1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Hash: Hash algorithms under the crypto API 4 * 5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 6 */ 7 8 #ifndef _CRYPTO_HASH_H 9 #define _CRYPTO_HASH_H 10 11 #include <linux/atomic.h> 12 #include <linux/crypto.h> 13 #include <linux/string.h> 14 15 struct crypto_ahash; 16 17 /** 18 * DOC: Message Digest Algorithm Definitions 19 * 20 * These data structures define modular message digest algorithm 21 * implementations, managed via crypto_register_ahash(), 22 * crypto_register_shash(), crypto_unregister_ahash() and 23 * crypto_unregister_shash(). 24 */ 25 26 /* 27 * struct crypto_istat_hash - statistics for has algorithm 28 * @hash_cnt: number of hash requests 29 * @hash_tlen: total data size hashed 30 * @err_cnt: number of error for hash requests 31 */ 32 struct crypto_istat_hash { 33 atomic64_t hash_cnt; 34 atomic64_t hash_tlen; 35 atomic64_t err_cnt; 36 }; 37 38 #ifdef CONFIG_CRYPTO_STATS 39 #define HASH_ALG_COMMON_STAT struct crypto_istat_hash stat; 40 #else 41 #define HASH_ALG_COMMON_STAT 42 #endif 43 44 /* 45 * struct hash_alg_common - define properties of message digest 46 * @stat: Statistics for hash algorithm. 47 * @digestsize: Size of the result of the transformation. A buffer of this size 48 * must be available to the @final and @finup calls, so they can 49 * store the resulting hash into it. For various predefined sizes, 50 * search include/crypto/ using 51 * git grep _DIGEST_SIZE include/crypto. 52 * @statesize: Size of the block for partial state of the transformation. A 53 * buffer of this size must be passed to the @export function as it 54 * will save the partial state of the transformation into it. On the 55 * other side, the @import function will load the state from a 56 * buffer of this size as well. 57 * @base: Start of data structure of cipher algorithm. The common data 58 * structure of crypto_alg contains information common to all ciphers. 59 * The hash_alg_common data structure now adds the hash-specific 60 * information. 61 */ 62 #define HASH_ALG_COMMON { \ 63 HASH_ALG_COMMON_STAT \ 64 \ 65 unsigned int digestsize; \ 66 unsigned int statesize; \ 67 \ 68 struct crypto_alg base; \ 69 } 70 struct hash_alg_common HASH_ALG_COMMON; 71 72 struct ahash_request { 73 struct crypto_async_request base; 74 75 unsigned int nbytes; 76 struct scatterlist *src; 77 u8 *result; 78 79 /* This field may only be used by the ahash API code. */ 80 void *priv; 81 82 void *__ctx[] CRYPTO_MINALIGN_ATTR; 83 }; 84 85 /** 86 * struct ahash_alg - asynchronous message digest definition 87 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the 88 * state of the HASH transformation at the beginning. This shall fill in 89 * the internal structures used during the entire duration of the whole 90 * transformation. No data processing happens at this point. Driver code 91 * implementation must not use req->result. 92 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This 93 * function actually pushes blocks of data from upper layers into the 94 * driver, which then passes those to the hardware as seen fit. This 95 * function must not finalize the HASH transformation by calculating the 96 * final message digest as this only adds more data into the 97 * transformation. This function shall not modify the transformation 98 * context, as this function may be called in parallel with the same 99 * transformation object. Data processing can happen synchronously 100 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use 101 * req->result. 102 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the 103 * transformation and retrieves the resulting hash from the driver and 104 * pushes it back to upper layers. No data processing happens at this 105 * point unless hardware requires it to finish the transformation 106 * (then the data buffered by the device driver is processed). 107 * @finup: **[optional]** Combination of @update and @final. This function is effectively a 108 * combination of @update and @final calls issued in sequence. As some 109 * hardware cannot do @update and @final separately, this callback was 110 * added to allow such hardware to be used at least by IPsec. Data 111 * processing can happen synchronously [SHASH] or asynchronously [AHASH] 112 * at this point. 113 * @digest: Combination of @init and @update and @final. This function 114 * effectively behaves as the entire chain of operations, @init, 115 * @update and @final issued in sequence. Just like @finup, this was 116 * added for hardware which cannot do even the @finup, but can only do 117 * the whole transformation in one run. Data processing can happen 118 * synchronously [SHASH] or asynchronously [AHASH] at this point. 119 * @setkey: Set optional key used by the hashing algorithm. Intended to push 120 * optional key used by the hashing algorithm from upper layers into 121 * the driver. This function can store the key in the transformation 122 * context or can outright program it into the hardware. In the former 123 * case, one must be careful to program the key into the hardware at 124 * appropriate time and one must be careful that .setkey() can be 125 * called multiple times during the existence of the transformation 126 * object. Not all hashing algorithms do implement this function as it 127 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT 128 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement 129 * this function. This function must be called before any other of the 130 * @init, @update, @final, @finup, @digest is called. No data 131 * processing happens at this point. 132 * @export: Export partial state of the transformation. This function dumps the 133 * entire state of the ongoing transformation into a provided block of 134 * data so it can be @import 'ed back later on. This is useful in case 135 * you want to save partial result of the transformation after 136 * processing certain amount of data and reload this partial result 137 * multiple times later on for multiple re-use. No data processing 138 * happens at this point. Driver must not use req->result. 139 * @import: Import partial state of the transformation. This function loads the 140 * entire state of the ongoing transformation from a provided block of 141 * data so the transformation can continue from this point onward. No 142 * data processing happens at this point. Driver must not use 143 * req->result. 144 * @init_tfm: Initialize the cryptographic transformation object. 145 * This function is called only once at the instantiation 146 * time, right after the transformation context was 147 * allocated. In case the cryptographic hardware has 148 * some special requirements which need to be handled 149 * by software, this function shall check for the precise 150 * requirement of the transformation and put any software 151 * fallbacks in place. 152 * @exit_tfm: Deinitialize the cryptographic transformation object. 153 * This is a counterpart to @init_tfm, used to remove 154 * various changes set in @init_tfm. 155 * @clone_tfm: Copy transform into new object, may allocate memory. 156 * @halg: see struct hash_alg_common 157 */ 158 struct ahash_alg { 159 int (*init)(struct ahash_request *req); 160 int (*update)(struct ahash_request *req); 161 int (*final)(struct ahash_request *req); 162 int (*finup)(struct ahash_request *req); 163 int (*digest)(struct ahash_request *req); 164 int (*export)(struct ahash_request *req, void *out); 165 int (*import)(struct ahash_request *req, const void *in); 166 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 167 unsigned int keylen); 168 int (*init_tfm)(struct crypto_ahash *tfm); 169 void (*exit_tfm)(struct crypto_ahash *tfm); 170 int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src); 171 172 struct hash_alg_common halg; 173 }; 174 175 struct shash_desc { 176 struct crypto_shash *tfm; 177 void *__ctx[] __aligned(ARCH_SLAB_MINALIGN); 178 }; 179 180 #define HASH_MAX_DIGESTSIZE 64 181 182 /* 183 * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc' 184 * containing a 'struct sha3_state'. 185 */ 186 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360) 187 188 #define SHASH_DESC_ON_STACK(shash, ctx) \ 189 char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \ 190 __aligned(__alignof__(struct shash_desc)); \ 191 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc 192 193 /** 194 * struct shash_alg - synchronous message digest definition 195 * @init: see struct ahash_alg 196 * @update: see struct ahash_alg 197 * @final: see struct ahash_alg 198 * @finup: see struct ahash_alg 199 * @digest: see struct ahash_alg 200 * @export: see struct ahash_alg 201 * @import: see struct ahash_alg 202 * @setkey: see struct ahash_alg 203 * @init_tfm: Initialize the cryptographic transformation object. 204 * This function is called only once at the instantiation 205 * time, right after the transformation context was 206 * allocated. In case the cryptographic hardware has 207 * some special requirements which need to be handled 208 * by software, this function shall check for the precise 209 * requirement of the transformation and put any software 210 * fallbacks in place. 211 * @exit_tfm: Deinitialize the cryptographic transformation object. 212 * This is a counterpart to @init_tfm, used to remove 213 * various changes set in @init_tfm. 214 * @clone_tfm: Copy transform into new object, may allocate memory. 215 * @digestsize: see struct ahash_alg 216 * @statesize: see struct ahash_alg 217 * @descsize: Size of the operational state for the message digest. This state 218 * size is the memory size that needs to be allocated for 219 * shash_desc.__ctx 220 * @stat: Statistics for hash algorithm. 221 * @base: internally used 222 * @halg: see struct hash_alg_common 223 * @HASH_ALG_COMMON: see struct hash_alg_common 224 */ 225 struct shash_alg { 226 int (*init)(struct shash_desc *desc); 227 int (*update)(struct shash_desc *desc, const u8 *data, 228 unsigned int len); 229 int (*final)(struct shash_desc *desc, u8 *out); 230 int (*finup)(struct shash_desc *desc, const u8 *data, 231 unsigned int len, u8 *out); 232 int (*digest)(struct shash_desc *desc, const u8 *data, 233 unsigned int len, u8 *out); 234 int (*export)(struct shash_desc *desc, void *out); 235 int (*import)(struct shash_desc *desc, const void *in); 236 int (*setkey)(struct crypto_shash *tfm, const u8 *key, 237 unsigned int keylen); 238 int (*init_tfm)(struct crypto_shash *tfm); 239 void (*exit_tfm)(struct crypto_shash *tfm); 240 int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src); 241 242 unsigned int descsize; 243 244 union { 245 struct HASH_ALG_COMMON; 246 struct hash_alg_common halg; 247 }; 248 }; 249 #undef HASH_ALG_COMMON 250 #undef HASH_ALG_COMMON_STAT 251 252 struct crypto_ahash { 253 int (*init)(struct ahash_request *req); 254 int (*update)(struct ahash_request *req); 255 int (*final)(struct ahash_request *req); 256 int (*finup)(struct ahash_request *req); 257 int (*digest)(struct ahash_request *req); 258 int (*export)(struct ahash_request *req, void *out); 259 int (*import)(struct ahash_request *req, const void *in); 260 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 261 unsigned int keylen); 262 263 unsigned int statesize; 264 unsigned int reqsize; 265 struct crypto_tfm base; 266 }; 267 268 struct crypto_shash { 269 unsigned int descsize; 270 struct crypto_tfm base; 271 }; 272 273 /** 274 * DOC: Asynchronous Message Digest API 275 * 276 * The asynchronous message digest API is used with the ciphers of type 277 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) 278 * 279 * The asynchronous cipher operation discussion provided for the 280 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well. 281 */ 282 283 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) 284 { 285 return container_of(tfm, struct crypto_ahash, base); 286 } 287 288 /** 289 * crypto_alloc_ahash() - allocate ahash cipher handle 290 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 291 * ahash cipher 292 * @type: specifies the type of the cipher 293 * @mask: specifies the mask for the cipher 294 * 295 * Allocate a cipher handle for an ahash. The returned struct 296 * crypto_ahash is the cipher handle that is required for any subsequent 297 * API invocation for that ahash. 298 * 299 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 300 * of an error, PTR_ERR() returns the error code. 301 */ 302 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, 303 u32 mask); 304 305 struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm); 306 307 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) 308 { 309 return &tfm->base; 310 } 311 312 /** 313 * crypto_free_ahash() - zeroize and free the ahash handle 314 * @tfm: cipher handle to be freed 315 * 316 * If @tfm is a NULL or error pointer, this function does nothing. 317 */ 318 static inline void crypto_free_ahash(struct crypto_ahash *tfm) 319 { 320 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); 321 } 322 323 /** 324 * crypto_has_ahash() - Search for the availability of an ahash. 325 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 326 * ahash 327 * @type: specifies the type of the ahash 328 * @mask: specifies the mask for the ahash 329 * 330 * Return: true when the ahash is known to the kernel crypto API; false 331 * otherwise 332 */ 333 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); 334 335 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) 336 { 337 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 338 } 339 340 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) 341 { 342 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); 343 } 344 345 static inline unsigned int crypto_ahash_alignmask( 346 struct crypto_ahash *tfm) 347 { 348 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm)); 349 } 350 351 /** 352 * crypto_ahash_blocksize() - obtain block size for cipher 353 * @tfm: cipher handle 354 * 355 * The block size for the message digest cipher referenced with the cipher 356 * handle is returned. 357 * 358 * Return: block size of cipher 359 */ 360 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) 361 { 362 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 363 } 364 365 static inline struct hash_alg_common *__crypto_hash_alg_common( 366 struct crypto_alg *alg) 367 { 368 return container_of(alg, struct hash_alg_common, base); 369 } 370 371 static inline struct hash_alg_common *crypto_hash_alg_common( 372 struct crypto_ahash *tfm) 373 { 374 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); 375 } 376 377 /** 378 * crypto_ahash_digestsize() - obtain message digest size 379 * @tfm: cipher handle 380 * 381 * The size for the message digest created by the message digest cipher 382 * referenced with the cipher handle is returned. 383 * 384 * 385 * Return: message digest size of cipher 386 */ 387 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) 388 { 389 return crypto_hash_alg_common(tfm)->digestsize; 390 } 391 392 /** 393 * crypto_ahash_statesize() - obtain size of the ahash state 394 * @tfm: cipher handle 395 * 396 * Return the size of the ahash state. With the crypto_ahash_export() 397 * function, the caller can export the state into a buffer whose size is 398 * defined with this function. 399 * 400 * Return: size of the ahash state 401 */ 402 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) 403 { 404 return tfm->statesize; 405 } 406 407 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) 408 { 409 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); 410 } 411 412 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) 413 { 414 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); 415 } 416 417 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) 418 { 419 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); 420 } 421 422 /** 423 * crypto_ahash_reqtfm() - obtain cipher handle from request 424 * @req: asynchronous request handle that contains the reference to the ahash 425 * cipher handle 426 * 427 * Return the ahash cipher handle that is registered with the asynchronous 428 * request handle ahash_request. 429 * 430 * Return: ahash cipher handle 431 */ 432 static inline struct crypto_ahash *crypto_ahash_reqtfm( 433 struct ahash_request *req) 434 { 435 return __crypto_ahash_cast(req->base.tfm); 436 } 437 438 /** 439 * crypto_ahash_reqsize() - obtain size of the request data structure 440 * @tfm: cipher handle 441 * 442 * Return: size of the request data 443 */ 444 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) 445 { 446 return tfm->reqsize; 447 } 448 449 static inline void *ahash_request_ctx(struct ahash_request *req) 450 { 451 return req->__ctx; 452 } 453 454 /** 455 * crypto_ahash_setkey - set key for cipher handle 456 * @tfm: cipher handle 457 * @key: buffer holding the key 458 * @keylen: length of the key in bytes 459 * 460 * The caller provided key is set for the ahash cipher. The cipher 461 * handle must point to a keyed hash in order for this function to succeed. 462 * 463 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 464 */ 465 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, 466 unsigned int keylen); 467 468 /** 469 * crypto_ahash_finup() - update and finalize message digest 470 * @req: reference to the ahash_request handle that holds all information 471 * needed to perform the cipher operation 472 * 473 * This function is a "short-hand" for the function calls of 474 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 475 * meaning as discussed for those separate functions. 476 * 477 * Return: see crypto_ahash_final() 478 */ 479 int crypto_ahash_finup(struct ahash_request *req); 480 481 /** 482 * crypto_ahash_final() - calculate message digest 483 * @req: reference to the ahash_request handle that holds all information 484 * needed to perform the cipher operation 485 * 486 * Finalize the message digest operation and create the message digest 487 * based on all data added to the cipher handle. The message digest is placed 488 * into the output buffer registered with the ahash_request handle. 489 * 490 * Return: 491 * 0 if the message digest was successfully calculated; 492 * -EINPROGRESS if data is fed into hardware (DMA) or queued for later; 493 * -EBUSY if queue is full and request should be resubmitted later; 494 * other < 0 if an error occurred 495 */ 496 int crypto_ahash_final(struct ahash_request *req); 497 498 /** 499 * crypto_ahash_digest() - calculate message digest for a buffer 500 * @req: reference to the ahash_request handle that holds all information 501 * needed to perform the cipher operation 502 * 503 * This function is a "short-hand" for the function calls of crypto_ahash_init, 504 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 505 * meaning as discussed for those separate three functions. 506 * 507 * Return: see crypto_ahash_final() 508 */ 509 int crypto_ahash_digest(struct ahash_request *req); 510 511 /** 512 * crypto_ahash_export() - extract current message digest state 513 * @req: reference to the ahash_request handle whose state is exported 514 * @out: output buffer of sufficient size that can hold the hash state 515 * 516 * This function exports the hash state of the ahash_request handle into the 517 * caller-allocated output buffer out which must have sufficient size (e.g. by 518 * calling crypto_ahash_statesize()). 519 * 520 * Return: 0 if the export was successful; < 0 if an error occurred 521 */ 522 static inline int crypto_ahash_export(struct ahash_request *req, void *out) 523 { 524 return crypto_ahash_reqtfm(req)->export(req, out); 525 } 526 527 /** 528 * crypto_ahash_import() - import message digest state 529 * @req: reference to ahash_request handle the state is imported into 530 * @in: buffer holding the state 531 * 532 * This function imports the hash state into the ahash_request handle from the 533 * input buffer. That buffer should have been generated with the 534 * crypto_ahash_export function. 535 * 536 * Return: 0 if the import was successful; < 0 if an error occurred 537 */ 538 static inline int crypto_ahash_import(struct ahash_request *req, const void *in) 539 { 540 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 541 542 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 543 return -ENOKEY; 544 545 return tfm->import(req, in); 546 } 547 548 /** 549 * crypto_ahash_init() - (re)initialize message digest handle 550 * @req: ahash_request handle that already is initialized with all necessary 551 * data using the ahash_request_* API functions 552 * 553 * The call (re-)initializes the message digest referenced by the ahash_request 554 * handle. Any potentially existing state created by previous operations is 555 * discarded. 556 * 557 * Return: see crypto_ahash_final() 558 */ 559 static inline int crypto_ahash_init(struct ahash_request *req) 560 { 561 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 562 563 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 564 return -ENOKEY; 565 566 return tfm->init(req); 567 } 568 569 static inline struct crypto_istat_hash *hash_get_stat( 570 struct hash_alg_common *alg) 571 { 572 #ifdef CONFIG_CRYPTO_STATS 573 return &alg->stat; 574 #else 575 return NULL; 576 #endif 577 } 578 579 static inline int crypto_hash_errstat(struct hash_alg_common *alg, int err) 580 { 581 if (!IS_ENABLED(CONFIG_CRYPTO_STATS)) 582 return err; 583 584 if (err && err != -EINPROGRESS && err != -EBUSY) 585 atomic64_inc(&hash_get_stat(alg)->err_cnt); 586 587 return err; 588 } 589 590 /** 591 * crypto_ahash_update() - add data to message digest for processing 592 * @req: ahash_request handle that was previously initialized with the 593 * crypto_ahash_init call. 594 * 595 * Updates the message digest state of the &ahash_request handle. The input data 596 * is pointed to by the scatter/gather list registered in the &ahash_request 597 * handle 598 * 599 * Return: see crypto_ahash_final() 600 */ 601 static inline int crypto_ahash_update(struct ahash_request *req) 602 { 603 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 604 struct hash_alg_common *alg = crypto_hash_alg_common(tfm); 605 606 if (IS_ENABLED(CONFIG_CRYPTO_STATS)) 607 atomic64_add(req->nbytes, &hash_get_stat(alg)->hash_tlen); 608 609 return crypto_hash_errstat(alg, tfm->update(req)); 610 } 611 612 /** 613 * DOC: Asynchronous Hash Request Handle 614 * 615 * The &ahash_request data structure contains all pointers to data 616 * required for the asynchronous cipher operation. This includes the cipher 617 * handle (which can be used by multiple &ahash_request instances), pointer 618 * to plaintext and the message digest output buffer, asynchronous callback 619 * function, etc. It acts as a handle to the ahash_request_* API calls in a 620 * similar way as ahash handle to the crypto_ahash_* API calls. 621 */ 622 623 /** 624 * ahash_request_set_tfm() - update cipher handle reference in request 625 * @req: request handle to be modified 626 * @tfm: cipher handle that shall be added to the request handle 627 * 628 * Allow the caller to replace the existing ahash handle in the request 629 * data structure with a different one. 630 */ 631 static inline void ahash_request_set_tfm(struct ahash_request *req, 632 struct crypto_ahash *tfm) 633 { 634 req->base.tfm = crypto_ahash_tfm(tfm); 635 } 636 637 /** 638 * ahash_request_alloc() - allocate request data structure 639 * @tfm: cipher handle to be registered with the request 640 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 641 * 642 * Allocate the request data structure that must be used with the ahash 643 * message digest API calls. During 644 * the allocation, the provided ahash handle 645 * is registered in the request data structure. 646 * 647 * Return: allocated request handle in case of success, or NULL if out of memory 648 */ 649 static inline struct ahash_request *ahash_request_alloc( 650 struct crypto_ahash *tfm, gfp_t gfp) 651 { 652 struct ahash_request *req; 653 654 req = kmalloc(sizeof(struct ahash_request) + 655 crypto_ahash_reqsize(tfm), gfp); 656 657 if (likely(req)) 658 ahash_request_set_tfm(req, tfm); 659 660 return req; 661 } 662 663 /** 664 * ahash_request_free() - zeroize and free the request data structure 665 * @req: request data structure cipher handle to be freed 666 */ 667 static inline void ahash_request_free(struct ahash_request *req) 668 { 669 kfree_sensitive(req); 670 } 671 672 static inline void ahash_request_zero(struct ahash_request *req) 673 { 674 memzero_explicit(req, sizeof(*req) + 675 crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); 676 } 677 678 static inline struct ahash_request *ahash_request_cast( 679 struct crypto_async_request *req) 680 { 681 return container_of(req, struct ahash_request, base); 682 } 683 684 /** 685 * ahash_request_set_callback() - set asynchronous callback function 686 * @req: request handle 687 * @flags: specify zero or an ORing of the flags 688 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 689 * increase the wait queue beyond the initial maximum size; 690 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 691 * @compl: callback function pointer to be registered with the request handle 692 * @data: The data pointer refers to memory that is not used by the kernel 693 * crypto API, but provided to the callback function for it to use. Here, 694 * the caller can provide a reference to memory the callback function can 695 * operate on. As the callback function is invoked asynchronously to the 696 * related functionality, it may need to access data structures of the 697 * related functionality which can be referenced using this pointer. The 698 * callback function can access the memory via the "data" field in the 699 * &crypto_async_request data structure provided to the callback function. 700 * 701 * This function allows setting the callback function that is triggered once 702 * the cipher operation completes. 703 * 704 * The callback function is registered with the &ahash_request handle and 705 * must comply with the following template:: 706 * 707 * void callback_function(struct crypto_async_request *req, int error) 708 */ 709 static inline void ahash_request_set_callback(struct ahash_request *req, 710 u32 flags, 711 crypto_completion_t compl, 712 void *data) 713 { 714 req->base.complete = compl; 715 req->base.data = data; 716 req->base.flags = flags; 717 } 718 719 /** 720 * ahash_request_set_crypt() - set data buffers 721 * @req: ahash_request handle to be updated 722 * @src: source scatter/gather list 723 * @result: buffer that is filled with the message digest -- the caller must 724 * ensure that the buffer has sufficient space by, for example, calling 725 * crypto_ahash_digestsize() 726 * @nbytes: number of bytes to process from the source scatter/gather list 727 * 728 * By using this call, the caller references the source scatter/gather list. 729 * The source scatter/gather list points to the data the message digest is to 730 * be calculated for. 731 */ 732 static inline void ahash_request_set_crypt(struct ahash_request *req, 733 struct scatterlist *src, u8 *result, 734 unsigned int nbytes) 735 { 736 req->src = src; 737 req->nbytes = nbytes; 738 req->result = result; 739 } 740 741 /** 742 * DOC: Synchronous Message Digest API 743 * 744 * The synchronous message digest API is used with the ciphers of type 745 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) 746 * 747 * The message digest API is able to maintain state information for the 748 * caller. 749 * 750 * The synchronous message digest API can store user-related context in its 751 * shash_desc request data structure. 752 */ 753 754 /** 755 * crypto_alloc_shash() - allocate message digest handle 756 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 757 * message digest cipher 758 * @type: specifies the type of the cipher 759 * @mask: specifies the mask for the cipher 760 * 761 * Allocate a cipher handle for a message digest. The returned &struct 762 * crypto_shash is the cipher handle that is required for any subsequent 763 * API invocation for that message digest. 764 * 765 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 766 * of an error, PTR_ERR() returns the error code. 767 */ 768 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, 769 u32 mask); 770 771 struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm); 772 773 int crypto_has_shash(const char *alg_name, u32 type, u32 mask); 774 775 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) 776 { 777 return &tfm->base; 778 } 779 780 /** 781 * crypto_free_shash() - zeroize and free the message digest handle 782 * @tfm: cipher handle to be freed 783 * 784 * If @tfm is a NULL or error pointer, this function does nothing. 785 */ 786 static inline void crypto_free_shash(struct crypto_shash *tfm) 787 { 788 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); 789 } 790 791 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) 792 { 793 return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); 794 } 795 796 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) 797 { 798 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); 799 } 800 801 static inline unsigned int crypto_shash_alignmask( 802 struct crypto_shash *tfm) 803 { 804 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); 805 } 806 807 /** 808 * crypto_shash_blocksize() - obtain block size for cipher 809 * @tfm: cipher handle 810 * 811 * The block size for the message digest cipher referenced with the cipher 812 * handle is returned. 813 * 814 * Return: block size of cipher 815 */ 816 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) 817 { 818 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); 819 } 820 821 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) 822 { 823 return container_of(alg, struct shash_alg, base); 824 } 825 826 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) 827 { 828 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); 829 } 830 831 /** 832 * crypto_shash_digestsize() - obtain message digest size 833 * @tfm: cipher handle 834 * 835 * The size for the message digest created by the message digest cipher 836 * referenced with the cipher handle is returned. 837 * 838 * Return: digest size of cipher 839 */ 840 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) 841 { 842 return crypto_shash_alg(tfm)->digestsize; 843 } 844 845 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) 846 { 847 return crypto_shash_alg(tfm)->statesize; 848 } 849 850 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) 851 { 852 return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); 853 } 854 855 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) 856 { 857 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); 858 } 859 860 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) 861 { 862 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); 863 } 864 865 /** 866 * crypto_shash_descsize() - obtain the operational state size 867 * @tfm: cipher handle 868 * 869 * The size of the operational state the cipher needs during operation is 870 * returned for the hash referenced with the cipher handle. This size is 871 * required to calculate the memory requirements to allow the caller allocating 872 * sufficient memory for operational state. 873 * 874 * The operational state is defined with struct shash_desc where the size of 875 * that data structure is to be calculated as 876 * sizeof(struct shash_desc) + crypto_shash_descsize(alg) 877 * 878 * Return: size of the operational state 879 */ 880 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) 881 { 882 return tfm->descsize; 883 } 884 885 static inline void *shash_desc_ctx(struct shash_desc *desc) 886 { 887 return desc->__ctx; 888 } 889 890 /** 891 * crypto_shash_setkey() - set key for message digest 892 * @tfm: cipher handle 893 * @key: buffer holding the key 894 * @keylen: length of the key in bytes 895 * 896 * The caller provided key is set for the keyed message digest cipher. The 897 * cipher handle must point to a keyed message digest cipher in order for this 898 * function to succeed. 899 * 900 * Context: Any context. 901 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 902 */ 903 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, 904 unsigned int keylen); 905 906 /** 907 * crypto_shash_digest() - calculate message digest for buffer 908 * @desc: see crypto_shash_final() 909 * @data: see crypto_shash_update() 910 * @len: see crypto_shash_update() 911 * @out: see crypto_shash_final() 912 * 913 * This function is a "short-hand" for the function calls of crypto_shash_init, 914 * crypto_shash_update and crypto_shash_final. The parameters have the same 915 * meaning as discussed for those separate three functions. 916 * 917 * Context: Any context. 918 * Return: 0 if the message digest creation was successful; < 0 if an error 919 * occurred 920 */ 921 int crypto_shash_digest(struct shash_desc *desc, const u8 *data, 922 unsigned int len, u8 *out); 923 924 /** 925 * crypto_shash_tfm_digest() - calculate message digest for buffer 926 * @tfm: hash transformation object 927 * @data: see crypto_shash_update() 928 * @len: see crypto_shash_update() 929 * @out: see crypto_shash_final() 930 * 931 * This is a simplified version of crypto_shash_digest() for users who don't 932 * want to allocate their own hash descriptor (shash_desc). Instead, 933 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash) 934 * directly, and it allocates a hash descriptor on the stack internally. 935 * Note that this stack allocation may be fairly large. 936 * 937 * Context: Any context. 938 * Return: 0 on success; < 0 if an error occurred. 939 */ 940 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data, 941 unsigned int len, u8 *out); 942 943 /** 944 * crypto_shash_export() - extract operational state for message digest 945 * @desc: reference to the operational state handle whose state is exported 946 * @out: output buffer of sufficient size that can hold the hash state 947 * 948 * This function exports the hash state of the operational state handle into the 949 * caller-allocated output buffer out which must have sufficient size (e.g. by 950 * calling crypto_shash_descsize). 951 * 952 * Context: Any context. 953 * Return: 0 if the export creation was successful; < 0 if an error occurred 954 */ 955 static inline int crypto_shash_export(struct shash_desc *desc, void *out) 956 { 957 return crypto_shash_alg(desc->tfm)->export(desc, out); 958 } 959 960 /** 961 * crypto_shash_import() - import operational state 962 * @desc: reference to the operational state handle the state imported into 963 * @in: buffer holding the state 964 * 965 * This function imports the hash state into the operational state handle from 966 * the input buffer. That buffer should have been generated with the 967 * crypto_ahash_export function. 968 * 969 * Context: Any context. 970 * Return: 0 if the import was successful; < 0 if an error occurred 971 */ 972 static inline int crypto_shash_import(struct shash_desc *desc, const void *in) 973 { 974 struct crypto_shash *tfm = desc->tfm; 975 976 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 977 return -ENOKEY; 978 979 return crypto_shash_alg(tfm)->import(desc, in); 980 } 981 982 /** 983 * crypto_shash_init() - (re)initialize message digest 984 * @desc: operational state handle that is already filled 985 * 986 * The call (re-)initializes the message digest referenced by the 987 * operational state handle. Any potentially existing state created by 988 * previous operations is discarded. 989 * 990 * Context: Any context. 991 * Return: 0 if the message digest initialization was successful; < 0 if an 992 * error occurred 993 */ 994 static inline int crypto_shash_init(struct shash_desc *desc) 995 { 996 struct crypto_shash *tfm = desc->tfm; 997 998 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 999 return -ENOKEY; 1000 1001 return crypto_shash_alg(tfm)->init(desc); 1002 } 1003 1004 /** 1005 * crypto_shash_update() - add data to message digest for processing 1006 * @desc: operational state handle that is already initialized 1007 * @data: input data to be added to the message digest 1008 * @len: length of the input data 1009 * 1010 * Updates the message digest state of the operational state handle. 1011 * 1012 * Context: Any context. 1013 * Return: 0 if the message digest update was successful; < 0 if an error 1014 * occurred 1015 */ 1016 int crypto_shash_update(struct shash_desc *desc, const u8 *data, 1017 unsigned int len); 1018 1019 /** 1020 * crypto_shash_final() - calculate message digest 1021 * @desc: operational state handle that is already filled with data 1022 * @out: output buffer filled with the message digest 1023 * 1024 * Finalize the message digest operation and create the message digest 1025 * based on all data added to the cipher handle. The message digest is placed 1026 * into the output buffer. The caller must ensure that the output buffer is 1027 * large enough by using crypto_shash_digestsize. 1028 * 1029 * Context: Any context. 1030 * Return: 0 if the message digest creation was successful; < 0 if an error 1031 * occurred 1032 */ 1033 int crypto_shash_final(struct shash_desc *desc, u8 *out); 1034 1035 /** 1036 * crypto_shash_finup() - calculate message digest of buffer 1037 * @desc: see crypto_shash_final() 1038 * @data: see crypto_shash_update() 1039 * @len: see crypto_shash_update() 1040 * @out: see crypto_shash_final() 1041 * 1042 * This function is a "short-hand" for the function calls of 1043 * crypto_shash_update and crypto_shash_final. The parameters have the same 1044 * meaning as discussed for those separate functions. 1045 * 1046 * Context: Any context. 1047 * Return: 0 if the message digest creation was successful; < 0 if an error 1048 * occurred 1049 */ 1050 int crypto_shash_finup(struct shash_desc *desc, const u8 *data, 1051 unsigned int len, u8 *out); 1052 1053 static inline void shash_desc_zero(struct shash_desc *desc) 1054 { 1055 memzero_explicit(desc, 1056 sizeof(*desc) + crypto_shash_descsize(desc->tfm)); 1057 } 1058 1059 #endif /* _CRYPTO_HASH_H */ 1060