xref: /openbmc/linux/include/crypto/hash.h (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Hash: Hash algorithms under the crypto API
3  *
4  * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  *
11  */
12 
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15 
16 #include <linux/crypto.h>
17 #include <linux/string.h>
18 
19 struct crypto_ahash;
20 
21 /**
22  * DOC: Message Digest Algorithm Definitions
23  *
24  * These data structures define modular message digest algorithm
25  * implementations, managed via crypto_register_ahash(),
26  * crypto_register_shash(), crypto_unregister_ahash() and
27  * crypto_unregister_shash().
28  */
29 
30 /**
31  * struct hash_alg_common - define properties of message digest
32  * @digestsize: Size of the result of the transformation. A buffer of this size
33  *	        must be available to the @final and @finup calls, so they can
34  *	        store the resulting hash into it. For various predefined sizes,
35  *	        search include/crypto/ using
36  *	        git grep _DIGEST_SIZE include/crypto.
37  * @statesize: Size of the block for partial state of the transformation. A
38  *	       buffer of this size must be passed to the @export function as it
39  *	       will save the partial state of the transformation into it. On the
40  *	       other side, the @import function will load the state from a
41  *	       buffer of this size as well.
42  * @base: Start of data structure of cipher algorithm. The common data
43  *	  structure of crypto_alg contains information common to all ciphers.
44  *	  The hash_alg_common data structure now adds the hash-specific
45  *	  information.
46  */
47 struct hash_alg_common {
48 	unsigned int digestsize;
49 	unsigned int statesize;
50 
51 	struct crypto_alg base;
52 };
53 
54 struct ahash_request {
55 	struct crypto_async_request base;
56 
57 	unsigned int nbytes;
58 	struct scatterlist *src;
59 	u8 *result;
60 
61 	/* This field may only be used by the ahash API code. */
62 	void *priv;
63 
64 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
65 };
66 
67 #define AHASH_REQUEST_ON_STACK(name, ahash) \
68 	char __##name##_desc[sizeof(struct ahash_request) + \
69 		crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70 	struct ahash_request *name = (void *)__##name##_desc
71 
72 /**
73  * struct ahash_alg - asynchronous message digest definition
74  * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
75  *	  state of the HASH transformation at the beginning. This shall fill in
76  *	  the internal structures used during the entire duration of the whole
77  *	  transformation. No data processing happens at this point. Driver code
78  *	  implementation must not use req->result.
79  * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
80  *	   function actually pushes blocks of data from upper layers into the
81  *	   driver, which then passes those to the hardware as seen fit. This
82  *	   function must not finalize the HASH transformation by calculating the
83  *	   final message digest as this only adds more data into the
84  *	   transformation. This function shall not modify the transformation
85  *	   context, as this function may be called in parallel with the same
86  *	   transformation object. Data processing can happen synchronously
87  *	   [SHASH] or asynchronously [AHASH] at this point. Driver must not use
88  *	   req->result.
89  * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
90  *	   transformation and retrieves the resulting hash from the driver and
91  *	   pushes it back to upper layers. No data processing happens at this
92  *	   point unless hardware requires it to finish the transformation
93  *	   (then the data buffered by the device driver is processed).
94  * @finup: **[optional]** Combination of @update and @final. This function is effectively a
95  *	   combination of @update and @final calls issued in sequence. As some
96  *	   hardware cannot do @update and @final separately, this callback was
97  *	   added to allow such hardware to be used at least by IPsec. Data
98  *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
99  *	   at this point.
100  * @digest: Combination of @init and @update and @final. This function
101  *	    effectively behaves as the entire chain of operations, @init,
102  *	    @update and @final issued in sequence. Just like @finup, this was
103  *	    added for hardware which cannot do even the @finup, but can only do
104  *	    the whole transformation in one run. Data processing can happen
105  *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
106  * @setkey: Set optional key used by the hashing algorithm. Intended to push
107  *	    optional key used by the hashing algorithm from upper layers into
108  *	    the driver. This function can store the key in the transformation
109  *	    context or can outright program it into the hardware. In the former
110  *	    case, one must be careful to program the key into the hardware at
111  *	    appropriate time and one must be careful that .setkey() can be
112  *	    called multiple times during the existence of the transformation
113  *	    object. Not  all hashing algorithms do implement this function as it
114  *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
115  *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
116  *	    this function. This function must be called before any other of the
117  *	    @init, @update, @final, @finup, @digest is called. No data
118  *	    processing happens at this point.
119  * @export: Export partial state of the transformation. This function dumps the
120  *	    entire state of the ongoing transformation into a provided block of
121  *	    data so it can be @import 'ed back later on. This is useful in case
122  *	    you want to save partial result of the transformation after
123  *	    processing certain amount of data and reload this partial result
124  *	    multiple times later on for multiple re-use. No data processing
125  *	    happens at this point. Driver must not use req->result.
126  * @import: Import partial state of the transformation. This function loads the
127  *	    entire state of the ongoing transformation from a provided block of
128  *	    data so the transformation can continue from this point onward. No
129  *	    data processing happens at this point. Driver must not use
130  *	    req->result.
131  * @halg: see struct hash_alg_common
132  */
133 struct ahash_alg {
134 	int (*init)(struct ahash_request *req);
135 	int (*update)(struct ahash_request *req);
136 	int (*final)(struct ahash_request *req);
137 	int (*finup)(struct ahash_request *req);
138 	int (*digest)(struct ahash_request *req);
139 	int (*export)(struct ahash_request *req, void *out);
140 	int (*import)(struct ahash_request *req, const void *in);
141 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
142 		      unsigned int keylen);
143 
144 	struct hash_alg_common halg;
145 };
146 
147 struct shash_desc {
148 	struct crypto_shash *tfm;
149 	u32 flags;
150 
151 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
152 };
153 
154 #define HASH_MAX_DIGESTSIZE	 64
155 #define HASH_MAX_DESCSIZE	360
156 #define HASH_MAX_STATESIZE	512
157 
158 #define SHASH_DESC_ON_STACK(shash, ctx)				  \
159 	char __##shash##_desc[sizeof(struct shash_desc) +	  \
160 		HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
161 	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
162 
163 /**
164  * struct shash_alg - synchronous message digest definition
165  * @init: see struct ahash_alg
166  * @update: see struct ahash_alg
167  * @final: see struct ahash_alg
168  * @finup: see struct ahash_alg
169  * @digest: see struct ahash_alg
170  * @export: see struct ahash_alg
171  * @import: see struct ahash_alg
172  * @setkey: see struct ahash_alg
173  * @digestsize: see struct ahash_alg
174  * @statesize: see struct ahash_alg
175  * @descsize: Size of the operational state for the message digest. This state
176  * 	      size is the memory size that needs to be allocated for
177  *	      shash_desc.__ctx
178  * @base: internally used
179  */
180 struct shash_alg {
181 	int (*init)(struct shash_desc *desc);
182 	int (*update)(struct shash_desc *desc, const u8 *data,
183 		      unsigned int len);
184 	int (*final)(struct shash_desc *desc, u8 *out);
185 	int (*finup)(struct shash_desc *desc, const u8 *data,
186 		     unsigned int len, u8 *out);
187 	int (*digest)(struct shash_desc *desc, const u8 *data,
188 		      unsigned int len, u8 *out);
189 	int (*export)(struct shash_desc *desc, void *out);
190 	int (*import)(struct shash_desc *desc, const void *in);
191 	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
192 		      unsigned int keylen);
193 
194 	unsigned int descsize;
195 
196 	/* These fields must match hash_alg_common. */
197 	unsigned int digestsize
198 		__attribute__ ((aligned(__alignof__(struct hash_alg_common))));
199 	unsigned int statesize;
200 
201 	struct crypto_alg base;
202 };
203 
204 struct crypto_ahash {
205 	int (*init)(struct ahash_request *req);
206 	int (*update)(struct ahash_request *req);
207 	int (*final)(struct ahash_request *req);
208 	int (*finup)(struct ahash_request *req);
209 	int (*digest)(struct ahash_request *req);
210 	int (*export)(struct ahash_request *req, void *out);
211 	int (*import)(struct ahash_request *req, const void *in);
212 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
213 		      unsigned int keylen);
214 
215 	unsigned int reqsize;
216 	struct crypto_tfm base;
217 };
218 
219 struct crypto_shash {
220 	unsigned int descsize;
221 	struct crypto_tfm base;
222 };
223 
224 /**
225  * DOC: Asynchronous Message Digest API
226  *
227  * The asynchronous message digest API is used with the ciphers of type
228  * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
229  *
230  * The asynchronous cipher operation discussion provided for the
231  * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
232  */
233 
234 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
235 {
236 	return container_of(tfm, struct crypto_ahash, base);
237 }
238 
239 /**
240  * crypto_alloc_ahash() - allocate ahash cipher handle
241  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
242  *	      ahash cipher
243  * @type: specifies the type of the cipher
244  * @mask: specifies the mask for the cipher
245  *
246  * Allocate a cipher handle for an ahash. The returned struct
247  * crypto_ahash is the cipher handle that is required for any subsequent
248  * API invocation for that ahash.
249  *
250  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
251  *	   of an error, PTR_ERR() returns the error code.
252  */
253 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
254 					u32 mask);
255 
256 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
257 {
258 	return &tfm->base;
259 }
260 
261 /**
262  * crypto_free_ahash() - zeroize and free the ahash handle
263  * @tfm: cipher handle to be freed
264  */
265 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
266 {
267 	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
268 }
269 
270 /**
271  * crypto_has_ahash() - Search for the availability of an ahash.
272  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
273  *	      ahash
274  * @type: specifies the type of the ahash
275  * @mask: specifies the mask for the ahash
276  *
277  * Return: true when the ahash is known to the kernel crypto API; false
278  *	   otherwise
279  */
280 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
281 
282 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
283 {
284 	return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
285 }
286 
287 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
288 {
289 	return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
290 }
291 
292 static inline unsigned int crypto_ahash_alignmask(
293 	struct crypto_ahash *tfm)
294 {
295 	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
296 }
297 
298 /**
299  * crypto_ahash_blocksize() - obtain block size for cipher
300  * @tfm: cipher handle
301  *
302  * The block size for the message digest cipher referenced with the cipher
303  * handle is returned.
304  *
305  * Return: block size of cipher
306  */
307 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
308 {
309 	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
310 }
311 
312 static inline struct hash_alg_common *__crypto_hash_alg_common(
313 	struct crypto_alg *alg)
314 {
315 	return container_of(alg, struct hash_alg_common, base);
316 }
317 
318 static inline struct hash_alg_common *crypto_hash_alg_common(
319 	struct crypto_ahash *tfm)
320 {
321 	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
322 }
323 
324 /**
325  * crypto_ahash_digestsize() - obtain message digest size
326  * @tfm: cipher handle
327  *
328  * The size for the message digest created by the message digest cipher
329  * referenced with the cipher handle is returned.
330  *
331  *
332  * Return: message digest size of cipher
333  */
334 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
335 {
336 	return crypto_hash_alg_common(tfm)->digestsize;
337 }
338 
339 /**
340  * crypto_ahash_statesize() - obtain size of the ahash state
341  * @tfm: cipher handle
342  *
343  * Return the size of the ahash state. With the crypto_ahash_export()
344  * function, the caller can export the state into a buffer whose size is
345  * defined with this function.
346  *
347  * Return: size of the ahash state
348  */
349 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
350 {
351 	return crypto_hash_alg_common(tfm)->statesize;
352 }
353 
354 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
355 {
356 	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
357 }
358 
359 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
360 {
361 	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
362 }
363 
364 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
365 {
366 	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
367 }
368 
369 /**
370  * crypto_ahash_reqtfm() - obtain cipher handle from request
371  * @req: asynchronous request handle that contains the reference to the ahash
372  *	 cipher handle
373  *
374  * Return the ahash cipher handle that is registered with the asynchronous
375  * request handle ahash_request.
376  *
377  * Return: ahash cipher handle
378  */
379 static inline struct crypto_ahash *crypto_ahash_reqtfm(
380 	struct ahash_request *req)
381 {
382 	return __crypto_ahash_cast(req->base.tfm);
383 }
384 
385 /**
386  * crypto_ahash_reqsize() - obtain size of the request data structure
387  * @tfm: cipher handle
388  *
389  * Return: size of the request data
390  */
391 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
392 {
393 	return tfm->reqsize;
394 }
395 
396 static inline void *ahash_request_ctx(struct ahash_request *req)
397 {
398 	return req->__ctx;
399 }
400 
401 /**
402  * crypto_ahash_setkey - set key for cipher handle
403  * @tfm: cipher handle
404  * @key: buffer holding the key
405  * @keylen: length of the key in bytes
406  *
407  * The caller provided key is set for the ahash cipher. The cipher
408  * handle must point to a keyed hash in order for this function to succeed.
409  *
410  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
411  */
412 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
413 			unsigned int keylen);
414 
415 static inline void crypto_stat_ahash_update(struct ahash_request *req, int ret)
416 {
417 #ifdef CONFIG_CRYPTO_STATS
418 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
419 
420 	if (ret && ret != -EINPROGRESS && ret != -EBUSY)
421 		atomic_inc(&tfm->base.__crt_alg->hash_err_cnt);
422 	else
423 		atomic64_add(req->nbytes, &tfm->base.__crt_alg->hash_tlen);
424 #endif
425 }
426 
427 static inline void crypto_stat_ahash_final(struct ahash_request *req, int ret)
428 {
429 #ifdef CONFIG_CRYPTO_STATS
430 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
431 
432 	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
433 		atomic_inc(&tfm->base.__crt_alg->hash_err_cnt);
434 	} else {
435 		atomic_inc(&tfm->base.__crt_alg->hash_cnt);
436 		atomic64_add(req->nbytes, &tfm->base.__crt_alg->hash_tlen);
437 	}
438 #endif
439 }
440 
441 /**
442  * crypto_ahash_finup() - update and finalize message digest
443  * @req: reference to the ahash_request handle that holds all information
444  *	 needed to perform the cipher operation
445  *
446  * This function is a "short-hand" for the function calls of
447  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
448  * meaning as discussed for those separate functions.
449  *
450  * Return: see crypto_ahash_final()
451  */
452 int crypto_ahash_finup(struct ahash_request *req);
453 
454 /**
455  * crypto_ahash_final() - calculate message digest
456  * @req: reference to the ahash_request handle that holds all information
457  *	 needed to perform the cipher operation
458  *
459  * Finalize the message digest operation and create the message digest
460  * based on all data added to the cipher handle. The message digest is placed
461  * into the output buffer registered with the ahash_request handle.
462  *
463  * Return:
464  * 0		if the message digest was successfully calculated;
465  * -EINPROGRESS	if data is feeded into hardware (DMA) or queued for later;
466  * -EBUSY	if queue is full and request should be resubmitted later;
467  * other < 0	if an error occurred
468  */
469 int crypto_ahash_final(struct ahash_request *req);
470 
471 /**
472  * crypto_ahash_digest() - calculate message digest for a buffer
473  * @req: reference to the ahash_request handle that holds all information
474  *	 needed to perform the cipher operation
475  *
476  * This function is a "short-hand" for the function calls of crypto_ahash_init,
477  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
478  * meaning as discussed for those separate three functions.
479  *
480  * Return: see crypto_ahash_final()
481  */
482 int crypto_ahash_digest(struct ahash_request *req);
483 
484 /**
485  * crypto_ahash_export() - extract current message digest state
486  * @req: reference to the ahash_request handle whose state is exported
487  * @out: output buffer of sufficient size that can hold the hash state
488  *
489  * This function exports the hash state of the ahash_request handle into the
490  * caller-allocated output buffer out which must have sufficient size (e.g. by
491  * calling crypto_ahash_statesize()).
492  *
493  * Return: 0 if the export was successful; < 0 if an error occurred
494  */
495 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
496 {
497 	return crypto_ahash_reqtfm(req)->export(req, out);
498 }
499 
500 /**
501  * crypto_ahash_import() - import message digest state
502  * @req: reference to ahash_request handle the state is imported into
503  * @in: buffer holding the state
504  *
505  * This function imports the hash state into the ahash_request handle from the
506  * input buffer. That buffer should have been generated with the
507  * crypto_ahash_export function.
508  *
509  * Return: 0 if the import was successful; < 0 if an error occurred
510  */
511 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
512 {
513 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
514 
515 	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
516 		return -ENOKEY;
517 
518 	return tfm->import(req, in);
519 }
520 
521 /**
522  * crypto_ahash_init() - (re)initialize message digest handle
523  * @req: ahash_request handle that already is initialized with all necessary
524  *	 data using the ahash_request_* API functions
525  *
526  * The call (re-)initializes the message digest referenced by the ahash_request
527  * handle. Any potentially existing state created by previous operations is
528  * discarded.
529  *
530  * Return: see crypto_ahash_final()
531  */
532 static inline int crypto_ahash_init(struct ahash_request *req)
533 {
534 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
535 
536 	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
537 		return -ENOKEY;
538 
539 	return tfm->init(req);
540 }
541 
542 /**
543  * crypto_ahash_update() - add data to message digest for processing
544  * @req: ahash_request handle that was previously initialized with the
545  *	 crypto_ahash_init call.
546  *
547  * Updates the message digest state of the &ahash_request handle. The input data
548  * is pointed to by the scatter/gather list registered in the &ahash_request
549  * handle
550  *
551  * Return: see crypto_ahash_final()
552  */
553 static inline int crypto_ahash_update(struct ahash_request *req)
554 {
555 	int ret;
556 
557 	ret = crypto_ahash_reqtfm(req)->update(req);
558 	crypto_stat_ahash_update(req, ret);
559 	return ret;
560 }
561 
562 /**
563  * DOC: Asynchronous Hash Request Handle
564  *
565  * The &ahash_request data structure contains all pointers to data
566  * required for the asynchronous cipher operation. This includes the cipher
567  * handle (which can be used by multiple &ahash_request instances), pointer
568  * to plaintext and the message digest output buffer, asynchronous callback
569  * function, etc. It acts as a handle to the ahash_request_* API calls in a
570  * similar way as ahash handle to the crypto_ahash_* API calls.
571  */
572 
573 /**
574  * ahash_request_set_tfm() - update cipher handle reference in request
575  * @req: request handle to be modified
576  * @tfm: cipher handle that shall be added to the request handle
577  *
578  * Allow the caller to replace the existing ahash handle in the request
579  * data structure with a different one.
580  */
581 static inline void ahash_request_set_tfm(struct ahash_request *req,
582 					 struct crypto_ahash *tfm)
583 {
584 	req->base.tfm = crypto_ahash_tfm(tfm);
585 }
586 
587 /**
588  * ahash_request_alloc() - allocate request data structure
589  * @tfm: cipher handle to be registered with the request
590  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
591  *
592  * Allocate the request data structure that must be used with the ahash
593  * message digest API calls. During
594  * the allocation, the provided ahash handle
595  * is registered in the request data structure.
596  *
597  * Return: allocated request handle in case of success, or NULL if out of memory
598  */
599 static inline struct ahash_request *ahash_request_alloc(
600 	struct crypto_ahash *tfm, gfp_t gfp)
601 {
602 	struct ahash_request *req;
603 
604 	req = kmalloc(sizeof(struct ahash_request) +
605 		      crypto_ahash_reqsize(tfm), gfp);
606 
607 	if (likely(req))
608 		ahash_request_set_tfm(req, tfm);
609 
610 	return req;
611 }
612 
613 /**
614  * ahash_request_free() - zeroize and free the request data structure
615  * @req: request data structure cipher handle to be freed
616  */
617 static inline void ahash_request_free(struct ahash_request *req)
618 {
619 	kzfree(req);
620 }
621 
622 static inline void ahash_request_zero(struct ahash_request *req)
623 {
624 	memzero_explicit(req, sizeof(*req) +
625 			      crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
626 }
627 
628 static inline struct ahash_request *ahash_request_cast(
629 	struct crypto_async_request *req)
630 {
631 	return container_of(req, struct ahash_request, base);
632 }
633 
634 /**
635  * ahash_request_set_callback() - set asynchronous callback function
636  * @req: request handle
637  * @flags: specify zero or an ORing of the flags
638  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
639  *	   increase the wait queue beyond the initial maximum size;
640  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
641  * @compl: callback function pointer to be registered with the request handle
642  * @data: The data pointer refers to memory that is not used by the kernel
643  *	  crypto API, but provided to the callback function for it to use. Here,
644  *	  the caller can provide a reference to memory the callback function can
645  *	  operate on. As the callback function is invoked asynchronously to the
646  *	  related functionality, it may need to access data structures of the
647  *	  related functionality which can be referenced using this pointer. The
648  *	  callback function can access the memory via the "data" field in the
649  *	  &crypto_async_request data structure provided to the callback function.
650  *
651  * This function allows setting the callback function that is triggered once
652  * the cipher operation completes.
653  *
654  * The callback function is registered with the &ahash_request handle and
655  * must comply with the following template::
656  *
657  *	void callback_function(struct crypto_async_request *req, int error)
658  */
659 static inline void ahash_request_set_callback(struct ahash_request *req,
660 					      u32 flags,
661 					      crypto_completion_t compl,
662 					      void *data)
663 {
664 	req->base.complete = compl;
665 	req->base.data = data;
666 	req->base.flags = flags;
667 }
668 
669 /**
670  * ahash_request_set_crypt() - set data buffers
671  * @req: ahash_request handle to be updated
672  * @src: source scatter/gather list
673  * @result: buffer that is filled with the message digest -- the caller must
674  *	    ensure that the buffer has sufficient space by, for example, calling
675  *	    crypto_ahash_digestsize()
676  * @nbytes: number of bytes to process from the source scatter/gather list
677  *
678  * By using this call, the caller references the source scatter/gather list.
679  * The source scatter/gather list points to the data the message digest is to
680  * be calculated for.
681  */
682 static inline void ahash_request_set_crypt(struct ahash_request *req,
683 					   struct scatterlist *src, u8 *result,
684 					   unsigned int nbytes)
685 {
686 	req->src = src;
687 	req->nbytes = nbytes;
688 	req->result = result;
689 }
690 
691 /**
692  * DOC: Synchronous Message Digest API
693  *
694  * The synchronous message digest API is used with the ciphers of type
695  * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
696  *
697  * The message digest API is able to maintain state information for the
698  * caller.
699  *
700  * The synchronous message digest API can store user-related context in in its
701  * shash_desc request data structure.
702  */
703 
704 /**
705  * crypto_alloc_shash() - allocate message digest handle
706  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
707  *	      message digest cipher
708  * @type: specifies the type of the cipher
709  * @mask: specifies the mask for the cipher
710  *
711  * Allocate a cipher handle for a message digest. The returned &struct
712  * crypto_shash is the cipher handle that is required for any subsequent
713  * API invocation for that message digest.
714  *
715  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
716  *	   of an error, PTR_ERR() returns the error code.
717  */
718 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
719 					u32 mask);
720 
721 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
722 {
723 	return &tfm->base;
724 }
725 
726 /**
727  * crypto_free_shash() - zeroize and free the message digest handle
728  * @tfm: cipher handle to be freed
729  */
730 static inline void crypto_free_shash(struct crypto_shash *tfm)
731 {
732 	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
733 }
734 
735 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
736 {
737 	return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
738 }
739 
740 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
741 {
742 	return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
743 }
744 
745 static inline unsigned int crypto_shash_alignmask(
746 	struct crypto_shash *tfm)
747 {
748 	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
749 }
750 
751 /**
752  * crypto_shash_blocksize() - obtain block size for cipher
753  * @tfm: cipher handle
754  *
755  * The block size for the message digest cipher referenced with the cipher
756  * handle is returned.
757  *
758  * Return: block size of cipher
759  */
760 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
761 {
762 	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
763 }
764 
765 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
766 {
767 	return container_of(alg, struct shash_alg, base);
768 }
769 
770 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
771 {
772 	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
773 }
774 
775 /**
776  * crypto_shash_digestsize() - obtain message digest size
777  * @tfm: cipher handle
778  *
779  * The size for the message digest created by the message digest cipher
780  * referenced with the cipher handle is returned.
781  *
782  * Return: digest size of cipher
783  */
784 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
785 {
786 	return crypto_shash_alg(tfm)->digestsize;
787 }
788 
789 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
790 {
791 	return crypto_shash_alg(tfm)->statesize;
792 }
793 
794 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
795 {
796 	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
797 }
798 
799 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
800 {
801 	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
802 }
803 
804 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
805 {
806 	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
807 }
808 
809 /**
810  * crypto_shash_descsize() - obtain the operational state size
811  * @tfm: cipher handle
812  *
813  * The size of the operational state the cipher needs during operation is
814  * returned for the hash referenced with the cipher handle. This size is
815  * required to calculate the memory requirements to allow the caller allocating
816  * sufficient memory for operational state.
817  *
818  * The operational state is defined with struct shash_desc where the size of
819  * that data structure is to be calculated as
820  * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
821  *
822  * Return: size of the operational state
823  */
824 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
825 {
826 	return tfm->descsize;
827 }
828 
829 static inline void *shash_desc_ctx(struct shash_desc *desc)
830 {
831 	return desc->__ctx;
832 }
833 
834 /**
835  * crypto_shash_setkey() - set key for message digest
836  * @tfm: cipher handle
837  * @key: buffer holding the key
838  * @keylen: length of the key in bytes
839  *
840  * The caller provided key is set for the keyed message digest cipher. The
841  * cipher handle must point to a keyed message digest cipher in order for this
842  * function to succeed.
843  *
844  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
845  */
846 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
847 			unsigned int keylen);
848 
849 /**
850  * crypto_shash_digest() - calculate message digest for buffer
851  * @desc: see crypto_shash_final()
852  * @data: see crypto_shash_update()
853  * @len: see crypto_shash_update()
854  * @out: see crypto_shash_final()
855  *
856  * This function is a "short-hand" for the function calls of crypto_shash_init,
857  * crypto_shash_update and crypto_shash_final. The parameters have the same
858  * meaning as discussed for those separate three functions.
859  *
860  * Return: 0 if the message digest creation was successful; < 0 if an error
861  *	   occurred
862  */
863 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
864 			unsigned int len, u8 *out);
865 
866 /**
867  * crypto_shash_export() - extract operational state for message digest
868  * @desc: reference to the operational state handle whose state is exported
869  * @out: output buffer of sufficient size that can hold the hash state
870  *
871  * This function exports the hash state of the operational state handle into the
872  * caller-allocated output buffer out which must have sufficient size (e.g. by
873  * calling crypto_shash_descsize).
874  *
875  * Return: 0 if the export creation was successful; < 0 if an error occurred
876  */
877 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
878 {
879 	return crypto_shash_alg(desc->tfm)->export(desc, out);
880 }
881 
882 /**
883  * crypto_shash_import() - import operational state
884  * @desc: reference to the operational state handle the state imported into
885  * @in: buffer holding the state
886  *
887  * This function imports the hash state into the operational state handle from
888  * the input buffer. That buffer should have been generated with the
889  * crypto_ahash_export function.
890  *
891  * Return: 0 if the import was successful; < 0 if an error occurred
892  */
893 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
894 {
895 	struct crypto_shash *tfm = desc->tfm;
896 
897 	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
898 		return -ENOKEY;
899 
900 	return crypto_shash_alg(tfm)->import(desc, in);
901 }
902 
903 /**
904  * crypto_shash_init() - (re)initialize message digest
905  * @desc: operational state handle that is already filled
906  *
907  * The call (re-)initializes the message digest referenced by the
908  * operational state handle. Any potentially existing state created by
909  * previous operations is discarded.
910  *
911  * Return: 0 if the message digest initialization was successful; < 0 if an
912  *	   error occurred
913  */
914 static inline int crypto_shash_init(struct shash_desc *desc)
915 {
916 	struct crypto_shash *tfm = desc->tfm;
917 
918 	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
919 		return -ENOKEY;
920 
921 	return crypto_shash_alg(tfm)->init(desc);
922 }
923 
924 /**
925  * crypto_shash_update() - add data to message digest for processing
926  * @desc: operational state handle that is already initialized
927  * @data: input data to be added to the message digest
928  * @len: length of the input data
929  *
930  * Updates the message digest state of the operational state handle.
931  *
932  * Return: 0 if the message digest update was successful; < 0 if an error
933  *	   occurred
934  */
935 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
936 			unsigned int len);
937 
938 /**
939  * crypto_shash_final() - calculate message digest
940  * @desc: operational state handle that is already filled with data
941  * @out: output buffer filled with the message digest
942  *
943  * Finalize the message digest operation and create the message digest
944  * based on all data added to the cipher handle. The message digest is placed
945  * into the output buffer. The caller must ensure that the output buffer is
946  * large enough by using crypto_shash_digestsize.
947  *
948  * Return: 0 if the message digest creation was successful; < 0 if an error
949  *	   occurred
950  */
951 int crypto_shash_final(struct shash_desc *desc, u8 *out);
952 
953 /**
954  * crypto_shash_finup() - calculate message digest of buffer
955  * @desc: see crypto_shash_final()
956  * @data: see crypto_shash_update()
957  * @len: see crypto_shash_update()
958  * @out: see crypto_shash_final()
959  *
960  * This function is a "short-hand" for the function calls of
961  * crypto_shash_update and crypto_shash_final. The parameters have the same
962  * meaning as discussed for those separate functions.
963  *
964  * Return: 0 if the message digest creation was successful; < 0 if an error
965  *	   occurred
966  */
967 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
968 		       unsigned int len, u8 *out);
969 
970 static inline void shash_desc_zero(struct shash_desc *desc)
971 {
972 	memzero_explicit(desc,
973 			 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
974 }
975 
976 #endif	/* _CRYPTO_HASH_H */
977