1 /* 2 * Hash: Hash algorithms under the crypto API 3 * 4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 * 11 */ 12 13 #ifndef _CRYPTO_HASH_H 14 #define _CRYPTO_HASH_H 15 16 #include <linux/crypto.h> 17 #include <linux/string.h> 18 19 struct crypto_ahash; 20 21 /** 22 * DOC: Message Digest Algorithm Definitions 23 * 24 * These data structures define modular message digest algorithm 25 * implementations, managed via crypto_register_ahash(), 26 * crypto_register_shash(), crypto_unregister_ahash() and 27 * crypto_unregister_shash(). 28 */ 29 30 /** 31 * struct hash_alg_common - define properties of message digest 32 * @digestsize: Size of the result of the transformation. A buffer of this size 33 * must be available to the @final and @finup calls, so they can 34 * store the resulting hash into it. For various predefined sizes, 35 * search include/crypto/ using 36 * git grep _DIGEST_SIZE include/crypto. 37 * @statesize: Size of the block for partial state of the transformation. A 38 * buffer of this size must be passed to the @export function as it 39 * will save the partial state of the transformation into it. On the 40 * other side, the @import function will load the state from a 41 * buffer of this size as well. 42 * @base: Start of data structure of cipher algorithm. The common data 43 * structure of crypto_alg contains information common to all ciphers. 44 * The hash_alg_common data structure now adds the hash-specific 45 * information. 46 */ 47 struct hash_alg_common { 48 unsigned int digestsize; 49 unsigned int statesize; 50 51 struct crypto_alg base; 52 }; 53 54 struct ahash_request { 55 struct crypto_async_request base; 56 57 unsigned int nbytes; 58 struct scatterlist *src; 59 u8 *result; 60 61 /* This field may only be used by the ahash API code. */ 62 void *priv; 63 64 void *__ctx[] CRYPTO_MINALIGN_ATTR; 65 }; 66 67 #define AHASH_REQUEST_ON_STACK(name, ahash) \ 68 char __##name##_desc[sizeof(struct ahash_request) + \ 69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \ 70 struct ahash_request *name = (void *)__##name##_desc 71 72 /** 73 * struct ahash_alg - asynchronous message digest definition 74 * @init: Initialize the transformation context. Intended only to initialize the 75 * state of the HASH transformation at the beginning. This shall fill in 76 * the internal structures used during the entire duration of the whole 77 * transformation. No data processing happens at this point. 78 * @update: Push a chunk of data into the driver for transformation. This 79 * function actually pushes blocks of data from upper layers into the 80 * driver, which then passes those to the hardware as seen fit. This 81 * function must not finalize the HASH transformation by calculating the 82 * final message digest as this only adds more data into the 83 * transformation. This function shall not modify the transformation 84 * context, as this function may be called in parallel with the same 85 * transformation object. Data processing can happen synchronously 86 * [SHASH] or asynchronously [AHASH] at this point. 87 * @final: Retrieve result from the driver. This function finalizes the 88 * transformation and retrieves the resulting hash from the driver and 89 * pushes it back to upper layers. No data processing happens at this 90 * point. 91 * @finup: Combination of @update and @final. This function is effectively a 92 * combination of @update and @final calls issued in sequence. As some 93 * hardware cannot do @update and @final separately, this callback was 94 * added to allow such hardware to be used at least by IPsec. Data 95 * processing can happen synchronously [SHASH] or asynchronously [AHASH] 96 * at this point. 97 * @digest: Combination of @init and @update and @final. This function 98 * effectively behaves as the entire chain of operations, @init, 99 * @update and @final issued in sequence. Just like @finup, this was 100 * added for hardware which cannot do even the @finup, but can only do 101 * the whole transformation in one run. Data processing can happen 102 * synchronously [SHASH] or asynchronously [AHASH] at this point. 103 * @setkey: Set optional key used by the hashing algorithm. Intended to push 104 * optional key used by the hashing algorithm from upper layers into 105 * the driver. This function can store the key in the transformation 106 * context or can outright program it into the hardware. In the former 107 * case, one must be careful to program the key into the hardware at 108 * appropriate time and one must be careful that .setkey() can be 109 * called multiple times during the existence of the transformation 110 * object. Not all hashing algorithms do implement this function as it 111 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT 112 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement 113 * this function. This function must be called before any other of the 114 * @init, @update, @final, @finup, @digest is called. No data 115 * processing happens at this point. 116 * @export: Export partial state of the transformation. This function dumps the 117 * entire state of the ongoing transformation into a provided block of 118 * data so it can be @import 'ed back later on. This is useful in case 119 * you want to save partial result of the transformation after 120 * processing certain amount of data and reload this partial result 121 * multiple times later on for multiple re-use. No data processing 122 * happens at this point. 123 * @import: Import partial state of the transformation. This function loads the 124 * entire state of the ongoing transformation from a provided block of 125 * data so the transformation can continue from this point onward. No 126 * data processing happens at this point. 127 * @halg: see struct hash_alg_common 128 */ 129 struct ahash_alg { 130 int (*init)(struct ahash_request *req); 131 int (*update)(struct ahash_request *req); 132 int (*final)(struct ahash_request *req); 133 int (*finup)(struct ahash_request *req); 134 int (*digest)(struct ahash_request *req); 135 int (*export)(struct ahash_request *req, void *out); 136 int (*import)(struct ahash_request *req, const void *in); 137 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 138 unsigned int keylen); 139 140 struct hash_alg_common halg; 141 }; 142 143 struct shash_desc { 144 struct crypto_shash *tfm; 145 u32 flags; 146 147 void *__ctx[] CRYPTO_MINALIGN_ATTR; 148 }; 149 150 #define SHASH_DESC_ON_STACK(shash, ctx) \ 151 char __##shash##_desc[sizeof(struct shash_desc) + \ 152 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \ 153 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc 154 155 /** 156 * struct shash_alg - synchronous message digest definition 157 * @init: see struct ahash_alg 158 * @update: see struct ahash_alg 159 * @final: see struct ahash_alg 160 * @finup: see struct ahash_alg 161 * @digest: see struct ahash_alg 162 * @export: see struct ahash_alg 163 * @import: see struct ahash_alg 164 * @setkey: see struct ahash_alg 165 * @digestsize: see struct ahash_alg 166 * @statesize: see struct ahash_alg 167 * @descsize: Size of the operational state for the message digest. This state 168 * size is the memory size that needs to be allocated for 169 * shash_desc.__ctx 170 * @base: internally used 171 */ 172 struct shash_alg { 173 int (*init)(struct shash_desc *desc); 174 int (*update)(struct shash_desc *desc, const u8 *data, 175 unsigned int len); 176 int (*final)(struct shash_desc *desc, u8 *out); 177 int (*finup)(struct shash_desc *desc, const u8 *data, 178 unsigned int len, u8 *out); 179 int (*digest)(struct shash_desc *desc, const u8 *data, 180 unsigned int len, u8 *out); 181 int (*export)(struct shash_desc *desc, void *out); 182 int (*import)(struct shash_desc *desc, const void *in); 183 int (*setkey)(struct crypto_shash *tfm, const u8 *key, 184 unsigned int keylen); 185 186 unsigned int descsize; 187 188 /* These fields must match hash_alg_common. */ 189 unsigned int digestsize 190 __attribute__ ((aligned(__alignof__(struct hash_alg_common)))); 191 unsigned int statesize; 192 193 struct crypto_alg base; 194 }; 195 196 struct crypto_ahash { 197 int (*init)(struct ahash_request *req); 198 int (*update)(struct ahash_request *req); 199 int (*final)(struct ahash_request *req); 200 int (*finup)(struct ahash_request *req); 201 int (*digest)(struct ahash_request *req); 202 int (*export)(struct ahash_request *req, void *out); 203 int (*import)(struct ahash_request *req, const void *in); 204 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 205 unsigned int keylen); 206 207 unsigned int reqsize; 208 bool has_setkey; 209 struct crypto_tfm base; 210 }; 211 212 struct crypto_shash { 213 unsigned int descsize; 214 struct crypto_tfm base; 215 }; 216 217 /** 218 * DOC: Asynchronous Message Digest API 219 * 220 * The asynchronous message digest API is used with the ciphers of type 221 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) 222 * 223 * The asynchronous cipher operation discussion provided for the 224 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well. 225 */ 226 227 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) 228 { 229 return container_of(tfm, struct crypto_ahash, base); 230 } 231 232 /** 233 * crypto_alloc_ahash() - allocate ahash cipher handle 234 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 235 * ahash cipher 236 * @type: specifies the type of the cipher 237 * @mask: specifies the mask for the cipher 238 * 239 * Allocate a cipher handle for an ahash. The returned struct 240 * crypto_ahash is the cipher handle that is required for any subsequent 241 * API invocation for that ahash. 242 * 243 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 244 * of an error, PTR_ERR() returns the error code. 245 */ 246 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, 247 u32 mask); 248 249 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) 250 { 251 return &tfm->base; 252 } 253 254 /** 255 * crypto_free_ahash() - zeroize and free the ahash handle 256 * @tfm: cipher handle to be freed 257 */ 258 static inline void crypto_free_ahash(struct crypto_ahash *tfm) 259 { 260 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); 261 } 262 263 /** 264 * crypto_has_ahash() - Search for the availability of an ahash. 265 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 266 * ahash 267 * @type: specifies the type of the ahash 268 * @mask: specifies the mask for the ahash 269 * 270 * Return: true when the ahash is known to the kernel crypto API; false 271 * otherwise 272 */ 273 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); 274 275 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) 276 { 277 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 278 } 279 280 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) 281 { 282 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); 283 } 284 285 static inline unsigned int crypto_ahash_alignmask( 286 struct crypto_ahash *tfm) 287 { 288 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm)); 289 } 290 291 /** 292 * crypto_ahash_blocksize() - obtain block size for cipher 293 * @tfm: cipher handle 294 * 295 * The block size for the message digest cipher referenced with the cipher 296 * handle is returned. 297 * 298 * Return: block size of cipher 299 */ 300 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) 301 { 302 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 303 } 304 305 static inline struct hash_alg_common *__crypto_hash_alg_common( 306 struct crypto_alg *alg) 307 { 308 return container_of(alg, struct hash_alg_common, base); 309 } 310 311 static inline struct hash_alg_common *crypto_hash_alg_common( 312 struct crypto_ahash *tfm) 313 { 314 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); 315 } 316 317 /** 318 * crypto_ahash_digestsize() - obtain message digest size 319 * @tfm: cipher handle 320 * 321 * The size for the message digest created by the message digest cipher 322 * referenced with the cipher handle is returned. 323 * 324 * 325 * Return: message digest size of cipher 326 */ 327 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) 328 { 329 return crypto_hash_alg_common(tfm)->digestsize; 330 } 331 332 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) 333 { 334 return crypto_hash_alg_common(tfm)->statesize; 335 } 336 337 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) 338 { 339 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); 340 } 341 342 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) 343 { 344 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); 345 } 346 347 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) 348 { 349 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); 350 } 351 352 /** 353 * crypto_ahash_reqtfm() - obtain cipher handle from request 354 * @req: asynchronous request handle that contains the reference to the ahash 355 * cipher handle 356 * 357 * Return the ahash cipher handle that is registered with the asynchronous 358 * request handle ahash_request. 359 * 360 * Return: ahash cipher handle 361 */ 362 static inline struct crypto_ahash *crypto_ahash_reqtfm( 363 struct ahash_request *req) 364 { 365 return __crypto_ahash_cast(req->base.tfm); 366 } 367 368 /** 369 * crypto_ahash_reqsize() - obtain size of the request data structure 370 * @tfm: cipher handle 371 * 372 * Return the size of the ahash state size. With the crypto_ahash_export 373 * function, the caller can export the state into a buffer whose size is 374 * defined with this function. 375 * 376 * Return: size of the ahash state 377 */ 378 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) 379 { 380 return tfm->reqsize; 381 } 382 383 static inline void *ahash_request_ctx(struct ahash_request *req) 384 { 385 return req->__ctx; 386 } 387 388 /** 389 * crypto_ahash_setkey - set key for cipher handle 390 * @tfm: cipher handle 391 * @key: buffer holding the key 392 * @keylen: length of the key in bytes 393 * 394 * The caller provided key is set for the ahash cipher. The cipher 395 * handle must point to a keyed hash in order for this function to succeed. 396 * 397 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 398 */ 399 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, 400 unsigned int keylen); 401 402 static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm) 403 { 404 return tfm->has_setkey; 405 } 406 407 /** 408 * crypto_ahash_finup() - update and finalize message digest 409 * @req: reference to the ahash_request handle that holds all information 410 * needed to perform the cipher operation 411 * 412 * This function is a "short-hand" for the function calls of 413 * crypto_ahash_update and crypto_shash_final. The parameters have the same 414 * meaning as discussed for those separate functions. 415 * 416 * Return: 0 if the message digest creation was successful; < 0 if an error 417 * occurred 418 */ 419 int crypto_ahash_finup(struct ahash_request *req); 420 421 /** 422 * crypto_ahash_final() - calculate message digest 423 * @req: reference to the ahash_request handle that holds all information 424 * needed to perform the cipher operation 425 * 426 * Finalize the message digest operation and create the message digest 427 * based on all data added to the cipher handle. The message digest is placed 428 * into the output buffer registered with the ahash_request handle. 429 * 430 * Return: 0 if the message digest creation was successful; < 0 if an error 431 * occurred 432 */ 433 int crypto_ahash_final(struct ahash_request *req); 434 435 /** 436 * crypto_ahash_digest() - calculate message digest for a buffer 437 * @req: reference to the ahash_request handle that holds all information 438 * needed to perform the cipher operation 439 * 440 * This function is a "short-hand" for the function calls of crypto_ahash_init, 441 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 442 * meaning as discussed for those separate three functions. 443 * 444 * Return: 0 if the message digest creation was successful; < 0 if an error 445 * occurred 446 */ 447 int crypto_ahash_digest(struct ahash_request *req); 448 449 /** 450 * crypto_ahash_export() - extract current message digest state 451 * @req: reference to the ahash_request handle whose state is exported 452 * @out: output buffer of sufficient size that can hold the hash state 453 * 454 * This function exports the hash state of the ahash_request handle into the 455 * caller-allocated output buffer out which must have sufficient size (e.g. by 456 * calling crypto_ahash_reqsize). 457 * 458 * Return: 0 if the export was successful; < 0 if an error occurred 459 */ 460 static inline int crypto_ahash_export(struct ahash_request *req, void *out) 461 { 462 return crypto_ahash_reqtfm(req)->export(req, out); 463 } 464 465 /** 466 * crypto_ahash_import() - import message digest state 467 * @req: reference to ahash_request handle the state is imported into 468 * @in: buffer holding the state 469 * 470 * This function imports the hash state into the ahash_request handle from the 471 * input buffer. That buffer should have been generated with the 472 * crypto_ahash_export function. 473 * 474 * Return: 0 if the import was successful; < 0 if an error occurred 475 */ 476 static inline int crypto_ahash_import(struct ahash_request *req, const void *in) 477 { 478 return crypto_ahash_reqtfm(req)->import(req, in); 479 } 480 481 /** 482 * crypto_ahash_init() - (re)initialize message digest handle 483 * @req: ahash_request handle that already is initialized with all necessary 484 * data using the ahash_request_* API functions 485 * 486 * The call (re-)initializes the message digest referenced by the ahash_request 487 * handle. Any potentially existing state created by previous operations is 488 * discarded. 489 * 490 * Return: 0 if the message digest initialization was successful; < 0 if an 491 * error occurred 492 */ 493 static inline int crypto_ahash_init(struct ahash_request *req) 494 { 495 return crypto_ahash_reqtfm(req)->init(req); 496 } 497 498 /** 499 * crypto_ahash_update() - add data to message digest for processing 500 * @req: ahash_request handle that was previously initialized with the 501 * crypto_ahash_init call. 502 * 503 * Updates the message digest state of the &ahash_request handle. The input data 504 * is pointed to by the scatter/gather list registered in the &ahash_request 505 * handle 506 * 507 * Return: 0 if the message digest update was successful; < 0 if an error 508 * occurred 509 */ 510 static inline int crypto_ahash_update(struct ahash_request *req) 511 { 512 return crypto_ahash_reqtfm(req)->update(req); 513 } 514 515 /** 516 * DOC: Asynchronous Hash Request Handle 517 * 518 * The &ahash_request data structure contains all pointers to data 519 * required for the asynchronous cipher operation. This includes the cipher 520 * handle (which can be used by multiple &ahash_request instances), pointer 521 * to plaintext and the message digest output buffer, asynchronous callback 522 * function, etc. It acts as a handle to the ahash_request_* API calls in a 523 * similar way as ahash handle to the crypto_ahash_* API calls. 524 */ 525 526 /** 527 * ahash_request_set_tfm() - update cipher handle reference in request 528 * @req: request handle to be modified 529 * @tfm: cipher handle that shall be added to the request handle 530 * 531 * Allow the caller to replace the existing ahash handle in the request 532 * data structure with a different one. 533 */ 534 static inline void ahash_request_set_tfm(struct ahash_request *req, 535 struct crypto_ahash *tfm) 536 { 537 req->base.tfm = crypto_ahash_tfm(tfm); 538 } 539 540 /** 541 * ahash_request_alloc() - allocate request data structure 542 * @tfm: cipher handle to be registered with the request 543 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 544 * 545 * Allocate the request data structure that must be used with the ahash 546 * message digest API calls. During 547 * the allocation, the provided ahash handle 548 * is registered in the request data structure. 549 * 550 * Return: allocated request handle in case of success; IS_ERR() is true in case 551 * of an error, PTR_ERR() returns the error code. 552 */ 553 static inline struct ahash_request *ahash_request_alloc( 554 struct crypto_ahash *tfm, gfp_t gfp) 555 { 556 struct ahash_request *req; 557 558 req = kmalloc(sizeof(struct ahash_request) + 559 crypto_ahash_reqsize(tfm), gfp); 560 561 if (likely(req)) 562 ahash_request_set_tfm(req, tfm); 563 564 return req; 565 } 566 567 /** 568 * ahash_request_free() - zeroize and free the request data structure 569 * @req: request data structure cipher handle to be freed 570 */ 571 static inline void ahash_request_free(struct ahash_request *req) 572 { 573 kzfree(req); 574 } 575 576 static inline void ahash_request_zero(struct ahash_request *req) 577 { 578 memzero_explicit(req, sizeof(*req) + 579 crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); 580 } 581 582 static inline struct ahash_request *ahash_request_cast( 583 struct crypto_async_request *req) 584 { 585 return container_of(req, struct ahash_request, base); 586 } 587 588 /** 589 * ahash_request_set_callback() - set asynchronous callback function 590 * @req: request handle 591 * @flags: specify zero or an ORing of the flags 592 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 593 * increase the wait queue beyond the initial maximum size; 594 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 595 * @compl: callback function pointer to be registered with the request handle 596 * @data: The data pointer refers to memory that is not used by the kernel 597 * crypto API, but provided to the callback function for it to use. Here, 598 * the caller can provide a reference to memory the callback function can 599 * operate on. As the callback function is invoked asynchronously to the 600 * related functionality, it may need to access data structures of the 601 * related functionality which can be referenced using this pointer. The 602 * callback function can access the memory via the "data" field in the 603 * &crypto_async_request data structure provided to the callback function. 604 * 605 * This function allows setting the callback function that is triggered once 606 * the cipher operation completes. 607 * 608 * The callback function is registered with the &ahash_request handle and 609 * must comply with the following template 610 * 611 * void callback_function(struct crypto_async_request *req, int error) 612 */ 613 static inline void ahash_request_set_callback(struct ahash_request *req, 614 u32 flags, 615 crypto_completion_t compl, 616 void *data) 617 { 618 req->base.complete = compl; 619 req->base.data = data; 620 req->base.flags = flags; 621 } 622 623 /** 624 * ahash_request_set_crypt() - set data buffers 625 * @req: ahash_request handle to be updated 626 * @src: source scatter/gather list 627 * @result: buffer that is filled with the message digest -- the caller must 628 * ensure that the buffer has sufficient space by, for example, calling 629 * crypto_ahash_digestsize() 630 * @nbytes: number of bytes to process from the source scatter/gather list 631 * 632 * By using this call, the caller references the source scatter/gather list. 633 * The source scatter/gather list points to the data the message digest is to 634 * be calculated for. 635 */ 636 static inline void ahash_request_set_crypt(struct ahash_request *req, 637 struct scatterlist *src, u8 *result, 638 unsigned int nbytes) 639 { 640 req->src = src; 641 req->nbytes = nbytes; 642 req->result = result; 643 } 644 645 /** 646 * DOC: Synchronous Message Digest API 647 * 648 * The synchronous message digest API is used with the ciphers of type 649 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) 650 * 651 * The message digest API is able to maintain state information for the 652 * caller. 653 * 654 * The synchronous message digest API can store user-related context in in its 655 * shash_desc request data structure. 656 */ 657 658 /** 659 * crypto_alloc_shash() - allocate message digest handle 660 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 661 * message digest cipher 662 * @type: specifies the type of the cipher 663 * @mask: specifies the mask for the cipher 664 * 665 * Allocate a cipher handle for a message digest. The returned &struct 666 * crypto_shash is the cipher handle that is required for any subsequent 667 * API invocation for that message digest. 668 * 669 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 670 * of an error, PTR_ERR() returns the error code. 671 */ 672 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, 673 u32 mask); 674 675 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) 676 { 677 return &tfm->base; 678 } 679 680 /** 681 * crypto_free_shash() - zeroize and free the message digest handle 682 * @tfm: cipher handle to be freed 683 */ 684 static inline void crypto_free_shash(struct crypto_shash *tfm) 685 { 686 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); 687 } 688 689 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) 690 { 691 return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); 692 } 693 694 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) 695 { 696 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); 697 } 698 699 static inline unsigned int crypto_shash_alignmask( 700 struct crypto_shash *tfm) 701 { 702 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); 703 } 704 705 /** 706 * crypto_shash_blocksize() - obtain block size for cipher 707 * @tfm: cipher handle 708 * 709 * The block size for the message digest cipher referenced with the cipher 710 * handle is returned. 711 * 712 * Return: block size of cipher 713 */ 714 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) 715 { 716 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); 717 } 718 719 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) 720 { 721 return container_of(alg, struct shash_alg, base); 722 } 723 724 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) 725 { 726 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); 727 } 728 729 /** 730 * crypto_shash_digestsize() - obtain message digest size 731 * @tfm: cipher handle 732 * 733 * The size for the message digest created by the message digest cipher 734 * referenced with the cipher handle is returned. 735 * 736 * Return: digest size of cipher 737 */ 738 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) 739 { 740 return crypto_shash_alg(tfm)->digestsize; 741 } 742 743 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) 744 { 745 return crypto_shash_alg(tfm)->statesize; 746 } 747 748 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) 749 { 750 return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); 751 } 752 753 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) 754 { 755 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); 756 } 757 758 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) 759 { 760 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); 761 } 762 763 /** 764 * crypto_shash_descsize() - obtain the operational state size 765 * @tfm: cipher handle 766 * 767 * The size of the operational state the cipher needs during operation is 768 * returned for the hash referenced with the cipher handle. This size is 769 * required to calculate the memory requirements to allow the caller allocating 770 * sufficient memory for operational state. 771 * 772 * The operational state is defined with struct shash_desc where the size of 773 * that data structure is to be calculated as 774 * sizeof(struct shash_desc) + crypto_shash_descsize(alg) 775 * 776 * Return: size of the operational state 777 */ 778 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) 779 { 780 return tfm->descsize; 781 } 782 783 static inline void *shash_desc_ctx(struct shash_desc *desc) 784 { 785 return desc->__ctx; 786 } 787 788 /** 789 * crypto_shash_setkey() - set key for message digest 790 * @tfm: cipher handle 791 * @key: buffer holding the key 792 * @keylen: length of the key in bytes 793 * 794 * The caller provided key is set for the keyed message digest cipher. The 795 * cipher handle must point to a keyed message digest cipher in order for this 796 * function to succeed. 797 * 798 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 799 */ 800 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, 801 unsigned int keylen); 802 803 /** 804 * crypto_shash_digest() - calculate message digest for buffer 805 * @desc: see crypto_shash_final() 806 * @data: see crypto_shash_update() 807 * @len: see crypto_shash_update() 808 * @out: see crypto_shash_final() 809 * 810 * This function is a "short-hand" for the function calls of crypto_shash_init, 811 * crypto_shash_update and crypto_shash_final. The parameters have the same 812 * meaning as discussed for those separate three functions. 813 * 814 * Return: 0 if the message digest creation was successful; < 0 if an error 815 * occurred 816 */ 817 int crypto_shash_digest(struct shash_desc *desc, const u8 *data, 818 unsigned int len, u8 *out); 819 820 /** 821 * crypto_shash_export() - extract operational state for message digest 822 * @desc: reference to the operational state handle whose state is exported 823 * @out: output buffer of sufficient size that can hold the hash state 824 * 825 * This function exports the hash state of the operational state handle into the 826 * caller-allocated output buffer out which must have sufficient size (e.g. by 827 * calling crypto_shash_descsize). 828 * 829 * Return: 0 if the export creation was successful; < 0 if an error occurred 830 */ 831 static inline int crypto_shash_export(struct shash_desc *desc, void *out) 832 { 833 return crypto_shash_alg(desc->tfm)->export(desc, out); 834 } 835 836 /** 837 * crypto_shash_import() - import operational state 838 * @desc: reference to the operational state handle the state imported into 839 * @in: buffer holding the state 840 * 841 * This function imports the hash state into the operational state handle from 842 * the input buffer. That buffer should have been generated with the 843 * crypto_ahash_export function. 844 * 845 * Return: 0 if the import was successful; < 0 if an error occurred 846 */ 847 static inline int crypto_shash_import(struct shash_desc *desc, const void *in) 848 { 849 return crypto_shash_alg(desc->tfm)->import(desc, in); 850 } 851 852 /** 853 * crypto_shash_init() - (re)initialize message digest 854 * @desc: operational state handle that is already filled 855 * 856 * The call (re-)initializes the message digest referenced by the 857 * operational state handle. Any potentially existing state created by 858 * previous operations is discarded. 859 * 860 * Return: 0 if the message digest initialization was successful; < 0 if an 861 * error occurred 862 */ 863 static inline int crypto_shash_init(struct shash_desc *desc) 864 { 865 return crypto_shash_alg(desc->tfm)->init(desc); 866 } 867 868 /** 869 * crypto_shash_update() - add data to message digest for processing 870 * @desc: operational state handle that is already initialized 871 * @data: input data to be added to the message digest 872 * @len: length of the input data 873 * 874 * Updates the message digest state of the operational state handle. 875 * 876 * Return: 0 if the message digest update was successful; < 0 if an error 877 * occurred 878 */ 879 int crypto_shash_update(struct shash_desc *desc, const u8 *data, 880 unsigned int len); 881 882 /** 883 * crypto_shash_final() - calculate message digest 884 * @desc: operational state handle that is already filled with data 885 * @out: output buffer filled with the message digest 886 * 887 * Finalize the message digest operation and create the message digest 888 * based on all data added to the cipher handle. The message digest is placed 889 * into the output buffer. The caller must ensure that the output buffer is 890 * large enough by using crypto_shash_digestsize. 891 * 892 * Return: 0 if the message digest creation was successful; < 0 if an error 893 * occurred 894 */ 895 int crypto_shash_final(struct shash_desc *desc, u8 *out); 896 897 /** 898 * crypto_shash_finup() - calculate message digest of buffer 899 * @desc: see crypto_shash_final() 900 * @data: see crypto_shash_update() 901 * @len: see crypto_shash_update() 902 * @out: see crypto_shash_final() 903 * 904 * This function is a "short-hand" for the function calls of 905 * crypto_shash_update and crypto_shash_final. The parameters have the same 906 * meaning as discussed for those separate functions. 907 * 908 * Return: 0 if the message digest creation was successful; < 0 if an error 909 * occurred 910 */ 911 int crypto_shash_finup(struct shash_desc *desc, const u8 *data, 912 unsigned int len, u8 *out); 913 914 static inline void shash_desc_zero(struct shash_desc *desc) 915 { 916 memzero_explicit(desc, 917 sizeof(*desc) + crypto_shash_descsize(desc->tfm)); 918 } 919 920 #endif /* _CRYPTO_HASH_H */ 921