds all information
417  *	 needed to perform the cipher operation
418  *
419  * This function is a "short-hand" for the function calls of
420  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
421  * meaning as discussed for those separate functions.
422  *
423  * Return: see crypto_ahash_final()
424  */
425 int crypto_ahash_finup(struct ahash_request *req);
426 
427 /**
428  * crypto_ahash_final() - calculate message digest
429  * @req: reference to the ahash_request handle that holds all information
430  *	 needed to perform the cipher operation
431  *
432  * Finalize the message digest operation and create the message digest
433  * based on all data added to the cipher handle. The message digest is placed
434  * into the output buffer registered with the ahash_request handle.
435  *
436  * Return:
437  * 0		if the message digest was successfully calculated;
438  * -EINPROGRESS	if data is feeded into hardware (DMA) or queued for later;
439  * -EBUSY	if queue is full and request should be resubmitted later;
440  * other < 0	if an error occurred
441  */
442 int crypto_ahash_final(struct ahash_request *req);
443 
444 /**
445  * crypto_ahash_digest() - calculate message digest for a buffer
446  * @req: reference to the ahash_request handle that holds all information
447  *	 needed to perform the cipher operation
448  *
449  * This function is a "short-hand" for the function calls of crypto_ahash_init,
450  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
451  * meaning as discussed for those separate three functions.
452  *
453  * Return: see crypto_ahash_final()
454  */
455 int crypto_ahash_digest(struct ahash_request *req);
456 
457 /**
458  * crypto_ahash_export() - extract current message digest state
459  * @req: reference to the ahash_request handle whose state is exported
460  * @out: output buffer of sufficient size that can hold the hash state
461  *
462  * This function exports the hash state of the ahash_request handle into the
463  * caller-allocated output buffer out which must have sufficient size (e.g. by
464  * calling crypto_ahash_statesize()).
465  *
466  * Return: 0 if the export was successful; < 0 if an error occurred
467  */
468 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
469 {
470 	return crypto_ahash_reqtfm(req)->export(req, out);
471 }
472 
473 /**
474  * crypto_ahash_import() - import message digest state
475  * @req: reference to ahash_request handle the state is imported into
476  * @in: buffer holding the state
477  *
478  * This function imports the hash state into the ahash_request handle from the
479  * input buffer. That buffer should have been generated with the
480  * crypto_ahash_export function.
481  *
482  * Return: 0 if the import was successful; < 0 if an error occurred
483  */
484 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
485 {
486 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
487 
488 	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
489 		return -ENOKEY;
490 
491 	return tfm->import(req, in);
492 }
493 
494 /**
495  * crypto_ahash_init() - (re)initialize message digest handle
496  * @req: ahash_request handle that already is initialized with all necessary
497  *	 data using the ahash_request_* API functions
498  *
499  * The call (re-)initializes the message digest referenced by the ahash_request
500  * handle. Any potentially existing state created by previous operations is
501  * discarded.
502  *
503  * Return: see crypto_ahash_final()
504  */
505 static inline int crypto_ahash_init(struct ahash_request *req)
506 {
507 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
508 
509 	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
510 		return -ENOKEY;
511 
512 	return tfm->init(req);
513 }
514 
515 /**
516  * crypto_ahash_update() - add data to message digest for processing
517  * @req: ahash_request handle that was previously initialized with the
518  *	 crypto_ahash_init call.
519  *
520  * Updates the message digest state of the &ahash_request handle. The input data
521  * is pointed to by the scatter/gather list registered in the &ahash_request
522  * handle
523  *
524  * Return: see crypto_ahash_final()
525  */
526 static inline int crypto_ahash_update(struct ahash_request *req)
527 {
528 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
529 	struct crypto_alg *alg = tfm->base.__crt_alg;
530 	unsigned int nbytes = req->nbytes;
531 	int ret;
532 
533 	crypto_stats_get(alg);
534 	ret = crypto_ahash_reqtfm(req)->update(req);
535 	crypto_stats_ahash_update(nbytes, ret, alg);
536 	return ret;
537 }
538 
539 /**
540  * DOC: Asynchronous Hash Request Handle
541  *
542  * The &ahash_request data structure contains all pointers to data
543  * required for the asynchronous cipher operation. This includes the cipher
544  * handle (which can be used by multiple &ahash_request instances), pointer
545  * to plaintext and the message digest output buffer, asynchronous callback
546  * function, etc. It acts as a handle to the ahash_request_* API calls in a
547  * similar way as ahash handle to the crypto_ahash_* API calls.
548  */
549 
550 /**
551  * ahash_request_set_tfm() - update cipher handle reference in request
552  * @req: request handle to be modified
553  * @tfm: cipher handle that shall be added to the request handle
554  *
555  * Allow the caller to replace the existing ahash handle in the request
556  * data structure with a different one.
557  */
558 static inline void ahash_request_set_tfm(struct ahash_request *req,
559 					 struct crypto_ahash *tfm)
560 {
561 	req->base.tfm = crypto_ahash_tfm(tfm);
562 }
563 
564 /**
565  * ahash_request_alloc() - allocate request data structure
566  * @tfm: cipher handle to be registered with the request
567  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
568  *
569  * Allocate the request data structure that must be used with the ahash
570  * message digest API calls. During
571  * the allocation, the provided ahash handle
572  * is registered in the request data structure.
573  *
574  * Return: allocated request handle in case of success, or NULL if out of memory
575  */
576 static inline struct ahash_request *ahash_request_alloc(
577 	struct crypto_ahash *tfm, gfp_t gfp)
578 {
579 	struct ahash_request *req;
580 
581 	req = kmalloc(sizeof(struct ahash_request) +
582 		      crypto_ahash_reqsize(tfm), gfp);
583 
584 	if (likely(req))
585 		ahash_request_set_tfm(req, tfm);
586 
587 	return req;
588 }
589 
590 /**
591  * ahash_request_free() - zeroize and free the request data structure
592  * @req: request data structure cipher handle to be freed
593  */
594 static inline void ahash_request_free(struct ahash_request *req)
595 {
596 	kzfree(req);
597 }
598 
599 static inline void ahash_request_zero(struct ahash_request *req)
600 {
601 	memzero_explicit(req, sizeof(*req) +
602 			      crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
603 }
604 
605 static inline struct ahash_request *ahash_request_cast(
606 	struct crypto_async_request *req)
607 {
608 	return container_of(req, struct ahash_request, base);
609 }
610 
611 /**
612  * ahash_request_set_callback() - set asynchronous callback function
613  * @req: request handle
614  * @flags: specify zero or an ORing of the flags
615  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
616  *	   increase the wait queue beyond the initial maximum size;
617  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
618  * @compl: callback function pointer to be registered with the request handle
619  * @data: The data pointer refers to memory that is not used by the kernel
620  *	  crypto API, but provided to the callback function for it to use. Here,
621  *	  the caller can provide a reference to memory the callback function can
622  *	  operate on. As the callback function is invoked asynchronously to the
623  *	  related functionality, it may need to access data structures of the
624  *	  related functionality which can be referenced using this pointer. The
625  *	  callback function can access the memory via the "data" field in the
626  *	  &crypto_async_request data structure provided to the callback function.
627  *
628  * This function allows setting the callback function that is triggered once
629  * the cipher operation completes.
630  *
631  * The callback function is registered with the &ahash_request handle and
632  * must comply with the following template::
633  *
634  *	void callback_function(struct crypto_async_request *req, int error)
635  */
636 static inline void ahash_request_set_callback(struct ahash_request *req,
637 					      u32 flags,
638 					      crypto_completion_t compl,
639 					      void *data)
640 {
641 	req->base.complete = compl;
642 	req->base.data = data;
643 	req->base.flags = flags;
644 }
645 
646 /**
647  * ahash_request_set_crypt() - set data buffers
648  * @req: ahash_request handle to be updated
649  * @src: source scatter/gather list
650  * @result: buffer that is filled with the message digest -- the caller must
651  *	    ensure that the buffer has sufficient space by, for example, calling
652  *	    crypto_ahash_digestsize()
653  * @nbytes: number of bytes to process from the source scatter/gather list
654  *
655  * By using this call, the caller references the source scatter/gather list.
656  * The source scatter/gather list points to the data the message digest is to
657  * be calculated for.
658  */
659 static inline void ahash_request_set_crypt(struct ahash_request *req,
660 					   struct scatterlist *src, u8 *result,
661 					   unsigned int nbytes)
662 {
663 	req->src = src;
664 	req->nbytes = nbytes;
665 	req->result = result;
666 }
667 
668 /**
669  * DOC: Synchronous Message Digest API
670  *
671  * The synchronous message digest API is used with the ciphers of type
672  * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
673  *
674  * The message digest API is able to maintain state information for the
675  * caller.
676  *
677  * The synchronous message digest API can store user-related context in in its
678  * shash_desc request data structure.
679  */
680 
681 /**
682  * crypto_alloc_shash() - allocate message digest handle
683  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
684  *	      message digest cipher
685  * @type: specifies the type of the cipher
686  * @mask: specifies the mask for the cipher
687  *
688  * Allocate a cipher handle for a message digest. The returned &struct
689  * crypto_shash is the cipher handle that is required for any subsequent
690  * API invocation for that message digest.
691  *
692  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
693  *	   of an error, PTR_ERR() returns the error code.
694  */
695 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
696 					u32 mask);
697 
698 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
699 {
700 	return &tfm->base;
701 }
702 
703 /**
704  * crypto_free_shash() - zeroize and free the message digest handle
705  * @tfm: cipher handle to be freed
706  */
707 static inline void crypto_free_shash(struct crypto_shash *tfm)
708 {
709 	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
710 }
711 
712 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
713 {
714 	return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
715 }
716 
717 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
718 {
719 	return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
720 }
721 
722 static inline unsigned int crypto_shash_alignmask(
723 	struct crypto_shash *tfm)
724 {
725 	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
726 }
727 
728 /**
729  * crypto_shash_blocksize() - obtain block size for cipher
730  * @tfm: cipher handle
731  *
732  * The block size for the message digest cipher referenced with the cipher
733  * handle is returned.
734  *
735  * Return: block size of cipher
736  */
737 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
738 {
739 	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
740 }
741 
742 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
743 {
744 	return container_of(alg, struct shash_alg, base);
745 }
746 
747 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
748 {
749 	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
750 }
751 
752 /**
753  * crypto_shash_digestsize() - obtain message digest size
754  * @tfm: cipher handle
755  *
756  * The size for the message digest created by the message digest cipher
757  * referenced with the cipher handle is returned.
758  *
759  * Return: digest size of cipher
760  */
761 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
762 {
763 	return crypto_shash_alg(tfm)->digestsize;
764 }
765 
766 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
767 {
768 	return crypto_shash_alg(tfm)->statesize;
769 }
770 
771 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
772 {
773 	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
774 }
775 
776 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
777 {
778 	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
779 }
780 
781 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
782 {
783 	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
784 }
785 
786 /**
787  * crypto_shash_descsize() - obtain the operational state size
788  * @tfm: cipher handle
789  *
790  * The size of the operational state the cipher needs during operation is
791  * returned for the hash referenced with the cipher handle. This size is
792  * required to calculate the memory requirements to allow the caller allocating
793  * sufficient memory for operational state.
794  *
795  * The operational state is defined with struct shash_desc where the size of
796  * that data structure is to be calculated as
797  * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
798  *
799  * Return: size of the operational state
800  */
801 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
802 {
803 	return tfm->descsize;
804 }
805 
806 static inline void *shash_desc_ctx(struct shash_desc *desc)
807 {
808 	return desc->__ctx;
809 }
810 
811 /**
812  * crypto_shash_setkey() - set key for message digest
813  * @tfm: cipher handle
814  * @key: buffer holding the key
815  * @keylen: length of the key in bytes
816  *
817  * The caller provided key is set for the keyed message digest cipher. The
818  * cipher handle must point to a keyed message digest cipher in order for this
819  * function to succeed.
820  *
821  * Context: Any context.
822  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
823  */
824 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
825 			unsigned int keylen);
826 
827 /**
828  * crypto_shash_digest() - calculate message digest for buffer
829  * @desc: see crypto_shash_final()
830  * @data: see crypto_shash_update()
831  * @len: see crypto_shash_update()
832  * @out: see crypto_shash_final()
833  *
834  * This function is a "short-hand" for the function calls of crypto_shash_init,
835  * crypto_shash_update and crypto_shash_final. The parameters have the same
836  * meaning as discussed for those separate three functions.
837  *
838  * Context: Any context.
839  * Return: 0 if the message digest creation was successful; < 0 if an error
840  *	   occurred
841  */
842 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
843 			unsigned int len, u8 *out);
844 
845 /**
846  * crypto_shash_export() - extract operational state for message digest
847  * @desc: reference to the operational state handle whose state is exported
848  * @out: output buffer of sufficient size that can hold the hash state
849  *
850  * This function exports the hash state of the operational state handle into the
851  * caller-allocated output buffer out which must have sufficient size (e.g. by
852  * calling crypto_shash_descsize).
853  *
854  * Context: Any context.
855  * Return: 0 if the export creation was successful; < 0 if an error occurred
856  */
857 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
858 {
859 	return crypto_shash_alg(desc->tfm)->export(desc, out);
860 }
861 
862 /**
863  * crypto_shash_import() - import operational state
864  * @desc: reference to the operational state handle the state imported into
865  * @in: buffer holding the state
866  *
867  * This function imports the hash state into the operational state handle from
868  * the input buffer. That buffer should have been generated with the
869  * crypto_ahash_export function.
870  *
871  * Context: Any context.
872  * Return: 0 if the import was successful; < 0 if an error occurred
873  */
874 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
875 {
876 	struct crypto_shash *tfm = desc->tfm;
877 
878 	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
879 		return -ENOKEY;
880 
881 	return crypto_shash_alg(tfm)->import(desc, in);
882 }
883 
884 /**
885  * crypto_shash_init() - (re)initialize message digest
886  * @desc: operational state handle that is already filled
887  *
888  * The call (re-)initializes the message digest referenced by the
889  * operational state handle. Any potentially existing state created by
890  * previous operations is discarded.
891  *
892  * Context: Any context.
893  * Return: 0 if the message digest initialization was successful; < 0 if an
894  *	   error occurred
895  */
896 static inline int crypto_shash_init(struct shash_desc *desc)
897 {
898 	struct crypto_shash *tfm = desc->tfm;
899 
900 	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
901 		return -ENOKEY;
902 
903 	return crypto_shash_alg(tfm)->init(desc);
904 }
905 
906 /**
907  * crypto_shash_update() - add data to message digest for processing
908  * @desc: operational state handle that is already initialized
909  * @data: input data to be added to the message digest
910  * @len: length of the input data
911  *
912  * Updates the message digest state of the operational state handle.
913  *
914  * Context: Any context.
915  * Return: 0 if the message digest update was successful; < 0 if an error
916  *	   occurred
917  */
918 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
919 			unsigned int len);
920 
921 /**
922  * crypto_shash_final() - calculate message digest
923  * @desc: operational state handle that is already filled with data
924  * @out: output buffer filled with the message digest
925  *
926  * Finalize the message digest operation and create the message digest
927  * based on all data added to the cipher handle. The message digest is placed
928  * into the output buffer. The caller must ensure that the output buffer is
929  * large enough by using crypto_shash_digestsize.
930  *
931  * Context: Any context.
932  * Return: 0 if the message digest creation was successful; < 0 if an error
933  *	   occurred
934  */
935 int crypto_shash_final(struct shash_desc *desc, u8 *out);
936 
937 /**
938  * crypto_shash_finup() - calculate message digest of buffer
939  * @desc: see crypto_shash_final()
940  * @data: see crypto_shash_update()
941  * @len: see crypto_shash_update()
942  * @out: see crypto_shash_final()
943  *
944  * This function is a "short-hand" for the function calls of
945  * crypto_shash_update and crypto_shash_final. The parameters have the same
946  * meaning as discussed for those separate functions.
947  *
948  * Context: Any context.
949  * Return: 0 if the message digest creation was successful; < 0 if an error
950  *	   occurred
951  */
952 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
953 		       unsigned int len, u8 *out);
954 
955 static inline void shash_desc_zero(struct shash_desc *desc)
956 {
957 	memzero_explicit(desc,
958 			 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
959 }
960 
961 #endif	/* _CRYPTO_HASH_H */
962