1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Cryptographic API for algorithms (i.e., low-level API). 4 * 5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> 6 */ 7 #ifndef _CRYPTO_ALGAPI_H 8 #define _CRYPTO_ALGAPI_H 9 10 #include <linux/crypto.h> 11 #include <linux/list.h> 12 #include <linux/kernel.h> 13 14 /* 15 * Maximum values for blocksize and alignmask, used to allocate 16 * static buffers that are big enough for any combination of 17 * algs and architectures. Ciphers have a lower maximum size. 18 */ 19 #define MAX_ALGAPI_BLOCKSIZE 160 20 #define MAX_ALGAPI_ALIGNMASK 63 21 #define MAX_CIPHER_BLOCKSIZE 16 22 #define MAX_CIPHER_ALIGNMASK 15 23 24 struct crypto_aead; 25 struct crypto_instance; 26 struct module; 27 struct rtattr; 28 struct seq_file; 29 struct sk_buff; 30 31 struct crypto_type { 32 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask); 33 unsigned int (*extsize)(struct crypto_alg *alg); 34 int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask); 35 int (*init_tfm)(struct crypto_tfm *tfm); 36 void (*show)(struct seq_file *m, struct crypto_alg *alg); 37 int (*report)(struct sk_buff *skb, struct crypto_alg *alg); 38 void (*free)(struct crypto_instance *inst); 39 40 unsigned int type; 41 unsigned int maskclear; 42 unsigned int maskset; 43 unsigned int tfmsize; 44 }; 45 46 struct crypto_instance { 47 struct crypto_alg alg; 48 49 struct crypto_template *tmpl; 50 51 union { 52 /* Node in list of instances after registration. */ 53 struct hlist_node list; 54 /* List of attached spawns before registration. */ 55 struct crypto_spawn *spawns; 56 }; 57 58 void *__ctx[] CRYPTO_MINALIGN_ATTR; 59 }; 60 61 struct crypto_template { 62 struct list_head list; 63 struct hlist_head instances; 64 struct module *module; 65 66 int (*create)(struct crypto_template *tmpl, struct rtattr **tb); 67 68 char name[CRYPTO_MAX_ALG_NAME]; 69 }; 70 71 struct crypto_spawn { 72 struct list_head list; 73 struct crypto_alg *alg; 74 union { 75 /* Back pointer to instance after registration.*/ 76 struct crypto_instance *inst; 77 /* Spawn list pointer prior to registration. */ 78 struct crypto_spawn *next; 79 }; 80 const struct crypto_type *frontend; 81 u32 mask; 82 bool dead; 83 bool registered; 84 }; 85 86 struct crypto_queue { 87 struct list_head list; 88 struct list_head *backlog; 89 90 unsigned int qlen; 91 unsigned int max_qlen; 92 }; 93 94 struct scatter_walk { 95 struct scatterlist *sg; 96 unsigned int offset; 97 }; 98 99 struct crypto_attr_alg { 100 char name[CRYPTO_MAX_ALG_NAME]; 101 }; 102 103 struct crypto_attr_type { 104 u32 type; 105 u32 mask; 106 }; 107 108 void crypto_mod_put(struct crypto_alg *alg); 109 110 int crypto_register_template(struct crypto_template *tmpl); 111 int crypto_register_templates(struct crypto_template *tmpls, int count); 112 void crypto_unregister_template(struct crypto_template *tmpl); 113 void crypto_unregister_templates(struct crypto_template *tmpls, int count); 114 struct crypto_template *crypto_lookup_template(const char *name); 115 116 int crypto_register_instance(struct crypto_template *tmpl, 117 struct crypto_instance *inst); 118 void crypto_unregister_instance(struct crypto_instance *inst); 119 120 int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst, 121 const char *name, u32 type, u32 mask); 122 void crypto_drop_spawn(struct crypto_spawn *spawn); 123 struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type, 124 u32 mask); 125 void *crypto_spawn_tfm2(struct crypto_spawn *spawn); 126 127 struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb); 128 int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret); 129 const char *crypto_attr_alg_name(struct rtattr *rta); 130 int crypto_inst_setname(struct crypto_instance *inst, const char *name, 131 struct crypto_alg *alg); 132 133 void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen); 134 int crypto_enqueue_request(struct crypto_queue *queue, 135 struct crypto_async_request *request); 136 void crypto_enqueue_request_head(struct crypto_queue *queue, 137 struct crypto_async_request *request); 138 struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue); 139 static inline unsigned int crypto_queue_len(struct crypto_queue *queue) 140 { 141 return queue->qlen; 142 } 143 144 void crypto_inc(u8 *a, unsigned int size); 145 void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size); 146 147 static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size) 148 { 149 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && 150 __builtin_constant_p(size) && 151 (size % sizeof(unsigned long)) == 0) { 152 unsigned long *d = (unsigned long *)dst; 153 unsigned long *s = (unsigned long *)src; 154 155 while (size > 0) { 156 *d++ ^= *s++; 157 size -= sizeof(unsigned long); 158 } 159 } else { 160 __crypto_xor(dst, dst, src, size); 161 } 162 } 163 164 static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2, 165 unsigned int size) 166 { 167 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && 168 __builtin_constant_p(size) && 169 (size % sizeof(unsigned long)) == 0) { 170 unsigned long *d = (unsigned long *)dst; 171 unsigned long *s1 = (unsigned long *)src1; 172 unsigned long *s2 = (unsigned long *)src2; 173 174 while (size > 0) { 175 *d++ = *s1++ ^ *s2++; 176 size -= sizeof(unsigned long); 177 } 178 } else { 179 __crypto_xor(dst, src1, src2, size); 180 } 181 } 182 183 static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm) 184 { 185 return PTR_ALIGN(crypto_tfm_ctx(tfm), 186 crypto_tfm_alg_alignmask(tfm) + 1); 187 } 188 189 static inline struct crypto_instance *crypto_tfm_alg_instance( 190 struct crypto_tfm *tfm) 191 { 192 return container_of(tfm->__crt_alg, struct crypto_instance, alg); 193 } 194 195 static inline void *crypto_instance_ctx(struct crypto_instance *inst) 196 { 197 return inst->__ctx; 198 } 199 200 static inline struct crypto_async_request *crypto_get_backlog( 201 struct crypto_queue *queue) 202 { 203 return queue->backlog == &queue->list ? NULL : 204 container_of(queue->backlog, struct crypto_async_request, list); 205 } 206 207 static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off) 208 { 209 return (algt->type ^ off) & algt->mask & off; 210 } 211 212 /* 213 * When an algorithm uses another algorithm (e.g., if it's an instance of a 214 * template), these are the flags that should always be set on the "outer" 215 * algorithm if any "inner" algorithm has them set. 216 */ 217 #define CRYPTO_ALG_INHERITED_FLAGS \ 218 (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \ 219 CRYPTO_ALG_ALLOCATES_MEMORY) 220 221 /* 222 * Given the type and mask that specify the flags restrictions on a template 223 * instance being created, return the mask that should be passed to 224 * crypto_grab_*() (along with type=0) to honor any request the user made to 225 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear. 226 */ 227 static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt) 228 { 229 return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS); 230 } 231 232 noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size); 233 234 /** 235 * crypto_memneq - Compare two areas of memory without leaking 236 * timing information. 237 * 238 * @a: One area of memory 239 * @b: Another area of memory 240 * @size: The size of the area. 241 * 242 * Returns 0 when data is equal, 1 otherwise. 243 */ 244 static inline int crypto_memneq(const void *a, const void *b, size_t size) 245 { 246 return __crypto_memneq(a, b, size) != 0UL ? 1 : 0; 247 } 248 249 int crypto_register_notifier(struct notifier_block *nb); 250 int crypto_unregister_notifier(struct notifier_block *nb); 251 252 /* Crypto notification events. */ 253 enum { 254 CRYPTO_MSG_ALG_REQUEST, 255 CRYPTO_MSG_ALG_REGISTER, 256 CRYPTO_MSG_ALG_LOADED, 257 }; 258 259 #endif /* _CRYPTO_ALGAPI_H */ 260